Harmony aMBSE Deskbook Version 1.02
Agile Model-Based Systems Engineering Best Practices with IBM Rhapsody

Bruce Powel Douglass, Ph.D.
Principal
Bruce-Douglass.com

www.bruce.-douglass.com

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 1


http://www.bruce.-douglass.com/

This is the latest version of the Harmony aMBSE Deskbook, released September, 2017.

This Deskbook is written for the systems engineer. This Deskbook assumes the reader is familiar with
e Systems engineering concepts
e The SysML language
e The IBM Rhapsody UML/SysML Modeling Tool

Permission to use, copy, and distribute this Deskbook is granted, however, the use, copy, or distribution rights of the Deskbook are in whole, and
not in part and must contain attribution information.

THIS DESKBOOK IS PROVIDED “AS-I1S”. Bruce Douglass MAKES NO REPRESENTATIUON OR WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT
NOT LIMITED TO, WARRANTIES OF MECHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Bruce Douglass WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES AREIVING FROM THE USE OF THIS
DESKBOOK OR ANY PART THEREIN, OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS OF THIS DESKBOOK.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 2



Introduction

AGILE SYSTEMS
ENGINEERING

Bruce Powel Douglass PhD

1 Foreword

This Deskbook provides guidance, “best practices”, for using model-based
systems engineering in an agile way. This deskbok is based on the method
outlined in my book Agile Systems Engineering (Elsevier Press, 2016), seen
at the left, which is, in turn based on the previous Harmony for Systems
Engineering and Harmony for Embedded Software work. Readers wanting
more detailed exposition are referred there for more detail. Although based
heavily on that book, this Deskbook differs in a number of important ways.

e The Deskbook is considerably lighter in depth and breadth,
compared to a full book.

e The Deskbook does not introduce the SysML, Rhapsody tool, nor, in
any detail, agile methods as they apply to systems engineering in
general. It does, however, briefly introduce the work flows and
work products of the Harmony aMBSE process.

e The Deskbook is intended primarily as means to get system
engineers quickly up to speed using the approach without a great
deal of theoretical and historical backstory.

e The Deskbook is meant to introduce the best practices in the
context of a process (the Harmony aMBSE process), a SysML tool
(IBM Rhapsody), and a particular example system.

e The Deskbook provides mentoring on the use of the Rhapsopdy

tool, and especially the use of the Harmony SE Toolkit, written by
Andy Lapping.

e Finally, the Deskbook is free. ©

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 3



Introduction

Although this Deskbook is written by me, | wish to acknowledge the
significant contributions of Graham Bleakley, Ph.D., and Andy Lapping, both
of IBM.

| have tried hard to remove all errors in this Deskbook. Despite that effort, |
have no doubt that some remain. If you discover an error, please report it to
me via email at Bruce.Douglass@outlook.com.

This Deskbook was created using the Rhapsody Developer Edition version
8.2.1.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 4


mailto:Bruce.Douglass@us.ibm.com

Foreword

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 5



Table of Contents

2 Table of Contents

1 FOr@WOIA ettt ettt ettt et s e et e e st e s bt e e saneesneeeas 3
2 Table of CONENTS....coiiiriiiieeeeeeee e 6
3 INErOAUCTION .t 8
3.1  Why this DESKDOOK? ......evviiiiiiiee et 8
4 Overview of the Harmony aMBSE Process........cccccvvvvviveeiiiciveeesncivenennns 10
4.1 Systems Requirements Definition and Analysis .........ccccceevveeennnen. 11
4.2  Architectural Analysis......ccoeeeeciiieeeiiee e 16
4.3 Architectural DESIZN ....ccoccuvieeeeciiee ettt e 19
4.4  Handoff to Downstream ENgineering.......ccccceeevveeeevcieeeencieeeesnnn 21
5  The Harmony SE TOOIKit.......cccovviiieiiiiiie it 23
5.1 The Harmony-SE Profile........ccveeiiciiieicciiee et 23
5.2 Functional Analysis Helpers.......ccccuueeieciiiiiccieee et 23
5.2.1 Import Description from RTF...........coeecvveeeeciviieesiiieeeseciiesessieennn 23
522 Create System Context.......cccccvvvvveviieiiiiiiiiiiiiiiiiieiiieiieeeeeeeeeeee, 24
5.2.3  Create System Model from Use CaS€..........ccccevveevvvvreeciivereeernnnn, 25
5.2.4  Create Scenario (“Generate Sequence Diagram”) ...................... 31
5.3 Miscellaneous HEIPErsS.......coccuiiiiiiciiie ittt 32
5.3.1  Straighten MESSAGES.........cccoueeeeeiueeeeeciieeeeeiieeeeeiieeeeesireaaeessenas 32
5.4  SUMMANY .o, 33
6  Case Study: INtroduction .........ceeeiiiicciiiieeee e 36
6.1  Case Study WOorkflow..........coccviieiiiiiiiciieeeeceee e 37
6.2  Creating the Harmony Project Structure.......cccccceeevveeeecvveeeecnnnnn. 40
7  Case Study: System Requirements Definition and Analysis .................. 42
7.1 Get System Requirements Into Rhapsody.......cccccceeeeeeieiciiiieeeeeennn. 42
7.2 Create the System UsSe Cases ......ccccvvieieieeeeieiiiiiieeee e e e eecvnneeeee e 43

7.2.1  Add use case mini-specification .............cccceeevvuveeeiiivveeeeiieaeeann, 45
7.2.2  Allocate requirements to the USe CASES .........ccceeeeevveeeeecreveenannen, 45
7.3  Analyze the Start Up Use Case .....ccccveeeeeirieeecciiee e 48
7.3.1 Create Use Case Functional Analysis Model Structure................ 49
7.3.2  Create the ACtiVity DiGgram.............cceeevuveeesceeeessiieeeesiineensnens 51
7.3.3  Generate Scenarios from the Activity Diagram .......................... 54
7.3.4  Create the Logical Data and Flow Model................cccccceeeuuvun.... 60
7.3.5  Create the Safety ANGIYSiS........ceucveeeeecvivieeiiiieeesiiieeeeiieaesssens 66
7.3.6  Create the Use Case State Machine and Execute Model ............ 70
7.4  Analyze the Control Air Surfaces Use Case.......cccccevvveeeernveeeesnneen. 91
7.4.1  Create Use Case Functional Analysis Model Structure................ 91
7.4.2 Create SCONAIIOS. ... 93
7.4.3  Creating the Logical Data and Flow Schema............................... 98
7.4.4  Safety Analysis for Control Air Surfaces Use Case..................... 101
7.4.5  Create the Control Air Surfaces Use Case State Machine (and
EXCCULE T T0O0!) ..ottt e e e e e et e e te e e e e 107
Case Study: Architectural Analysis........ceeeecieeeiciiiiee e 138
8.1 Identify Key System FUNCLIONS.......cccveviiviiiieiiee e, 138
8.2 Define Candidate Solutions .......ccccccvveviivcieei e, 139
8.3  Architectural Trade Study: Define Assessment Criteria .............. 141
8.4  Architectural Trade Study: Assign Weights to Criteria................. 142
8.5  Architectural Trade Study: Define Utility Curve for Each Criterion
143

8.6  Architectural Trade Study: Assign MOEs to Candidate Solutions 144

8.7  Architectural Trade Study: Determine Solution ..........cceeeenn.eee. 146
8.8 Merge Solutions into System Architecture...........cccocceeeecieeeennneen. 147

Case Study: Architectural DESIgN .......ccueeeeecieeeeciieee et e 148
9.1  Identify SUDSYSLEMS...cccociieiiiiee e 148
9.1.1  Merge functional GNalYSiS...........cccueeeevvuveeeciiiiieeeiieeeeeciraeeenens 149
9.1.2  Allocate merged features to subsystem architecture................ 156
9.2 Allocate Requirements to SUbSYStEMS .....cccceevvciiiiiieeeeiiiciieeeen, 158

