
© 2019 Bruce Powel Douglass, Ph.D.

Using Model-Based Development

for Better C Designs

Bruce Powel Douglass, Ph.D.
Bruce.Douglass@us.ibm.com

Twitter: @IronmanBruce

www.bruce-douglass.com

mailto:Bruce.Douglass@us.ibm.com

© 2019 Bruce Powel Douglass, Ph.D.2

What’s wrong with Good Old C?

▪ Answer:

Source code is a necessary but insufficient structural model of the system

▪ Why?

Because to understand complex systems you need to understand

− How pieces of different scale and abstraction work together

− How different aspects (structural, behavioral) of the systems work

▪ Code is a 1-dimensional, very detailed structural view

▪ Every other view must be inferred

− High level structure

− Dynamic behavior

▪ With large systems, code-based systems are unmanageable!

− Expensive to construct

− Expensive to maintain

− Expensive to modify

− Expensive to port

− Difficult to understand

2

© 2019 Bruce Powel Douglass, Ph.D.3

Models improve

▪ Visualization

▪ Understanding

▪ Communication

▪ Consistency

▪ Provability

▪ Maintainability

▪ Reusability

3

© 2019 Bruce Powel Douglass, Ph.D.4

Models

▪ Graphical models use 2+ dimensions to display structural and behavioral aspects

▪ Graphical models use abstraction to view the system at different levels of scale from

− System (very large)

− Subsystem (large)

− Component (medium)

− Class (small)

− Operation (code) (very small)

▪ Graphical notations lend themselves to recursive application, allowing any number of levels

of abstraction to be used.

4

Model-Code Associativity Principle

The code is merely one view of

the model.

© 2019 Bruce Powel Douglass, Ph.D.5

Visualization

▪ Visual Models aid

− Initial construction of the system

− Ongoing maintenance of the system

− The testing of the system

− Introducing new staff to the system

− Communicating system concepts to others with

• The appropriate level of abstraction to the concept(s) at hand

• The appropriate aspects of the system

5

© 2019 Bruce Powel Douglass, Ph.D.6

UML Diagrams

6

Behavioral
Diagrams

Structural
Diagrams

Functional
Diagrams

Interaction
Diagrams

Class
Diagram

Structure
Diagram

Object
Diagram

Deployment
Diagram

Component
Diagram

Sequence
Diagram

Communi-
cation

Diagram

Timing
Diagram

State
Diagram

Activity
Diagram

Flowchart
Diagram

Use
Case

Diagram

Info
Flow

Diagram

«SysML»

Require-
ment

DiagramPackage
Diagram

© 2019 Bruce Powel Douglass, Ph.D.7

Class Diagram

7

Class diagrams show structural elements and relations
between among.

Critical

© 2019 Bruce Powel Douglass, Ph.D.8

Sequence Diagram

8

Sequence Diagrams show how instances communicate over time.

Critical

© 2019 Bruce Powel Douglass, Ph.D.9

State Machine Diagram

9

State machines are used to describe elements whose
behavior is state-based and event-driven

Critical

© 2019 Bruce Powel Douglass, Ph.D.10

Use Case Diagram

10

This diagram shows what the system does and who/what
interacts with it

Secondary

© 2019 Bruce Powel Douglass, Ph.D.11

Activity Diagram

11

Activity diagrams are used to describe
algorithmic behavior for operations,
classes or use cases.

Secondary

© 2019 Bruce Powel Douglass, Ph.D.12

UMMI – UML Maturity Model Index

12

Level Benefit Focus Technologies Result

5

Optimizing

100% Agile and

Engineering Best

Practices

Model-based testing,

nanocycle

execution, test

driven development,

continuous

integration

Productivity

and Quality

4

Executing

70% Model-based

verification

Model execution,

code generation,

model-based

debugging

3

Behavioral Modeling

30% State and

algorithmic

modeling

State, sequence and

activity diagrams

2

Structural Modeling

15% Class and block

modeling of

structure

Class and block

diagrams

1

Visualization

5% Visualizing code

structures

Reverse engineering

0

Code Based

Development

0% Manual, time intensive heroic

development

© 2019 Bruce Powel Douglass, Ph.D.13

Classes and Objects

▪ A class is a design-time specification that defines the structure and behavior for a set of

objects to be created at run-time.

