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What’s wrong with Good Old C?

▪ Answer:

Source code is a necessary but insufficient structural model of the system

▪ Why?

Because to understand complex systems you need to understand

− How pieces of different scale and abstraction work together

− How different aspects (structural, behavioral) of the systems work

▪ Code is a 1-dimensional, very detailed structural view

▪ Every other view must be inferred

− High level structure

− Dynamic behavior

▪ With large systems, code-based systems are unmanageable!

− Expensive to construct

− Expensive to maintain

− Expensive to modify

− Expensive to port

− Difficult to understand
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Models improve

▪ Visualization

▪ Understanding

▪ Communication

▪ Consistency

▪ Provability

▪ Maintainability

▪ Reusability
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Models

▪ Graphical models use 2+ dimensions to display structural and behavioral aspects

▪ Graphical models use abstraction to view the system at different levels of scale from

− System (very large)

− Subsystem (large)

− Component (medium)

− Class (small)

− Operation (code) (very small)

▪ Graphical notations lend themselves to recursive application, allowing any number of levels 

of abstraction to be used.
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Model-Code Associativity Principle

The code is merely one view of 

the model.
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Visualization

▪ Visual Models aid

− Initial construction of the system

− Ongoing maintenance of the system

− The testing of the system

− Introducing new staff to the system

− Communicating system concepts to others with

• The appropriate level of abstraction to the concept(s) at hand

• The appropriate aspects of the system
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UML Diagrams
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Class Diagram
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Class diagrams show structural elements and relations 
between among.

Critical
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Sequence Diagram
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Sequence Diagrams show how instances communicate over time.

Critical
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State Machine Diagram
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State machines are used to describe elements whose 
behavior is state-based and event-driven

Critical
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Use Case Diagram
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This diagram shows what the system does and who/what 
interacts with it

Secondary
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Activity Diagram
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Activity diagrams are used to describe 
algorithmic behavior for operations, 
classes or use cases. 

Secondary
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UMMI – UML Maturity Model Index

12

Level Benefit Focus Technologies Result

5

Optimizing

100% Agile and 

Engineering Best 

Practices

Model-based testing, 

nanocycle 

execution, test 

driven development, 

continuous 

integration

Productivity 

and Quality

4

Executing

70% Model-based 

verification

Model execution, 

code generation, 

model-based 

debugging

3

Behavioral Modeling

30% State and 

algorithmic 

modeling

State, sequence and 

activity diagrams

2

Structural Modeling

15% Class and block 

modeling of 

structure

Class and block 

diagrams

1

Visualization

5% Visualizing code 

structures

Reverse engineering

0

Code Based 

Development

0% Manual, time intensive heroic 

development
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Classes and Objects

▪ A class is a design-time specification that defines the structure and behavior for a set of 

objects to be created at run-time. 

− Specifies behavior implementation (methods)

− Specifies data (attributes)

− Specifies state (optional)

▪ An object is a run-time entity that occupies memory at some specific point in time

− Instance of a class

• That means it is a new set of data defined by the class and owned by the instance
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Hmmm. A class has operations (functions and event receptions), 

data, and types. Doesn’t that kind of sound like a standard C file? 

Class

Object Object
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Relations 

▪ Relations allow objects to communicate at run-time or to share metadata at design time

▪ Class may use the facilities of other classes with an association

− Note: Objects are connected via links. Links are instances of associations

• That is: an association defines a pointer from the source to destination class. The 

link is the actual pointer value  within an instance in the running system 

▪ There are two specialized forms of association:

− Classes may strongly aggregate others (as parts defined by other classes) via 

composition

▪ Classes may derive attributes and behaviors from other classes with a generalization

▪ Classes may depend on others via a dependency

− Classes may contain others with an aggregation
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Relations

15

composition

generalization

association

aggregation
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Associations – the most important relation 

▪ Associations may have labels

− This is the “name” of the association

− Labels are little used

▪ Associations may have role names

− Identifies the role of the object in the 

association

− Implementation hint: this is usually the 

name of the pointer realizing the relation

▪ Associations may indicate multiplicity

− Identifies the number of instances of the class that participate in the association

− Implementation hint: >1 multiplicities can be done with arrays or container classes (e.g. 

linked lists)

▪ Associations may indicate navigation with an open arrowhead

− Unadorned associations are assumed to be bi-directional

− Most associations are unidirectional
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Multiplicity / Navigation

17

Role name

Navigation

Multiplicity
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Aggregation (remember – it’s an association!) 