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 6



Table of Contents

9.2.1 Creating Derived ReqQUIrements...........ccceeceveeeeecvveeesiveneeecnenn 158
9.2.2  Performing the allocation of requirements...............ccccceceuun.... 165
9.3 Allocate Use Cases to SUbSYSTEMS......ccccvveeiiiiieeeeciee e, 168
9.3.1 Bottom-Up Approach: Start Up Use Case...........cccceeeeecccvvvennnn... 168
9.3.2 Top-Down Approach: Control Air Surfaces Use Case................. 183
9.3.3 Derive Subsystem Use Case State Behavior ..................ccuuu...... 193
9.3.4 Running the subsystem use case model..............cccccceeecevvennnn... 198
9.4 Create/Update Logical Data Schema.......ccccceeeeeeeveeecveeccreeeeieeens 204
9.5 Define / Merge System Logical Interfaces.......cccoecveevveereeervenreennen. 206
9.6  Analyze Dependability.......cccccouveiiiiiieiieiieeece e, 209
10 Case Study: Handoff to Downstream Engineering...........ccccoveeenneee. 211
10.1 Gather Subsystem Specification Data.........cccceeeeeieeeiecieee e, 211
10.2 Create the Shared Model.........cociiriiiinieiiiiic e 211
10.2.1 Define the Physical INterfaces............ccecevueeeecvvveeeciieeeesiirvnnann, 213
10.2.2 Specify the Physical Data Schema...............ccccovuveeecvveeeeccrnennn. 221
10.3 Create the Subsystem Model..........ccccoveeeiciieicciee e, 222
104 Define the Interdisciplinary Interfaces .......cccccceecveveeecieeeennnen. 225
10.4.1  Specifying the interfaces..........ccccuuevvuveeeciveeeeiiiieeeiiiisesciveann, 226
10.5 Allocate Requirements to Engineering Disciplines.................... 230
11 Post Log: Where we g0 from here ........occovevveciveeicciieeecciee e, 234
11.1 Downstream engineering begins........ccccceeecveeeeccieeeeecveee e, 234
11.2 System Engineering Continues .......ccccceeveviviiiiicciiiiiiccccccees 234
12 Appendix: Passing Data Around in Rhapsody for C++.........ccc.......e. 235
12.1 Simple and ComplexX TYPES .....uvveiieiiiee e eeveee e 235
12.1.1 Special Case: #AEfiNe...........occccvueeeeeceeeeeciieeeeecieeeecieeeeeciieaen, 238
12.2 Passing Arguments in Event Receptions.........cccccceeeeiieiineneeeen. 242
12.3 SUMMAAIY Lttt ree e e e e s e sanreete e e e e e eeannee 246
13 TABIES ettt s s sae e 247
13.1 Derived Requirements Table ........cccoecvieeeviiieeeccieee e, 247
13.2 Subsystem Requirements Allocation Table .........cccccveeeeiieeenns 249

14

References

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 7



Introduction

3 Introduction

3.1 Why this Deskbook?

To enable effective systems engineering, a number of things are necessary,
most notably 1) language, 2) process, and 3) tooling. Ultimately, the
purpose of this Deskbook is to show how to best unify these aspects

together into a holistic, efficient, and effective systems engineering practice.

Let’s talk about these three key aspects of a systems engineering practice.

A Systems Engineering Language

First, a language is needed to capture the semantic elements and their
relations. Natural language has its place; it is wonderfully expressive and
easy for non-technical people to understand, at least in general terms, what
is being said. It is a great way to capture poetry or to discuss the nuances of
philsophical arguments. Nevertheless, it is problematic for systems
engineering. It is ambiguous, and the same word often not only means
different things to different people, it often means several different things
to the same person. Natural language is imprecise because even if a word
has a precise meaning, it is likely to have subtle aspects. In general, natural
language is not computable, or at least not in the same way as mathematics
or temporal logic are. Natural language sacrifices precision for universality.
This is a good tradeoff if you want to write a haiku, but a bad one if you
want to describe the laws of physics.

SysML, on the other hand is a more precise language with a metamodel
specification (http://www.omg.org/spec/SysML). It includes a number of
representational views for functionality (use case and requirement
diagrams), structure (internal block and block definition diagrams), behavior
(activity and state diagrams), interaction (sequence diagrams) and relations
(various table and matrices). These views adhere to an underlying semantic
model so that their meaning is precise enough to create computable
models.

Computable models are important because they allow the verification of
the information the hold. An important subset of computable models are
executable models — models that can be executed or simulated to verify
they correctly capture semantic content. Since the primary outcome of
systems engineering activities is specification, computable models permit
the engineer to verify the correctness of the information within the model
as well as to validate, with the customer, that the system under
development will meet their needs. This can be done with virtually all
systems engineering work products, from requirements specifications to
architecture trade studies, architectural specifications, interface
specifications, and other work products handed off to downstream
engineers.

A Process for Planning and Enacting Engineering Work

A process is a procedure that specifies what you want to do, when you want
to do it, what you need to consume and create, who needs to be involved,
and how to go about it.

In this context, the Harmony Agile Model-Based Systems Engineering
(aMBSE)[2] process defines all those things and provides guidance on how
to proceed. aMBSE is agile because it incorporates some key agile
approaches to optimize both correctness of the work and to minimize the
effort required. aMBSE is model-based because it relies on SysML and
computable modeling to identify, represent, and verify the system
properties of concern. aMBSE is for systems engineering in that it focuses on
the specific needs of systems engineers. The Harmony aMBSE process will
be discussed in more detail in the next chapter.

A Tooling and Automation Environment

From one perspective, tools are nothing particularly special. They merely
automate things that you would normally do via more manual procedures.
However, good tools do more than just save time; they also improve quality,
and in the best case, empower the engineer to perform activities that, while
desirable, were unachievable before.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 8


http://www.omg.org/spec/SysML

Introduction

In this Deskbook, the tool of concern is IBM Rhapsody, a highly capable
UML/SysML modeling environment. Logically, Rhapsody consists of a
number of interconnected capabilities that collectively provide a powerful
conceptual place from which to develop systems.

Model entry (diagrams)

Integrated Testing
Execution control
Execution monitoring

Figure 1: Rhapsody conceptual model

Rhapsody’s graphical editor provides diagrams and tables to both enter and
view model information. The model management portion of Rhapsody
maintains the model repository — the information content of the model
itself, and manages storage, recovery, and reporting. Beyond that,
Rhapsody’s model compiler constructs executable version of the model
(provided that the model is well-formed) . The model compiler generates
software source code to simulate the modeled system behaviors and
properties. Rhapsody provides facilities to visualize the model execution —
by showing state changes via dynamic coloring or by generating messages
on sequence diagrams as model elements interact during the simulation.

Model execution control facilities give the engineer the ability to run, single-
step, examine values, and set breakpoints. Additionally, web-based and
panel-based views can be constructed to monitor and control the
simulation. Beyond this, Rhapsody has a tool add-on called Test Conductor
which supports the UML Testing Profile, and so can offer model-based
testing specification, execution, verdicts, and management.

Rhapsody supports generation of code in a number of languages (notably, C,
C++, Java, and Ada) and many compilers. In this book, we are generating
code in C++ and will be using the popular Cygwin compiler. The Microsoft
C++ compiler is also commonly used with Rhapsody as well and is almost
completely compatiblel.

Rhapsody integrates with many other tools for special purposes. Notably,
Rhapsody integrates with IBM DOORS and DOOR NG (Next Generation) for
requirements traceability (although Rhapsody supports internal model
traceability as well), many different version control tools (including Rational
Team Concert), Simulink for control loop integration, SimulationX and
Modelica for physics modeling and the Functional Mockup Interface (FMI)
specification (http://fmi-standard.org ).

1 The only difference you’re likely to notice is with the cout and endl applicators; in
Cygwin you use them with the library context (as in “std::cout << “Hello “ <<
std::endl;”) while some versions of the Microsoft compiler wants you to move the
library context (“cout << “Hello “ << endl;”).

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 9


http://fmi-standard.org/

Introduction to the Harmony aMBSE Process

4 Overview of the Harmony aMBSE Process

Harmony Agile Model-Based Systems Engineering (Harmony aMBSE)
process focuses on the development of model-based system engineering
work products such as requirements, architecture, interfaces, trade studies,
and various analyses (such as safety, reliability, and security). It does this in
an agile fashion by incorporating incremental development of engineering
data, early and continuous verification of the correctness of that
information, and continuous integration of the work of collaborating
engineers. Figure 2 shows the overall process flow.

Harmony aMBSE Delivery Process

. [L=n=|
(2L l =_>_l
2 Define Stakeholder

Initiate Project Regquirements

[more regs] /\ [done]
b s, -

B

Handoff to Downstream
Engineering

&5

System Requirements
Definition and Analysis

[ready for hand off]

—e

Perform Iteration Retrospective

B — B

Architectural Analysis Architectural Design

0 o "_’_J

Control Project

Lo
Perform QA Audit

&5

Manage Change
Figure 2: Harmony aMBSE Delivery Process

Each of the rectangular boxes in the figure represents a process activity,
which, in turn, is defined by a set of nested activities or tasks. The
diamonds represent decision points (at which only a single flow is taken at a
time), while the horizontal bars are either forks or joins, which represent
concurrent flows. The labeled pentagons are tasks on which one or more
engineers work. Each task is defined with inputs and outputs, a purpose,
description, the set of steps necessary to complete the task, and optional
guidance material.