− Specifies behavior implementation (methods)

− Specifies data (attributes)

− Specifies state (optional)

▪ An object is a run-time entity that occupies memory at some specific point in time

− Instance of a class

• That means it is a new set of data defined by the class and owned by the instance

13

Hmmm. A class has operations (functions and event receptions),

data, and types. Doesn’t that kind of sound like a standard C file?

Class

Object Object

© 2019 Bruce Powel Douglass, Ph.D.14

Relations

▪ Relations allow objects to communicate at run-time or to share metadata at design time

▪ Class may use the facilities of other classes with an association

− Note: Objects are connected via links. Links are instances of associations

• That is: an association defines a pointer from the source to destination class. The

link is the actual pointer value within an instance in the running system

▪ There are two specialized forms of association:

− Classes may strongly aggregate others (as parts defined by other classes) via

composition

▪ Classes may derive attributes and behaviors from other classes with a generalization

▪ Classes may depend on others via a dependency

− Classes may contain others with an aggregation

14

© 2019 Bruce Powel Douglass, Ph.D.15

Relations

15

composition

generalization

association

aggregation

© 2019 Bruce Powel Douglass, Ph.D.16

Associations – the most important relation

▪ Associations may have labels

− This is the “name” of the association

− Labels are little used

▪ Associations may have role names

− Identifies the role of the object in the

association

− Implementation hint: this is usually the

name of the pointer realizing the relation

▪ Associations may indicate multiplicity

− Identifies the number of instances of the class that participate in the association

− Implementation hint: >1 multiplicities can be done with arrays or container classes (e.g.

linked lists)

▪ Associations may indicate navigation with an open arrowhead

− Unadorned associations are assumed to be bi-directional

− Most associations are unidirectional

16

© 2019 Bruce Powel Douglass, Ph.D.17

Multiplicity / Navigation

17

Role name

Navigation

Multiplicity

© 2019 Bruce Powel Douglass, Ph.D.18

Aggregation (remember – it’s an association!)

▪ Is a kind of association

▪ Indicated by a hollow diamond

▪ “Whole-part” relationship

− Denotes one object logically or physically contains another

▪ “Weaker” form of aggregation. Nothing is implied about

− Navigation

− Ownership

− Lifetimes of participating objects

18

© 2019 Bruce Powel Douglass, Ph.D.19

Composition – associations with responsibility

19

Two ways
to show

composition

© 2019 Bruce Powel Douglass, Ph.D.20

UML Software Development Environment

20

Platform Independent
Application

Platform independent
framework

OS Adapter

RTOS

Hardware

Application on Target

System Hardware

Model entry (diagrams)

Model Compiler

Model Management

Integrated Testing

Execution control

Execution monitoring

Rhapsody

Compiling & Linking

Execution Cmds

Execution status

Source Code
Reverse engineer

models if desired

Link in

legacy code

&

components

as desired

Code

generation

Customization
handle_dns (TSHttpTxn txnp,

TSCont contp) {

TSMBuffer bufp;

TSMLoc hdr_loc; TSMLoc url_loc;

const char *host;

int i; int host_length;

if (!TSHttpTxnClientReqGet

(txnp, &bufp, &hdr_loc)) {

TSError ("couldn't retrieve

client request header\n");

goto done; }

© 2019 Bruce Powel Douglass, Ph.D.21

Three primary approaches to use UML with C

▪ Functional design (FD)

− Based on the notion of Files

− Files contain

• Data

• Functions

• Data types

▪ Object-based design (OBD)

− Support objects by creating structs

− Bind functions to structs using naming conventions (“name mangling”)

− No inheritance or generalization

− Use a me pointer to identify which data instance to the functions

▪ Object-oriented design (OOD)

− Support generalization and inheritance through creating virtual function tables within

structs

− Bind functions to structs using function pointers

− Use a me pointer to identify which data instance to the functions

▪ In all cases,

− Generate both .c and .h files

− State machines have class or file scope

21

© 2019 Bruce Powel Douglass, Ph.D.22

Classes represented as Files in C

▪ A file (*.h and *.c) lumps

together

− Variables

− Event types

− Functions (including

state machine

implementations)

− Types and typedefs

− Preprocessor

declarations

− «File» shows that the

“class” is representing

the contents of a

header/implementation

file pair

− «Usage» indicates

include the header file

22

variable

function

event receptor

Header/implementation

file pair

Indicates to include the

header or implementation

© 2019 Bruce Powel Douglass, Ph.D.23

Classes as Files in C

▪ “Traditional” C development

▪ Heavy use of singletons (single instances)