▪ Is a kind of association

▪ Indicated by a hollow diamond 

▪ “Whole-part” relationship

− Denotes one object logically or physically contains another 

▪ “Weaker” form of aggregation. Nothing is implied about

− Navigation

− Ownership

− Lifetimes of participating objects

18
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Composition – associations with responsibility

19

Two ways
to show

composition
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UML Software Development Environment
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Customization
handle_dns (TSHttpTxn txnp, 

TSCont contp) { 

TSMBuffer bufp; 

TSMLoc hdr_loc; TSMLoc url_loc; 

const char *host; 

int i; int host_length; 

if (!TSHttpTxnClientReqGet 

(txnp, &bufp, &hdr_loc)) { 

TSError ("couldn't retrieve 

client request header\n"); 

goto done; }
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Three primary approaches to use UML with C

▪ Functional design (FD)

− Based on the notion of Files

− Files contain

• Data

• Functions

• Data types

▪ Object-based design (OBD)

− Support objects by creating structs

− Bind functions to structs using naming conventions (“name mangling”)

− No inheritance or generalization

− Use a me pointer to identify which data instance to the functions

▪ Object-oriented design (OOD)

− Support generalization and inheritance through creating virtual function tables within 

structs

− Bind functions to structs using function pointers

− Use a me pointer to identify which data instance to the functions

▪ In all cases, 

− Generate both .c and .h files

− State machines have class or file scope
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Classes represented as Files in C

▪ A file (*.h and *.c) lumps 

together 

− Variables

− Event types

− Functions (including 

state machine 

implementations)

− Types and typedefs

− Preprocessor 

declarations

− «File» shows that the 

“class” is representing 

the contents of a 

header/implementation 

file pair

− «Usage» indicates 

include the header file

22

variable

function

event receptor

Header/implementation

file pair

Indicates to include the 

header or implementation
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Classes as Files in C

▪ “Traditional” C development

▪ Heavy use of singletons (single instances)

− Little use of multiple instances 

▪ Associations implemented via pointers or references

▪ No structs needed

▪ No generalization used

23
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Let’s use an example for OBD and OOD

24

Destructor

Constructor

Directed association

Attributes

Operations
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C Object Based Design (header file)
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#ifndef Sensor_H

#define Sensor_H

#include "ADConverter.h"

/* class Sensor */

typedef struct Sensor Sensor;

struct Sensor {

int filterFrequency;

int updateFrequency;

int value;

ADConverter* myADConvert; /* association implemented as ptr */

};

int Sensor_getFilterFrequency(const Sensor* const me);

void Sensor_setFilterFrequency(Sensor* const me, int p_filterFrequency);

int Sensor_getUpdateFrequency(const Sensor* const me);

void Sensor_setUpdateFrequency(Sensor* const me, int p_updateFrequency);

int Sensor_getValue(const Sensor* const me);

Sensor * Sensor_Create(void);

void Sensor_Destroy(Sensor* const me); 

#endif

▪ The me pointer points to instance data (supports multiple instances of class)
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C Object Based Design (implementation file)
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#include "Sensor.h"

int Sensor_getFilterFrequency(const Sensor* const me) {

return me->filterFrequency;

}

void Sensor_setFilterFrequency(Sensor* const me, int 

p_filterFrequency) {

me->filterFrequency = p_filterFrequency;

}

int Sensor_getUpdateFrequency(const Sensor* const me) {

return me->updateFrequency;

}

void Sensor_setUpdateFrequency(Sensor* const me, int 

p_updateFrequency) {

me->updateFrequency = p_updateFrequency;

}

int Sensor_getValue(const Sensor* const me) {

return me->value;

}

/* Constructor and destructor */

Sensor * Sensor_Create(void) {

Sensor* me = (Sensor *) malloc(sizeof(Sensor));

if(me!=NULL)

{

Sensor_Init(me);

}

return me;

}

void Sensor_Destroy(Sensor* const me) {

if(me!=NULL)

{

Sensor_Cleanup(me);

}

free(me);

} 
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C Object Based Design

▪ Use of structs to represent classes

▪ Supports multiple instances

− Adds a me pointer to the struct instance as the first parameter of all class functions to 

identify which object’s data should be acted on

▪ Class functions are prepended with the class name

− A class Sensor with a function acquire() would internally name the function 

Sensor_acquire()

▪ No use of generalization
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C Object Oriented Design (header file)
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#ifndef Sensor_H

#define Sensor_H

#include "ADConverter.h"

/* function pointers */

typedef int (*f0ptrInt)(void*);

typedef void (*f1ptrVoid)(void*,int);

/* class Sensor */

typedef struct Sensor Sensor;

struct Sensor {

int filterFrequency;

int updateFrequency;

int value;

ADConverter* myADConvert; /* association implemented as ptr */

f0ptrInt getFilterFreq;  /* ptr to the function w only me ptr argument */

f1ptrVoid setFilterFreq; /* ptr to function with me ptr and int args */

};

int getFilterFrequency(const Sensor* const me);