The activities and tasks of the Harmony aMBSE process shown in Figure 2

are’:

e Initialize Project
Identify and prioritize stakeholder use cases, create the engineering
team structure, create first cut schedule, risk management plan,
and the System Engineering Management Plan.

e Define Stakeholder Requirements
Identify stakeholders of interest, stakeholder needs as
requirements, allocate these to use cases, and perform rudimentary
requirements analysis, normally limited to scenario elaboration.

¢ System Requirements Definition and Analysis
Identify system use cases (normally 1:1 match for the stakeholder
use cases), derive system requirements, allocate them to use cases,
analyze the use cases with computable models, create logical flow
data and flow schema, analyze dependability, and create the initial
system verification plan.

e Architectural Analysis
Identify and analyze system trades and make technological and/or
architectural choices based on that analysis

2 Activities which are the focus of this Deskbook as in bold.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 10



e Architectural Design
Identify subsystems, allocate system requirements to subsystems,
create subsystem requirements, create and allocate use cases to
subsystems, update the logical data schema, develop control laws,
and update dependability analyses.

e Control Project
Perform project management activities, maintain risk management
plan, and use daily meetings to enhance engineer collaboration

e Perform QA Audit (task)
Perform quality assurance audits to ensure process compliance.

e Manage Change
For work products under configuration management, control the
change request process including review, assignment, resolution,
and verification of each change request.

e Perform Iteration Retrospective (task)
Ascertain the project’s adherence to the project plan and look for
opportunities to improve; also replan as necessary and appropriate.

¢ Handoff to Downstream Engineering
Develop materials necessary for downstream engineering, including
physical interface specification, creation of subsystem models,
creation of a deployment (interdisciplinary) model, allocate
requirements to engineering disciplines and define the
interdisciplinary interfaces.

Let’s look at the key activities in a little bit more detail.

4.1 Systems Requirements Definition and Analysis

This activity is a crucial one in the Harmony aMBSE process. In this activity,
we will define the set of systems requirements (with traceability back to the
stakeholder needs they will satisfy), group them into use cases, and then
analyze them, a use case at a time, for completeness, accuracy, correctness,

Introduction to the Harmony aMBSE Process

and consistency. We will do this through the development of a computable
use case model and through this effort, we almost always find missing or
incorrect requirements. In addition, we will do other work that uncovers
other important requirements, such as modeling the logical data and flow
schema (for things coming to or exiting from the system) and the system
dependability (safety, reliability, and security) needs.

e — o

Identify System Use Cases

Lo

[activity flow approach] [state flow approach]

5

Analyze Dependability

Generate/Update
System Requirements

[scenario flow @pproach]

L

S LA e N
"— 4 ’— 4 ’— l Create/Update =
i — i Logical Data Create/Update
Flow-Based Use Case Scenario-Based Use Case State-based Use Schema Verification Plan

Analysis Workflow Analysis Workflow Case Analysis

[else]

[more use cases in this iteration]

Figure 3: System Requirements Definition and Analysis

Figure 3 shows the overall workflow for this activity. Note that three
different primary analytic approaches are supported — flow-based, scenario-
based, and state-based. All accomplish the same purpose but using slightly
different workflows.

In actual fact, there are five alternative workflows from which to choose.
Figure 4 shows a decision tree for deciding which work flow to use. The
options are:
e Flow-based
This approach is best when the use case is heavily algorithmic, has

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 11



significant continuous flows, or is mostly flow based. This workflow
is intended for use cases that are primarily focused on complex
algorithms (such as encryption), continuous flows (such as fluid or
energy), or when the flows into and out of the system predominate
the use case behavior. In this case, executable models can be
constructed with Rhapsody + Simulink, with fully executable activity
diagrams, or poll-based state machines.

e Harmony “Classic”
This is an older, less comprehensive approach and is deprecated,
but still supported. This approach is only recommended for projects
that have been started with the workflow defined in the previous
version of Harmony SE but not for new development. Note that the
“activity diagram” used here is not really a well-formed activity
diagram but really is intended to be used as a summary of multiple
scenarios. State machines form the normative black box behavioral
specification.

e Activity-Based
In this workflow, the primary purpose of the activity diagram is to
identify system functions. This approach is recommended when the
functionality of the system is less focused on input and outputs and
more focused on the transformations the system performs. In this
case, the work is aimed towards identifying and characterizing
system functions. Similar to the “Classic” approach, activity
diagrams here are used to summarize multiple scenarios rather than
as a true model of behavior.

e Interaction-Based
This option is best when working with non-technical stakeholders
OR the use case is heavily interaction-based. This work flow is
recommended when working with intended system users or other
non-technical stakeholders, or when the interactions (as opposed to
the system functions) are complex. The activity diagram is generally
skipped in this workflow and the state machine forms the normative
specification.

e State-based
This approach is best when the use case is strongly modal or state-
based AND you have strong expertise in developing state machines.

Introduction to the Harmony aMBSE Process

This workflow is recommended for use cases that are either
obviously state-based (such as automotive transmissions) or highly
modal in nature. Note that this requires a generally higher level of
technical skill on the part of the engineer.

While Figure 4 may look complicated, you will only be doing one of the five
identified workflows for a given use case. It does provide options for
different kinds of use cases, or when working with stakeholders or
engineers with different skill sets. It should be noted that generally any of
these workflows may be used for a use case analysis, so personal preference
may be expressed as well. Note that each of these workflows involves the
creation of an executable model — generally a state machine but it might
also be an activity diagram.

Remember, all of these approaches work, so the selection of the best one is
a matter of both personal preference and the nature of the problem being
addressed. Later in this desk book we will use two of these approaches —
flow-based and sequence-based — to illustrate the differences.

Functional Analysis of Requirements — Different Flows, Different
Folks

Also notice the iterative nature of the workflows. Each has a “loop back” in
the case of “more requirements.” It is recommended that a small number of
requirements be analyzed at a time so that the behavioral models are
incrementally constructed. Experience has shown, time and time again, that
delaying the analysis and execution of the behavioral model only serves to
make the analysis much more difficult. The length of time for these
feedback loops in the workflows should not exceed an hour or two; this is
what we call the nanocycle and is key to the agility of the Harmony aMBSE
process.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 12



Introduction to the Harmony aMBSE Process

The purpose ofthe activity
diagram here is to identify
the system functions

[continuous fows, algonthmic, or fow based]

[discrete fows]
E—

This workfiow is for when the use case is
heauly state-based and you're well-versed
in state modeling

[Harmony Classic legacy model]

[system function based]

The purpose of the activity The purpose of the activity ) i
diagram here is to model diagram here is to [interaction-based]
the use case behavor summarize the sequences
%@ %
Use full activity diagram l
A2 iz
Create sequence
Dernve scenarios Use Harmony Use SysML activity diagrams
"constrained” diagram Construct state
activities machine
[control loop] [algorithmic fow based]

Derive scenarios

&3

Generate sequences

continuous|but no simulink

L | 5 Construct from state execution
Construct hybrid Construct polling Execute activity executable state
state-simulink model state machine diagram Construct executable machine
model Construct executable state machine
state machine
[more requirements] [more recuirements <g [more requirements] more requirements]
[else]
[else] This flow is when working
[more requirements] [else] with non-technical

[else] stakeholders or interaction-

i heawy use cases
e —ko @

Add trace links Review

Figure 4: Use case analysis workflow decision tree

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 13



Introduction to the Harmony aMBSE Process

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 14



A Note about Use Cases

Use cases may be thought of as collections of system interactions and
system functions around a common usage of a system. An alternative, but
equivalent view is that they cluster requirements around a common system
capability that involves interactions with elements in the system’s
environment.

Good use cases are independent from other use cases, at least in terms of
requirements. This allows independent analysis of the use cases, allowing a
“divide and conquer” strategy to address complex systems problems. Good
use cases generally represent anywhere between 10 and 100 requirements
and contain both functional and quality of service (QoS) requirements, such
as performance, accuracy, fidelity, and reliability. This usually implies
between three and 25 scenarios of interest, including both normal, or
“sunny day” scenarios, and exceptional, or “rainy day”, scenarios. We
recommend incremental analysis of use cases, beginning with the sunny day
scenarios and later adding in all the ways that things can go amiss.

There are two primary outcomes from the functional analysis of use cases.
First, is the identification of problems with the stated requirements. In the
course of analysis, it is very common to identify requirements that are
missing, incomplete, inconsistent, or just plain wrong. As the analysis
proceeds, requirements are fixed or added in parallel (see the
Generate/Update System Requirements activity in Figure 3).

The second outcome is the identification and characterization of the logical
interfaces. The term “logical” here means that we are defining the essential
properties of the interfaces but not their ultimate realization. For example,
we model most actor-system interactions as asynchronous events (which
may or may not, carry data), but actual realization of these interfaces might
be messages across a communications bus. It is important to note that
incoming messages to the use cases invoke one or more system functions
and messages to the actors are produced by one or more system functions.
Different use cases often invoke common system functions and that is a
point of potential co-dependence.