− Little use of multiple instances

▪ Associations implemented via pointers or references

▪ No structs needed

▪ No generalization used

23

© 2019 Bruce Powel Douglass, Ph.D.24

Let’s use an example for OBD and OOD

24

Destructor

Constructor

Directed association

Attributes

Operations

© 2019 Bruce Powel Douglass, Ph.D.25

C Object Based Design (header file)

25

#ifndef Sensor_H

#define Sensor_H

#include "ADConverter.h"

/* class Sensor */

typedef struct Sensor Sensor;

struct Sensor {

int filterFrequency;

int updateFrequency;

int value;

ADConverter* myADConvert; /* association implemented as ptr */

};

int Sensor_getFilterFrequency(const Sensor* const me);

void Sensor_setFilterFrequency(Sensor* const me, int p_filterFrequency);

int Sensor_getUpdateFrequency(const Sensor* const me);

void Sensor_setUpdateFrequency(Sensor* const me, int p_updateFrequency);

int Sensor_getValue(const Sensor* const me);

Sensor * Sensor_Create(void);

void Sensor_Destroy(Sensor* const me);

#endif

▪ The me pointer points to instance data (supports multiple instances of class)

© 2019 Bruce Powel Douglass, Ph.D.26

C Object Based Design (implementation file)

26

#include "Sensor.h"

int Sensor_getFilterFrequency(const Sensor* const me) {

return me->filterFrequency;

}

void Sensor_setFilterFrequency(Sensor* const me, int

p_filterFrequency) {

me->filterFrequency = p_filterFrequency;

}

int Sensor_getUpdateFrequency(const Sensor* const me) {

return me->updateFrequency;

}

void Sensor_setUpdateFrequency(Sensor* const me, int

p_updateFrequency) {

me->updateFrequency = p_updateFrequency;

}

int Sensor_getValue(const Sensor* const me) {

return me->value;

}

/* Constructor and destructor */

Sensor * Sensor_Create(void) {

Sensor* me = (Sensor *) malloc(sizeof(Sensor));

if(me!=NULL)

{

Sensor_Init(me);

}

return me;

}

void Sensor_Destroy(Sensor* const me) {

if(me!=NULL)

{

Sensor_Cleanup(me);

}

free(me);

}

© 2019 Bruce Powel Douglass, Ph.D.27

C Object Based Design

▪ Use of structs to represent classes

▪ Supports multiple instances

− Adds a me pointer to the struct instance as the first parameter of all class functions to

identify which object’s data should be acted on

▪ Class functions are prepended with the class name

− A class Sensor with a function acquire() would internally name the function

Sensor_acquire()

▪ No use of generalization

27

© 2019 Bruce Powel Douglass, Ph.D.28

C Object Oriented Design (header file)

28

#ifndef Sensor_H

#define Sensor_H

#include "ADConverter.h"

/* function pointers */

typedef int (*f0ptrInt)(void*);

typedef void (*f1ptrVoid)(void*,int);

/* class Sensor */

typedef struct Sensor Sensor;

struct Sensor {

int filterFrequency;

int updateFrequency;

int value;

ADConverter* myADConvert; /* association implemented as ptr */

f0ptrInt getFilterFreq; /* ptr to the function w only me ptr argument */

f1ptrVoid setFilterFreq; /* ptr to function with me ptr and int args */

};

int getFilterFrequency(const Sensor* const me);

Void setFilterFrequency(const Sensor* const me, int ff);

Sensor * Sensor_Create(void); /* creates struct and calls init */

Void Sensor_Init(Sensor* const me); /* intializes vars incl. function ptrs */

void Sensor_Destroy(Sensor* const me);

#endif

▪ The function pointers support polymorphism and virtual functions

/* initialize function ptrs in constructor */

void Sensor_Init(Sensor* const me) {

me->getFilterFreq = subGetFilterFrequency;

me->setFilterFreq = subSetFilterFrequency;

}

© 2019 Bruce Powel Douglass, Ph.D.29

C Object Oriented Design

▪ Use of structs to represent classes

▪ Supports multiple instances

− Adds a me pointer to the struct instance as the first parameter of all class functions to

identify which object’s data should be acted on

▪ Supports generalization

− Subclasses include the base class structure and extend it

− Polymorphism is supported by having function pointer to functions of interest

• Requires double dereferencing but it means that at run-time calling a function can

refer to the subclasses function because the function pointer points to the replaced

function

29

© 2019 Bruce Powel Douglass, Ph.D.30

Generalization and Polymorphism

▪ To the left, “Sub” is a specialized kind of

“Super’

▪ Sub inherits all the data and behavior of

Super

▪ Sub may specialize or extend Super by

− Adding new data elements

− Adding new functions

− Redefining existing functions

− So if Client calls

doSomethingInteresting() but is

actually pointing to an instance of Sub,

then the Sub implementation is

invoked.