Void setFilterFrequency(const Sensor* const me, int ff);

Sensor * Sensor_Create(void); /* creates struct and calls init */

Void Sensor_Init(Sensor* const me); /* intializes vars incl. function ptrs */

void Sensor_Destroy(Sensor* const me); 

#endif

▪ The function pointers support polymorphism and virtual functions

/* initialize function ptrs in constructor */

void Sensor_Init(Sensor* const me) {

me->getFilterFreq = subGetFilterFrequency;

me->setFilterFreq = subSetFilterFrequency;

} 
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C Object Oriented Design

▪ Use of structs to represent classes

▪ Supports multiple instances

− Adds a me pointer to the struct instance as the first parameter of all class functions to 

identify which object’s data should be acted on

▪ Supports generalization

− Subclasses include the base class structure and extend it

− Polymorphism is supported by having function pointer to functions of interest

• Requires double dereferencing but it means that at run-time calling a function can 

refer to the subclasses function because the function pointer points to the replaced 

function

29
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Generalization and Polymorphism

▪ To the left, “Sub” is a specialized kind of 

“Super’

▪ Sub inherits all the data and behavior of 

Super

▪ Sub may specialize or extend Super by

− Adding new data elements

− Adding new functions

− Redefining existing functions

− So if Client calls 

doSomethingInteresting() but is 

actually pointing to an instance of Sub, 

then the Sub implementation is 

invoked. 

− This can be done in C by invoking the 

function by referencing a function 

point. When you create the instance of 

Sub, point to the (internally named 

Sub_doSomethingInteresting()) 

function

30
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Graphical C

31
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Graphical C Diagrams

32
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Use Case Diagram

▪ Used to cluster requirements into “system uses”

▪ Contains

− Use Cases

− Actors

− Requirements 

− Constraints

− Comments

− Relations

• Association

• Dependency

• Generalization

33
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File Diagram

▪ C programs are typically composed of Files containing

− Variables

− Functions

− Types

− Includes

• Header

• Body

34



© 2019 Bruce Powel Douglass, Ph.D.35

Build Diagram

▪ Shows the components required to construct the system

▪ These may be

− Executables

− Libraries

− External Source code

35
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Call Graph

▪ Shows 

− The calls and their sequence among set of functions

− The binding of variables and functions

▪ Note

− Can only show calls (synchronous function invocations) not asynchronous event 

receptions

36
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Message Diagram

▪ Message diagram shows an exemplar (aka scenario) between a set of files, depicting

− The files as vertical “lifelines”

− Messages as arrowed lines, which may be either

• Synchronous (i.e. function calls)

• Asynchronous (i.e. queued events)

− Annotations, such as quality of service constraints

▪ A system normally has many message diagrams depicting 

− Different messages

− Different sequences

− Both 

▪ A message diagram relates to either a flow chart or statechart by showing a singular path 

through that formal specification

37
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Message Diagram

38

Asynch msg

Synch msg
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State Diagram

▪ UML state diagrams are based on Harel Statecharts.

▪ They depict the state behavior of elements (normally files) and control the sequencing of 

functional invocations and primitive operations that take place in response to events

▪ Events may be

− Synchronous (“triggered functions”)

− Asynchronous event receptions

− Timeouts

▪ States may be nested within states

− On the same diagram

− On “nested diagrams”

▪ State may be 

− “OR-states”

• Element may be in one state or another

− “AND-states”

• Elements may be in multiple states simultaneously
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State Diagram
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Execution and debugging w state machines & sequences

41
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Flowchart

▪ Flowcharts (simplified activity diagrams) represent algorithms

− Contain information contained within the Call Graph but adds

• Sequence

• Operators

• Conditional

• Fork

• Join

▪ Most often, flow charts 

are assigned to functions

▪ With UML, you can 

− Execute and debug flow charts

− Generate code from flow charts

42
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Code View

▪ Tools can maintain automatic synchronization between the code and the graphical views.

− This is called dynamic model-code associativity or round-trip engineering

− If you modify the code, the model changes

− If you modify the model, the code changes

▪ You can also create a model from

a source code base – this is 

known as Reverse Engineering
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Summary

▪ Using a model-based approach provides real benefits for C developers

− Improved understanding

− Improved maintainability

− Improved communication

− Improved testability

− Simplified compliance to safety standards

− Automatic code generation

− Ability to use existing legacy code

− Ability to work within either the graphical or code views

▪ Using Graphical C allows the functional C developer to continue with a functional approach 

without requirement adoption of object oriented approaches

▪ Graphical C can be used to 

− document existing code, or

− Develop new systems

▪ Graphical C can be extended as desired by adding UML and object oriented concepts 

downstream
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