Introduction to the Harmony aMBSE Process

This leads us to the issue of “merging use cases.” If use cases are
independent, then merging use cases together in a larger scale analysis isn’t
difficult unless one of the following is true:
e Use cases are not completely independent in terms of requirements
e Use cases share system functions

The 2™ of these is the more likely. When the use cases are completely
independent, then the actor-system interfaces are merely the sum of the
messages from all the use cases that involve that actor. When they are not
completely independent, the interfaces must be “merged” so that the
common system functions are defined with a common definition: service
name, inputs, outputs, pre-conditions, post-conditions, invariants, and
definition of the required behavior of the system function.

Create Logical Data and Flow Schema

The purpose of this task is to characterize the flows into and out of the
system. These flows may be discrete — such as in a commanded position to
which to move the wing flap — or they may be continuous, such as the
movement of water through a conduit. They may informational, such as the
blood pressure of a patient undergoing a medical procedure; energy, such
as the heat flow in a deicing system; materiel, as in a dispersal of projectiles;
chemical, as in the diffusion of an anesthetic drug in a breathing circuit;
fluid, as in the flow of air in a building heating system; or mechanical, as in
the movement of a robot limb.

What all these flows have in common is their need to be characterized so
that the quantities, statics, dynamics, and necessary precision of the system
can be understood and so that good downstream engineering choices can
be made. Typically, the metadata to be characterized includes topics such
as:

e Set or range of acceptable values, including units

e The fidelity of control (Harmony aMBSE defines fidelity to be the

“precision of an input to the system”)

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 15



e The accuracy of control (Harmony aMBSE defines accuracy to be the
“precision of an output from the system”)

e Expected behavior if the data within range as well as out of range

e Safety impact of the flow

e Safety level of the flow (specific to the standard being used for
conformance)

e Reliability of the delivery of the flow

e Security of the flow

e  Whether the flow is measured, actuated (controlled), computed, or
estimated

e Other “invariants” (assumptions)

The flow metadata is typically stored in tags, one of the means SysML
provides for extension of the modeling language.

Again, the logical data and flow schema define the essential properties but
not the physical realization of those data and flows.

Analyze Dependability
Dependability — literally “one’s ability to depend upon a system” — has three
primary aspects: safety, reliability, and security. These aspects are defined
thusly:
e Safety is freedom from harm due to use, misuse or exposure to a
system
e Reliability is a stochastic measure of the availability of services and
flows
e Security is the ability of a system to resist attack

The first two of these aspects have a large and well-defined literature.
Security for a cyber-physical system is less well defined but has been studied
deeply in the information assurance field. In our systems context, Harmony
has a broader scope of concepts and measures. Rhapsody has (optional)
profiles available for the representation and analysis of these aspects of
dependability. If you prefer to use other, specialized tools for this purpose,
that’s perfectly fine, as they are likely to have more capability than the
Rhapsody profiles in those domains.

Introduction to the Harmony aMBSE Process

4.2 Architectural Analysis

Architectural analysis has a couple of applications. The first — on which we
will not focus in this Deskbook — is to understand how the architecture
behaves or performs under different circumstances. The second — which we
will emphasize here — is to evaluate alternative technology and architecture
choices against a set of acceptance criteria. The work flow for this use of
architectural analysis in shown in Figure 5.

o
I

—S
Identify Key System Functions

~S
Define Candidate Solutions

B3

Architectural Trade Study

—o

Merge Solutions into System Architecture

L

Perform Review

Figure 5: Architectural analysis workflow

Identify Key System Functions

The term “key functions” is a bit misleading. What it really means is to
identify those system functions that can profit from optimization of
technology or architecture choices.

Define Candidate Solutions

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 16



The candidate solutions are the technology or architecture choices that are
reasonable solutions to meet the requirements. Technology choices might

be to use a fluid-cooled versus an air-cooled system or a hydraulic,

electronic, or pneumatic actuator. Architectural choices might be to use

different architectural safety patterns for redundancy such as Triple
Modular Redundancy or Heterogeneous Redundancy [4].

(Perform) Architectural Trade Study
The trade study itself has a nested workflow, shown in Figure 6.

Lo

Define Assessment Criteria

Lew

Assign Weights to Criteria

Lo

Define Utilty Curve for each Criterion

L0

Assign MoEs to Candidate Solutions

—o

Determine Solution

Figure 6: (Perform) Architectural trade study

Define Assessment Criteria

Introduction to the Harmony aMBSE Process

The assessment criteria are the aspects you want to optimize. Typical
criteria might include:

e Recurring cost

e Development time

e Power required

e Reliability

o Safety

e Manufacturability
o Weight

e Performance

e Complexity

o Testability

e Accuracy

e Resource requirements (such as memory or computational power)

Assign Weights to Criteria

Not all criteria are equally important, so each criterion must be weighed
with respect to its relative importance to the overall solution. This is often,
but not necessarily done by normalizing the weights between 1 and 10.

Define Utility Curve for Each Criteria

The utility curve provides a means by which the different solutions may be
evaluated as to how well that solution optimizes a specific criterion. A
common technique is to construct a linear equation such that the worst
solution under consideration results in a value of 0 and the best solution
under consideration results in a value of 10; thus, most candidate solutions
will be somewhere between 0 and 10.

Assign MOEs to Candidate Solutions

The assignment of the measures of effectiveness (MOEs) for each candidate
solution is computed by applying the utility curve for each criterion to the
solution and computing the weighted sum of the outputs of the utility
curves.

Determine Solution

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 17



The selected solution is then the candidate solution which resulted in the
highest MOE score among the evaluated candidates. Figure 7 shows a
simple trades study in a table.

Introduction to the Harmony aMBSE Process

par [Package] Chapter6Pkg [Trade Study PD]

“Varabler <Variable>
COST_UPPER_LIMIT:Real=250.00 VOLUME_UPPER_LIMIT:Real=15.0

<Varable»
MONTHS_UPPER_LIMIT:Real=120

COST_UPPER_LIMIT:Real VOLUME_UPPER_LIMIT:Real

MONTHS_UPPER_LIMIT:Real

Criteria and weights
Cost Usability Durability
Candidate solution 0.30 0.50 0.20 Candidate weighted score
Touch screen 0.00 10.00 0.00 5.00
Membrane switches 8.00 7.86 1.00 6.53
Keyboard 10.00 0.00 10.00 5.00

Figure 7: Example trade study

Merge Solutions into Systems Architecture

The architecture is constructed by merging in the selected candidate
solutions that emerge from the trade studies, in addition to other choices
that were made without performing trade studies.

SysML and Rhapsody provide an additional means to do trade studies with
parametric diagrams. With Rhapsody, you can define the equations in
parametric constraints and then invoke third party mathematical tools, such
as Maxima or Mathlab Symbolic Toolbox, to evaluate parametric diagrams.
This is available in the Rhapsody Parametric Constraint Evaluation (PCE)
Profile. Figure 8 shows an example parametric diagram.

«Block» L mm::"mm'

P PacemakerMOEs
Constraints

Attributes {0} {{costConstraint} costMOE = 10*(1-cost/COST_UPPER_LIMIT)} Q

cost:USDollar Cost:USDORI | (s rrifeConstraint} ifetimeMOE = 10%(Ifetime/MONTHS_UPPER_LIMIT)} Normalized utility
{0} {{volumeConstraint} volumeMOE = 10%(1-volume/VOLUME_UPPER_LIMIT)} cunes
<Atrbute
deviceLifetime:Month ifetime:Month

«Attributer

volume:int volumeCC
COStMOE:Real ifetimeMOE:Real volumeMOE:Real
(COStMOE:Real ifetimeMOE:Real volumeMOE:Real C
1 «ConstraintProperty: Objective function
PacemakerObjectiveFunction with criteria
OveraliScore:Real Constraints weights

{Di} {{ObjectiveFunction} O veraliScore = costMOE * 0.4 + IfetimeMOE * 0.4 + voumeMOE * 0.2}

Figure 8: Example parametric diagram in Rhapsody

Evaluation of this parametric diagram for a candidate solution results in an
output like that shown in Figure 9.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 18



