
© 2019 IBM Corporation

Safety Design for Embedded 

Systems Development
A Design-Pattern Approach

Bruce Powel Douglass, Ph.D.
Chief Evangelist, IBM IoT
www.bruce-douglass.com
Twitter: @IronmanBruce

http://www.bruce-douglass.com/


© 2019 IBM Corporation2

Safety and Reliability Patterns

▪ Isolation Pattern

▪ CRC Pattern

▪ Smart Data Pattern

▪ Protected Single Channel Pattern

▪ Homogeneous Redundancy Pattern

▪ Heterogeneous Redundancy Pattern

▪ Triple Modular Redundancy Pattern

▪ Monitor-Actuator Pattern



© 2019 IBM Corporation3

Isolation Pattern

▪ Isolate safety functions from non-safety critical functions
− Separate CPU
− Separate memory
− Separate devices
− Separate process (e.g. ARINC 653-style OS support)

▪ Safety-relevant systems are 300-1000% more effort to produce
− Isolation of safety systems allows more expedient development

▪ Care must be taken that the safety system is truly isolated so that a defect in 
the non-safety system cannot affect the safety system

Safety 

Component

Non-Safety 

Component1

Non-Safety 

Component2



© 2019 IBM Corporation4

Channel Pattern

▪ Problem

− Efficient execution of a system in which data is successively transformed in a series of 

steps

− Want to organize and manage a hi-reliability, hi-availability, or safety-critical system that 

must provide redundancy of end-to-end behaviors

▪ Solution

− Construct the system as a channel, a large scale subsystem which handles data from 

acquisition all the way through dependent actuation. Provide as many independent 

channels as necessary.

▪ Consequences

− A simple organizational pattern that permits redundancy to be easily added.

− May use additional memory since channels are designed to be independent, requiring 

replication (redundancy)



© 2019 IBM Corporation5

Channel Pattern



© 2019 IBM Corporation6

Channel Pattern Example



© 2019 IBM Corporation7

Channel Pattern Example



© 2019 IBM Corporation8

CRC Pattern

▪ Problem

− This pattern addresses the problem that variables may be corrupted from a variety of 

causes such as environmental factors (such as EMI, heat, and radiation), hardware 

faults (such as power fluctuation, memory cell faults, and address line shorts), or 

software faults (other software erroneously modifying memory). This pattern addresses 

the problem of data corruption in large data sets. 

▪ Solution

− The pattern adds cyclic redundancy checks to identify data corruption and trigger 

appropriate action when it occurs

▪ Consequences

− CRC uses a small amount of memory for strong bit-corruption identification

− Table-driven implementations use additional block of memory to hold table but are 

computationally efficient



© 2019 IBM Corporation9

CRC Pattern



© 2019 IBM Corporation10

CRC Pattern Example



© 2019 IBM Corporation11

Smart Data Pattern

▪ Problem

− The problem this pattern addresses is to build functions and data types that essentially 

check themselves and provide error detection means that cannot be easily ignored. 

▪ Solution 

− The key concepts of the pattern are to 

• Build self-checking types whenever possible 

• Check incoming parameter values for appropriate range checking 

• Check consistency and reasonableness among one or a set of parameters. 

▪ Consequences

− The downside for using smart data types is the performance overhead for executing the 

operations. 

− The upside is that the data is self-protecting and provides automatic checking when the 

data is set. 

− It is also possible for the programmers to avoid using the functions and access the 

values directly if they are so inclined, defeating the purpose of the smart data type. 



© 2019 IBM Corporation12

Smart Data Pattern



© 2019 IBM Corporation13

Smart Data Pattern Example



© 2019 IBM Corporation14

Protected Single Channel Pattern

▪ Problem

− Provide protection against errors (design flaws) in a cost effective way

▪ Solution

− A variant of the Channel pattern the uses light-weight redundancy to provide 

identification of errors

▪ Consequences

− Low design cost

− Low recurring cost

− Not able to continue in the presence of faults



© 2019 IBM Corporation15

Protected Single Channel Pattern



© 2019 IBM Corporation16

Protected Single Channel Pattern Example



© 2019 IBM Corporation17

Multichannel Redundancy Pattern

▪ Problem

− Provide the ability to continue in the presence of a fault

▪ Solution

− Provide “redundancy in the large” by replicating channels

− Common variants

• Dual Channel Homogeneous Redundancy (DCHo)

• Dual Channel Heterogeneous Redundancy (DCHe)

• Triple Modular Redundancy (TMR)

▪ Consequences

− Low design-time cost (DCHo, TMR)

− High design-time cost (DCHe)

− High recurring cost (all)

− Able to continue in the presence of a failure (all)

− Able to continue in the presence of an error (DCHe, or TMR-He) 

Note: Homogeneous channels are exact replicas; Heterogeneous channels use

different designs, algorithms, hardware types, and/or code.



© 2019 IBM Corporation18

Homogeneous Redundancy Pattern (high level view)



© 2019 IBM Corporation19

Homogeneous Redundancy Pattern (detailed view)



© 2019 IBM Corporation20

Triple Modular Redundancy (TMR) Pattern



© 2019 IBM Corporation21

Homogeneous Redundancy Pattern Example



© 2019 IBM Corporation22

Homogeneous Redundancy Pattern Example



© 2019 IBM Corporation23

Redundancy “in the small” with Defensive Design

▪ Redundancy “in the small” adds low-level checking on

− Data value range

− Data value consistency

− Computational accuracy

− Explicit pre- and post-condition checks



© 2019 IBM Corporation24

Download Papers, Presentations, Models, & Profiles for Free

www.bruce-

douglass.com

http://www.bruce-douglass.com/