− This can be done in C by invoking the

function by referencing a function

point. When you create the instance of

Sub, point to the (internally named

Sub_doSomethingInteresting())

function

30

© 2019 Bruce Powel Douglass, Ph.D.31

Graphical C

31

© 2019 Bruce Powel Douglass, Ph.D.32

Graphical C Diagrams

32

© 2019 Bruce Powel Douglass, Ph.D.33

Use Case Diagram

▪ Used to cluster requirements into “system uses”

▪ Contains

− Use Cases

− Actors

− Requirements

− Constraints

− Comments

− Relations

• Association

• Dependency

• Generalization

33

© 2019 Bruce Powel Douglass, Ph.D.34

File Diagram

▪ C programs are typically composed of Files containing

− Variables

− Functions

− Types

− Includes

• Header

• Body

34

© 2019 Bruce Powel Douglass, Ph.D.35

Build Diagram

▪ Shows the components required to construct the system

▪ These may be

− Executables

− Libraries

− External Source code

35

© 2019 Bruce Powel Douglass, Ph.D.36

Call Graph

▪ Shows

− The calls and their sequence among set of functions

− The binding of variables and functions

▪ Note

− Can only show calls (synchronous function invocations) not asynchronous event

receptions

36

© 2019 Bruce Powel Douglass, Ph.D.37

Message Diagram

▪ Message diagram shows an exemplar (aka scenario) between a set of files, depicting

− The files as vertical “lifelines”

− Messages as arrowed lines, which may be either

• Synchronous (i.e. function calls)

• Asynchronous (i.e. queued events)

− Annotations, such as quality of service constraints

▪ A system normally has many message diagrams depicting

− Different messages

− Different sequences

− Both

▪ A message diagram relates to either a flow chart or statechart by showing a singular path

through that formal specification

37

© 2019 Bruce Powel Douglass, Ph.D.38

Message Diagram

38

Asynch msg

Synch msg

© 2019 Bruce Powel Douglass, Ph.D.39

State Diagram

▪ UML state diagrams are based on Harel Statecharts.

▪ They depict the state behavior of elements (normally files) and control the sequencing of

functional invocations and primitive operations that take place in response to events

▪ Events may be

− Synchronous (“triggered functions”)

− Asynchronous event receptions

− Timeouts

▪ States may be nested within states

− On the same diagram

− On “nested diagrams”

▪ State may be

− “OR-states”

• Element may be in one state or another

− “AND-states”

• Elements may be in multiple states simultaneously

39

© 2019 Bruce Powel Douglass, Ph.D.40

State Diagram

40

© 2019 Bruce Powel Douglass, Ph.D.41

Execution and debugging w state machines & sequences

41

© 2019 Bruce Powel Douglass, Ph.D.42

Flowchart

▪ Flowcharts (simplified activity diagrams) represent algorithms

− Contain information contained within the Call Graph but adds

• Sequence

• Operators

• Conditional

• Fork

• Join

▪ Most often, flow charts

are assigned to functions

▪ With UML, you can

− Execute and debug flow charts

− Generate code from flow charts

42

© 2019 Bruce Powel Douglass, Ph.D.43

Code View

▪ Tools can maintain automatic synchronization between the code and the graphical views.

− This is called dynamic model-code associativity or round-trip engineering

− If you modify the code, the model changes

− If you modify the model, the code changes

▪ You can also create a model from

a source code base – this is

known as Reverse Engineering

43

© 2019 Bruce Powel Douglass, Ph.D.44

Summary

▪ Using a model-based approach provides real benefits for C developers

− Improved understanding

− Improved maintainability

− Improved communication

− Improved testability

− Simplified compliance to safety standards

− Automatic code generation

− Ability to use existing legacy code

− Ability to work within either the graphical or code views

▪ Using Graphical C allows the functional C developer to continue with a functional approach

without requirement adoption of object oriented approaches

▪ Graphical C can be used to

− document existing code, or

− Develop new systems

▪ Graphical C can be extended as desired by adding UML and object oriented concepts

downstream

44

© 2019 Bruce Powel Douglass, Ph.D.45

References

45