Introduction to the Harmony aMBSE Process

{#y pmacy = L e (Derived) subsystem use cases
Mame Type Original Value Value Min. Max. Command
ﬂTrade Study PD Parametric Diagram . . .
= VOLUME UPPER LIMIT  Rea 150 150 Fi Figure 10 shows the Harmony aMBSE workflow for architectural design.
= COST_UPPER_LIMIT Real 250,00 250.00 Fix
= MONTHS_UPPER_LIMIT  Real 120 120 Fix
[ Pacemaker Pacemaker i
B cost USDallar 150 150 Fix . L
= deviceLifetime Month 100 100 Fix ©
B volume cc 93 9.8 Fix Identify Subsystems
PacemakerMOEs PacemakerMOEs
fx] cost UsDollar 150
] lifetime Month 100 .
<] volume cc 98 La
[x] costmOE Real 4
<] lifetimeMOE Real §.3333333333.. Allocate System Requirements
E volumeMOE Real 3.4666666666... 1o Subsystems
@ COST_UPPER_LIMIT  Real 250.00
@ MOMTHS_UPPER_LIM Real 120
E VOLUME_UPPER_LIMI Real 150
e} costConstraint Constraint costMOE =1.. costMOE = 1...
{0} lifeConstraint Constraint lifetimeMOE ... lifetimeMOE ...
{~} volumeConstraint Constraint volumeMOE ... volumeMOE...
PacemakerObjectiveFunc PacemakerObjectiv... D 1= y ~ =N D
] costMOE ' Rezl ' . r:_J e L Les L_J
<] lifetimemMoE Real 8.3333333333... Allocate Use Cases to CrealefUpdate Logical ~ Create/Update Subsystem Develop Control Laws Analyze Dependability
@ volumeMOE Real 3.4666666666.., Subsystems Data Schema Requirements
E OverallScore Real 5,6266666666...
{2} ObjectiveFunction Constraint OverallScore ... OverallScore ...
Ready [4 free variable(s), 4 equation(s)]

[else]

Figure 9: Example result from PCE evaluation

l [no issues]

Lo
4.3 Architectural Design perforn Review
The intent of architectural design in the Harmony aMBSE process is to Figure 10: Architectural Design Workflow

e |dentify the subsystems

o Allocate requirements to subsystems

e Define the logical subsystem interfaces
e Update the data and flow schema

e Update the dependability analyses

Identify Subsystem

The subsystems are uses of blocks which represent the largest scale of
system decomposition. Subsystems are generally implemented in terms of
multiple engineering disciplines (e.g. software, electronics, mechanical,
hydraulic, and pneumatic) by a single team. These subsystem teams
perform what is collectively called downstream engineering in post-systems
engineering activities, including software, electronic, and mechanical
design.

A use case is almost never implemented by a single subsystem. This means
that portions of a use case must be allocated to different subsystems. In
practice, those portions are

e System requirements

* (Derived) subsystem requirements One of the primary purposes of identifying these subsystems is to provide

* System functions specifications for each subsystem team to follow. For this reason, the
* (Derived) system functions recommended model organization schema creates separate subsystem

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 19



packages to hold the relevant specifications (to facilitate the hand off).
Information shared among subsystems is put into a common shared model.

The set of subsystem is shown on either (or both) block definition diagrams
or internal block diagrams.

Allocation System Requirements to Subsystems

Some system requirements can be directly allocated to a single subsystem.
However, many — if not most — must be decomposed into derived
requirements which are then allocated. The decomposition is best done on
requirements diagrams. Allocation relations (drawn from the subsystem to
the requirement) may be done in either requirements diagram or matrices
constructed for that purpose. They are best summarized in the matrices
regardless of how they are constructed.

Allocate Use Cases to Subsystems

If only a few requirements are allocated to a subsystem, then they need not
be allocated to subsystem-level use cases. However, many subsystems are
themselves quite complex. Such subsystems can profit from exactly the
same kind of analysis that we did for use cases at the system level.

There are two approaches to developing such use cases, as shown in Figure
11. The first — a part of the (deprecated) Harmony Classic SE process — is
called bottom up because it allocates individual system functions (or
subsystem functions derived from these) to the subsystems and then uses
these as elements from which subsystem use cases may be constructed. The
other approach, top-down, decomposes system use cases into subsystem-
level uses cases via the «include» relation. In practice, smaller, less complex
subsystem use cases are more easily developed with the bottom-up
approach, but more complex use cases are better developed with the top-
down method. In general, either approach may be used.

Introduction to the Harmony aMBSE Process

[bottom up (action allocation) workflow] [top down (use case decomposition) workflow]
. —S
LS
Decompose Use Cases to Subsystem Level
Derive White Box Scenarios
| |
=S S
Define Subsystem Ports and Interfaces Define Subsystem Level Scenarios
i
o S
Group Semvices into Use Cases Define Subsystem Ports and Interfaces
i
o
Derive Use-Case State Behavior
i -,
: e ——@
o > Lo

Perform Review

Verify and Validate Functional Requirements Add Traceability Links

Figure 11: Allocate use cases to subsystems workflow

Create/Update Logical Data and Flow Schema
As we develop the logical subsystem architecture, many more data and
flows are identified. They must be added to the data and flow schema.

Create/Update Subsystem Requirements

Just as we did for system requirements in the System Requirements
Definition and Analysis activity, we need to repeat the activity to manage
the subsystem requirements resulting from both the derivation from system
requirements and from the analysis of the subsystem use cases.

Develop Control Laws

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 20



Control laws are most commonly expressed as proportional—integral—
derivative relations representing closed-loop feedback control mechanisms.
Most such control laws fit within a single subsystem and are, as such, out of
scope here. However, some control laws are distributed between
subsystems and these must be characterized as they affect the subsystem
functions and interfaces. These may be defined as sets of partial differential
equations or on control loop diagrams [6], most often using specialist tools,
such as Simulink.

dusdt

Derivative

>§> >

Control

Saturation

Integrator

Tr

Figure 12: Example Control Loop Diagram

Analyze Dependability

The management of system dependability is an activity that goes on
throughout the systems engineering process. Whenver engineers make
technical, design, or implementation decisions, those decisions must be
evaluated for their impact on system safety, reliability and security. Most
commonly, such analyses identify the need for new requirements to
account for dependability concerns introduced with technical decisions.

4.4 Handoff to Downstream Engineering

Introduction to the Harmony aMBSE Process

Once the subsystem and interface specifications are ready, they must be
handed off to the subsystem teams for the performance of downstream
engineering activities. This involves two primary (sub)workflows. Firstly, the
physical interfaces and physical data and flow schema must be derived from
their logical counterparts. In the Harmony aMBSE process, we recommend
this is put into a separate shared model for inclusion (by reference) into all
subsystem models®. Secondly, a separate model must be created for each
subsystem and populated with its specification from the systems
engineering model. Also, a deployment architecture must be created for
each subsystem. This deployment architecture identifies the engineering
disciplines involved in the design and implementation of the subsystem, the
(derivation and) allocation of requirements to those participating
disciplines, and specifies the interfaces between the engineering disciplines.
This readying of the subsystem model requires the participation of
engineers from each supporting discipline as well as one or more system
engineers. The handoff workflow is shown in Figure 13.

3 See Chapter 10 for more information on model organization.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 21



Introduction to the Harmony aMBSE Process

Inputs
SRS, System Architecture

“ Logical ICD, Data Types, Scenarios
e Subsystem UCs (optional)
Gather Subsystam

Specification Data

|

= Y
Lo

Create Subsystem Model

LS
Create Shared Model \
LS
Define Interdisciplinary
Interfaces
L&
Define Subsystem S
Physical Interfaces o

Allocate Requirements to
Engineering Disciplines

For all subsystems lc

Qutputs

Shared and Subsystem Models
Physical ICD

Subsystem SRS

Figure 13: Handoff to downstream engineering workflow

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 22



The Harmony SE Toolkit

5 The Harmony SE Toolkit

This document details the features and functions of the Systems Engineering
Toolkit shipped with Rhapsody version 8.2.1. If you have an earlier version
then most of the document will still apply, however some functions may be
different.

The Systems Engineering Toolkit (referred to from here on as the SE Toolkit)
is installed automatically as part of the Harmony-SE profile and contains a
wealth of useful features for automating the building and checking of
systems engineering models.

All SE Toolkit features (except for the startup wizard) are invoked from the
contextual (right-click) menu of model elements in the browser, on a model

element, or a diagram itself.

All SE Toolkit features are found under the SE-Toolkit menu:

SE-Toolkit » Create Harmony Project
Design Manager L Import and Export 2
Apps » Add Hyperlinks ]

Convert Ports to Proxy Ports

Add Dependencies 2

™
Figure 14 SE-Toolkit menu

Just a few of the most important helpers are described in this section. For a
full description of all of the SE-Toolkit functionality, see the Systems
Engineering Toolkit Handbook, available for download at Merlin’s Cave
(http://merlinscave.info/Merlins_Cave/Tutorials/Entries/2017/2/7 SE-
Toolkit Handbook.html ).

5.1 The Harmony-SE Profile

The Harmony-SE profile loads the Systems Engineering Toolkit. It also
contains new terms used in the Harmony workflow, along with stereotypes
and tag values that allow user-customization of the SE Toolkit features. The
profile also contains some custom table and matrix layouts.

In addition the profile loads in property files (.prp files) which override
Rhapsody’s default properties. These property files are loaded hierarchically
as shown below:

Figure 15 Harmony SE Property Files
5.2 Functional Analysis Helpers
5.2.1 Import Description from RTF

5.2.1.1 Intent

Import an existing RTF file as the description for a selected model element —
either as the finished description or as a ‘template’ — that is a partially filled
description.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 23


http://merlinscave.info/Merlins_Cave/Tutorials/Entries/2017/2/7_SE-Toolkit_Handbook.html
http://merlinscave.info/Merlins_Cave/Tutorials/Entries/2017/2/7_SE-Toolkit_Handbook.html

The Harmony SE Toolkit

5.2.1.2 Invocation
The helper may be invoked from the context menu of:
e The Project
e Use Cases
e Blocks
e QOperations

‘Menu Entry: SE Toolkit = Import Description from RTF‘

5.2.1.3 Basic Operation

When invoked, the tool will look for a tag called descriptionTemplate —
starting on the current element and then looking ‘up the tree’. The first
descriptionTemplate tag found in this way is used — this allows more
than one template to be used for different areas of the model. Note that
only the model has this tag out of the box as described below. If you wish to
use different templates for different parts of the model, then this tag must
be manually added (for example adding a new tag to a Use Case will cause
only that Use Case to use the template — adding the tag to a Package will
allow all elements in that Package to use the same template)

The tag should contain the full path to an RTF file. The path may be a fixed
one or may contain the following keywords:
o {OMROOT} — will be replaced with the Rhapsody root directory
e {PROJECT} - will be replaced with the current project directory
e {PROJECT_RPY} - will be replaced by the _rpy folder for the current
project (useful for controlled files which by default are stored there)
o {TYPE}— will be replaced by the user defined metaclass of the
selected model element (for example use Block — not Class). Note
that this must match the type exactly — for example use “UseCase” —
not “Use Case”

Note that the profile contains a stereotype, which if applied to project, adds
a project level tag descriptionTemplate with the default value:

{OMROOT}/Profiles/HarmonySE/{TYPE}

The profile also contains several example RTF templates (as controlled files):

e UseCase template
e Block template
e Operation template

5.2.2 Create System Context

5.2.2.1 Intent
Create a system context diagram from the Actors which associate with a
Block.

5.2.2.2 Invocation
The helper may be invoked from the context menu of a Block.

’Menu Entry: SE Toolkit = Architecture Tools = Create System Context|

5.2.2.3 Basic Operation

When invoked the tool will create Actor Blocks for each connected Actor. A
part is created for each Actor Block and the original System Block. Ports and
interfaces are created between these elements and everything is placed
onto an Internal Block Diagram. Note that all created artifacts are placed
into the same Package as the original Block, except for Interfaces which are
created in the Interfaces Package.

For example:

AMs Maintainer

&

Hydraulics

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 24



The Harmony SE Toolkit

Figure 16 Actors connected to a System Block

s ————

& f:l Archrtecturall\nalysnstg
w ActorBlocks
- aACES_AMS
=] aACES_Hydraulics
=] aACES_Maintainer
- =] aACES_Pilot
- Block Definition Diagrams
GE]'"[Q% Blocks
GE]'"% connectors
=3 Internal Block Diagrams
. 35 IBD_ACES
(2 Parts
[ prtACES
[ prtAMS
[& prtHydraulics
fg‘ prtMaintainer
------ f@' prtPilot

Figure 17 Created Actor Blocks, Parts, Connectors etc.

=] Irlterlacestg
B ['g Interface Blocks

-] iACES_aACES_AMS
- iACES_aACES_Hydraulics
E iACES_aACES_Maintainer
------ i iACES_aACES_Pilot

Figure 18 Created Interfaces

rveraceBio
IACES_aACES_Pilot
g
Flow Properties
e
IACES_aACES_Maintainer <proxy»
PACES:~ACES_aACES Piot |1  prtPilot:aACES_Pilot
TJ ‘ IACES_aACES_AMS
Operations
Flow Properties <proxy»
PaACES_PiotiACES a t
pﬂAHS:MK Flow Properties
“proxy: oXy»
PaACES_Maintainer iACES_aACES Maintainer 'DRACES_AMSHACES_aACES_AMS
| priMaintaineraACES_Maintainer | PACES: ~iACES _ACES.Maintainer PACES}ACES_3ACES NS [rﬁm AMS

<proxy»
PAACES_Hydraulics:ACES_aACES_Hydrauics

“interfaceBlocks
IACES_aACES_Hydraulics
Operations
<proxy»
1 prtHydraulics:aACES_Hydraulics | PACES:™MACES_aACES_Hydraulics e

Figure 19 Created System Context Diagram
5.2.3 Create System Model from Use Case

5.2.3.1 Intent
Create a use case functional model for the selected use case for the purpose
of constructing a computable model of the use case.

5.2.3.2 Invocation
The helper is invoked from a Use Case.
[IMenu Entry: SE Toolkit - Create System Model From Use Case

5.2.3.3 Dependencies

5.2.3.3.1 Location of Use Case Model

To create the functional use case model, the helper needs to know where to
create the new model elements. By default, it looks for a package called
FunctionalAnalysisPkg. If this package is not found, then the helper cannot
continue. See the customization section for information on how to change
this.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 25



The Harmony SE Toolkit

5.2.3.4 Basic Operation 5.2.3.4.3 Use Case Model - Agile

In Agile mode, each use case model also has its own types package,
5.2.34.1 Execution Considerations interfaces package and actors package (these are options controlled by
The helper assumes that at some point the use case functional model will be properties). An use case-specific Actor Block is created for each connected
executed. Any artifact that executes must have a formal name —thatis a actor, the block has a <<represents>> dependency back to the original
name with no spaces or special characters. To that end before creating Actor.

model elements, the helper checks the use case name and creates a
corresponding executable name (removing spaces and special characters).
Artifacts created in the use case functional model use this executable name
rather than the original use case name.

5.2.3.4.2 Use Case Model - Classic
The general form of the use case model created by the helper is shown
below (the original use case is shown in orange)

Figure 20 Use case model

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 26



The Harmony SE Toolkit

5.2.3.4.4 Package Structure
The helper creates the following package structure, where UCName is
replaced with the executable name as described above.

UCNameBBScenarios?

UCNameExecutionScope PKB“]

Figure 21 Use case functional model package structure

5.2.3.4.5 Use Case Relocation

After the creation of the use case it is at first located in the
RequirementsAnalysisPkg. With the creation of system model from use
case it is moved into the new use case functional model package
(UCNamePkg).

Relocation of the Use Case is an option controlled by the following property:

SEToolkit.CreateSystemModelFromUseCase.MoveUseCase

5.2.3.4.6 Actor Relocation

Each Actor connected to the use case is moved into the ActorPkg. If the
ActorPkg does not exist, the Actors are left where they are. Relocation of
Actors is an option controlled by the following property:

SEToolkit.CreateSystemModelFromUseCase.MoveActors

See the Customization section for details on how to change where the
Actors are relocated.

5.2.3.4.7 Internal Block Diagram

A new internal block diagram is created with the name IBD_UCName. The
IBD is populated with the parts of the Use Case Block and the associated
Actors or in case of agile the Actor Blocks.

5.2.3.4.8 Use Case Block
A block is created to represent the Use Case, named UC_UCName. The Block
receives a dependency to the Use Case stereotyped <<represents>>

<Blocks i
Uc_UC2 gl uc1

«represents»

Figure 22 Use Case Block Dependency

5.2.3.4.9 Actor Blocks

In agile mode — an ActorBlock is created for each associated Actor and
placed into a new Package (with the name UCNameActorPkg). This behavior
is controlled by the following property:

SEToolkit.CreateSystemModelFromUseCase.CreateBlocksFromAct
ors

ActorBlocks are named aUCName_ActorName and are given a
<<represents>> dependency back to the original Actor:

whotorBlocks
alC_Al

Attribuites

“Tepresents»

Al

Figure 23 Actor Block

Note that Actor Block names use an abbreviated form of the Use Case
name, using only the uppercase characters. For example, an Actor called
Driver connected to a Use Case Operate Vehicle would result in an Actor
Block called aOV_Driver. This behavior is controlled by the following
property and is on by default in agile mode:

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 27



The Harmony SE Toolkit

SEToolkit.CreateSystemModelFromUseCase.
AbbreviateActorBlockName

In this example if the option is switched off the Actor Block name would
instead be aOperateVehicle_Driver.

Use Case inheritance is also supported — that is, if one use case specializes

another, the more specialized use case will inherit any actor associations of

the more general use case. This is an option controlled by the following

property:
SEToolkit.CreateSystemModelFromUseCase.UseInheritedUseCase
Actors

5.2.3.4.10 Executable Use Case Model

An instance of the use case block is created (that is a part typed by the use
case block). A part is created for each actor (or in agile mode each actor
block) connected to the use case. These artifacts are placed in the
UCNameExecutionScopePkg and are also placed on the internal block
diagram.

5.2.3.4.11 Activity View

A new activity view is created under the use case. Since these do not
execute (instead they are intended to model the functional flow) they
simply take the name of the use case and add the suffix Black Box View. A
new activity and activity diagram are created under this activity view.

5.2.3.4.12 Dependencies

A dependency is added from the activity to the use case block, stereotyped
<<SDGenerationTarget>>. Thisis to allow the sequence diagram
generator helper to automatically detect the appropriate lifeline to use
when generating black box sequence diagrams.

A dependency is added from the activity to the BBScenariosPkg,
stereotyped <<scenarios>>. This is to allow the sequence diagram
generator helper to automatically select the package in which to place
generated sequence diagrams.

m
c

‘;'...Q C1
2-(2 Activity Views
=% UC1BlackBoxView
=) activity_0
: s ActivityDiagram
= Dependencies
-, ascenarios» UC1BBScenariosPkg
i, «SDGenerationTargets Uc_UCT

Figure 24 Activity dependencies

5.2.3.4.13 Ports and Interfaces

In agile mode, ports and interfaces are created for the Use Case and Actor
Blocks. In addition, links are created between the parts and those are also
shown on the Internal Block Diagram. Note that these are of course empty
at this point — they will be later populated through scenario analysis. This
behavior is controlled by the following property and is on by default in agile
mode:

SEToolkit.CreateSystemModelFromUseCase.CreatePortsAndInter
facesWithSystemModel

<interfaceBlock»
iUc_UC1_aUC_A2 <interfaceBlock»
iUlc_UC1_aUC_A1

Operations

Operations

Flow Properties

Flow Properties

«proxy»
paUC_A2:iUc_UC1_aUC_A2 [ = % )
|1 itsUc_UC1:Uc_UC1 proxy» paUC_A1:iUc_UC1_aUC_A1

[ 1
4 i i

s |

]
«proxy» . e af
[T prtaz:auc A2 | rtAz;auc_Az,LpUc_Uc1:~iUc_uc1_auc_Az e i jl PrAl:auc A1

|
Figure 25 Ports and Interfaces on IBD

5.2.3.4.14 Interfaces and Types Packages

In agile mode two additional packages are created as part of the system
model — a types package called UCNameTypesPkg and an interfaces package
called UCNamelnterfacesPkg. This behavior is controlled by the following
properties which are both switched on by default in agile mode:

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 28



The Harmony SE Toolkit

SEToolkit.CreateSystemModelFromUseCase.CreatelLocalTypesPac

kage Entire Model View ¥ + 1t &
SEToolkit.CreateSystemModelFromUseCase.CreateLocalInterfac = ] S
esPackage k-l fctoss

#-(Z Table Views

5.2.3.4.15 Hyperlinks

For ease of later navigation, hyperlinks are added from the use case to the EntireModelView ~+ | ¥ # | (8
activity diagram and internal block diagram. -0 Packages
=-§J UC1Pkg
&2 Blocks
5.2.3.5 Example =0 ucuct

For the example use case shown below: £ Dependencies
i -y «represents» UC1

E-(Z Proxy Ports
(-4 paUC_A1

- paUC_A2

=1~ Internal Block Diagrams
. g 1BD_UCI
=2 Packages
=-§7 UC1ActorPkg
E-(2 ActorBlocks
- aUC A1
A @ auc A2
b (#-£7] UC1BBScenariosPkg

=571 UC1ExecutionScopePkg
3 Components
b-l' connectors
= Parts
The following use case model is created (agile mode) shown: 2§73 UCtInterfacesPkg
EleI Interface Blocks
~H iuc_uc1_auc A1
‘- iuc_uc1_auc_A2
----- £ uC1TypesPkg
(2 Use Cases
=0 Ut
E-(2 Activity Views
=53 UC1BlackBoxView
E-E9 activity 0

----- 3o ActivityDiagram

=24 Dependencies

s «scenarios» UC1BBScenariosPkg
“« «SDGenerationTarget» Uc_UC1
(£ Association Ends

-4 Hyperlinks
Figure 27 Example use case model

Figure 26 Example Use Case

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 29



The Harmony SE Toolkit

5.2.3.6 Customization Options

5.2.3.6.1 Functional Analysis Package

When Create System Model from Use Case executes — it requires a ‘root’
package in which to create new artifacts — by default that is a Package called
FunctionalAnalysisPkg. The name and location of the “Functional Analysis
Package” to use may be modified in two ways — locally or globally.

5.2.3.6.2 Modifying the Functional Analysis Package Locally

The tool looks ‘up the tree’ from the currently selected element, looking for
a named package. The property that controls that name is a regular
expression:

View SE Toolkit -

Setup  General Functional Analysis  Design Synthesis

View Fittered By "func” -
=l SEToolkit
Ell General

FunctionalAnalysisPackageMameRegex | ~.*FunctionalanalysisPkg$

Figure 28 Functional Analysis Package Name Regular Expression

What this means is that by default — the first Package found whose name
ends in “FunctionalAnalysisPkg” will be used. By modifying the regular
expression, you could change the naming strategy used.

=+ Packages
~E7 ActorPkg
-5 DesignSynthesisPkg .
£ FunctionalAnalysisPkg e Not used
£ InterfacesPkg
=-§7) RequirementsAnalysisPkg

- Matrix Views
=+ Packages
57 RequirementsPkg
1 %--Ig$1PZiEt? UnaysPky o= | Jsed instead
: #-f7] usecase_OPkg
=57 UseCaseDiagramsPkg

=9+ Use Case Diagrams

-7 UCD_Project

#-(Z] RequirementsTables
- Profiles
Figure 29 Example of a Local Functional Analysis Package

5.2.3.6.3 Modifying the Functional Analysis Package Globally

To make a more global change, apply the ‘HarmonySE’ stereotype to the
Project — this adds a tag to the project: FunctionalAnalysisPkg —of
type Package. A different “Functional Analysis Package” may then be
specified by modifying the value of the tag (regardless of the actual name of
the Package to be used)

Note that if you have already created a model for a use case, setting this tag
will result in duplicate artifacts — a new use case model will be created for
the use case regardless of whether one already exists in another location.

=| HarmonySE
= HarmonySE
Functional&nalysisPkg

Figure 30 Changing the root package for use case models

5.2.3.6.4 Actor Package

The tool also attempts to relocate Actors. The selection of which package to
move the Actors into is performed in the exact same way as described
above for the functional analysis package — there is a corresponding

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 30



The Harmony SE Toolkit

property to look for a named package and a tag on the project level
stereotype to specify a global one.

5.2.4 Create Scenario (“Generate Sequence Diagram”)

5.2.4.1 Intent
To create a basic sequence diagram with an initial set of lifelines to allow
scenario modeling to proceed consistently.

5.2.4.2 Invocation

This helper may be invoked from an Activity View or a Use Case. (Note that
if you are following either of the Harmony workflows you should not
activate this tool on a Use Case — but on the Activity View instead). See the
Interaction-based workflow on Figure 4

IMenu Entry: SE Toolkit © Create Scenarid)

5.2.4.3 Basic Operation

The tool creates a new sequence diagram (with a default name) in the
BBScenariosPkg. It detects all associated parts and adds them to the
diagram as lifelines. These lifelines are set to show their label rather than
their name for readability. This is an option controlled by the following
property:

SEToolkit.CreateScenario.UselLabelsOnLifelines

Additionally, the HarmonySE Profile contains a Comment called
SDDescriptionTemplate. A copy of this comment is made (owned by the
Sequence Diagram) and is placed on the diagram (lifelines are shifted over
to accommodate it). This is an option controlled by the following property:

SEToolkit.CreateScenario.AddCommentToScenario

The created Sequence Diagram is also added as a reference to the Activity
View to allow for later consistency checking.

Example:
For the following Use Case Diagram:

I g

Driver

=G

{

Passenger

Figure 31 Create Scenario - Use Case Diagram

=--§7) DriveCarBBScenariosPkg
(-2 Dependencies
=+ Sequence Diagrams
=00 500 Sequence Diagram
-2 Comments v -
i (] Description
B Lifelines
E]---E':] DriveCarExecutionScopePkg
EZI---E':] DriveCarinterfacesPkg
----- £7) DriveCarTypesPkg
12 Use Cases
=+ Drive Car
-2 Activity Views o v
- =5 Drive CarBlackBoxView A\ (C1vily \View
-'@ activity 0 4
=+ Sequences

~~~~~~ Moo Reference

Figure 32 Create Scenario - Created Artifacts

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 31



The Harmony SE Toolkit

sd [Package] DriveCarBBScenariosPkg [SD_0]

:aUC_A1 :Uc_UC1

(] itsUc_DriveCar prtPassenger priDriver
Use Case:

Scenario:
Description:
Preconditions:

Post-conditions:

| | | i
| | | ;’ﬂ
| | | o
| | | ]
| | |
| | | :
| | |
| | | :
| | | =
| | |
| | |
| | |
| | |
| | |
| | |

] il

Figure 33 Create Scenario - Created Sequence Diagram ) . .
Figure 34 Straighten Messages - Before Invocation

5.3 Miscellaneous Helpers

:alC_Al :Uc_Uc1

5.3.1 Straighten Messages

[reail
5.3.1.1 Intent |
When animating a model, Sequence Diagrams may be generated from the |
animation. Such diagrams show events as slanted lines — indicating that they |
are received some time after they are sent. This representation can make [rea20
the diagrams needlessly long and less readable. This helper straightens such :
messages to aid readability. |

|

]

TRt B tRtE

5.3.1.2 Invocation |
This helper may be invoked from a Sequence Diagram. Figure 35 Straighten Messages - After Invocation

‘Menu Entry: SE Toolkit = Straighten Messages‘

5.3.1.3 Basic Operation
Any messages that are not already horizontal will be made so. For example:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 32



The Harmony SE Toolkit

5.4 Summary

Rhapsody provides the Harmony SE Profile and the SE Toolkit to provide
some automation of common system modeling tasks. It is important to

remember:

Wizard

wizard which allows the user
to set default harmony-
related properties

The toolkit provides absolutely no functionality that a competent
engineer cannot perform themselves with a small amount of effort. In
some cases, the output of the toolkit is intended to provide a starting
point that will be elaborated and embellished by the systems engineer.

Refactor Action
Name

Allows an action to be
“renamed” — the tool
refactors any other actions in
this — or sub/referenced
activities so they have the
same action statement

Figure 36 below summarizes the capabilities of the SE Toolkit.

Select Sequence

Maps an interaction

Add Hyperlinks

Adds a hyperlink from the
source(s) to the destination(s)

Generic

Add
Dependencies

Adds a dependency from the
source(s) to the destination(s)
with the specified stereotype

Add Traceability Links

Add Referenced
Sequence
Diagrams

Adds sequence diagram(s) as
referenced sequence
diagrams to the selected use
case or activity view

System Requirements
Definition and Analysis
Allocate Use Cases to
Subsystems

Diagram to occurrence on a sequence
Reference diagram to a sequence

diagram
Merge Block Copies operations, Generic
Features receptions, and values from

the source blocks to a single

destination block
Straighten Cleans up an animated Generic
Messages sequence diagram
Duplicate Creates a duplicate of the Architectural Design
Activity View selected activity view —

removing any referenced
sequence diagrams

Create Test

Creates a test bench

Generic

Add as Reference

Adds selected sequence
diagram(s) as referenced
sequence diagrams to a use
case or activity view

System Requirements
Definition and Analysis
Allocate Use Cases to
Subsystems

Convert Ports to
Proxy Ports

Converts ports to standard
ports and interfaces to
interface blocks

Generic

Convert Port to
Proxy Port

As above but for a single
selected port

Bench statechart on an actor by
analyzing the actors ports
Allocation Copies operations allocated Allocate Use Cases to
Operations from | to a swim lane in an activity Subsystems (Bottom-
Swim Lanes diagram to the relevant up approach)
subsystem blocks
Generate Creates a table (csv file) of Allocate Use Cases to

Allocation Table

the allocation decisions made
on an activity diagram and
adds to the model as a
controlled file

Subsystems

Show Startup

Shows the harmony startup

Generate

Creates a sequence diagram

System Requirements

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 33




The Harmony SE Toolkit

block to delegate messages to
its internal parts

Sequence by processing object and/or Definition and Analysis
Diagrams control flows on an activity

diagram
Browse Provides an enhanced Model exploration
References references browser

Connect Ports

Creates links between ports
on an Internal Block Diagram

Generic

Create Harmony
Project

Creates a Harmony project
model structure

Project Initialization

Create System
Model from Use
Case

Creates a block context model
in a compliant package
structure from a use case

System Requirements
Definition and Analysis
Allocate Use Cases to
Subsystems

Create Scenario

Creates a new sequence
diagram from the selected
use case or activity view by
analyzing the connected
actors

System Requirements
Definition and Analysis

Create Call
Behavior

Creates a new activity and a
call behavior for it from the
selected action on an activity
diagram

Generic

Merge Functional
Analysis

Copies operations,
receptions, and values from
all use case blocks into a

System Requirements
Definition and Analysis
Allocate Use Cases to

Auto Rename
Actions

Harmonizes the action
statement and action name in
an activity diagram

System Requirements
Definition and Analysis
Allocate Use Cases to
Subsystems

Add Actor Pins

Add Harmony-specific actor
pins to activities on an activity
diagram

System Requirements
Definition and Analysis
Allocate Use Cases to
Subsystems

Perform Activity
View Consistency
Check

Checks the consistency
between the actions on an
activity diagram and the
operations on a set of
sequence diagrams

System Requirements
Definition and Analysis
Allocate Use Cases to
Subsystems

Create Ports and

Creates behavioral ports and

System Requirements

Interfaces associated interfaces (or Definition and Analysis
proxy ports and associated Allocate Use Cases to
interface blocks) based on the | Subsystems
interactions on sequence
diagrams

Create Creates new delegation ports | Architectural Design

Delegation Ports

on the boundary of a system

selected block Subsystems
Duplicate Copies an activity diagram Generic
Activity View and strips away from the copy
any referenced sequence
diagrams
Create Creates a package per Architectural Design
Subpackages subsystem and moves
subsystem blocks into those
packages
Allocation Copies features (operations, Architectural Design
Wizard receptions and attributes)
from one architectural layer
to another and tracks where
features have been allocated
Perform Checks consistency between
Allocation the allocation actions in swim
Consistency lanes and the allocation
Check operations in subsystem
blocks
Perform Activity | Checks consistency between Generic

View Consistency
Check

the actions in swim lanes and
the operations on referenced
sequence diagrams

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 34




The Harmony SE Toolkit

Create
Operations from
Call Operations

Creates new operationsin a
block from ‘empty’ call
operations on an activity
diagram

Generic

Structure to XML

structure from the selected
XML template file (created by
the above helper)

Setup Model Creates an executable, System Requirements
Execution animated, web-enabled Definition and Analysis
component with the correct
scope to execute a single use
case model
Generate Summaries the allocations of | Architectural Design

Allocation Table

operations of a white box
activity diagram into an Excel
spreadsheet

Generate N2

Creates an Excel spreadsheet

Architectural Design

Matrix for the provided and required

interfaces from an internal

block diagram
Copy MoEs to Copies the MOE attributes of | Architectural Analysis
Children key function block into the

solution blocks
Copy MoEs from | Copies the MOE attributes of | Architectural Analysis
Base key function block into the

selected solution block

Perform Trade
Analysis

For Weighted Objectives
Table, calculates the set of
solutions and displays the
results in an Excel
spreadsheet

Architectural Analysis

Export to New
Model

Creates a new model and
adds the selected packages
and profiles to it

Architectural Design

Import from XML

Exports the existing package
structure (with or without
diagrams) to an xml file for
use as a project template

Export Project

Creates a new project

Figure 36: SE Toolkit Features

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 35




6 Case Study: Introduction

The Harmony aMBSE process is tool-agnostic; it’s perspective is that what
tools do is automate or perform activities that the engineer wants to do.
This is not to say that tools don’t add value. Tools remove tedium from the
engineering effort, allowing engineers to focus on those aspects of
engineering where they add value. Tools can improve quality by removing
sources of human error such as mistakes in transcription or due to lagging
vigilance. Good tools are generally process-agnostic, meaning that they
provide commonly needed services common to many processes. Of course,
it is important that tools and processes be compatible in the sense that they
have overlapping needs and services. However, just because a tool
automates some aspect of a task doesn’t mean that the task is completely
done. Nor does it mean that if a tool doesn’t automate a task, that the tool
is inappropriate for the project. There will always be steps that human
engineers perform in every engineering process.

That being said, in this, and the following sections, we will explore a case
study using the IBM Rhapsody tool and the Harmony aMBSE Toolkit (aka the
“SE Toolkit”. Both Rhapsody and the SE Toolkit automate a number of tasks
performed by human engineers. This Deskbook will discuss and provide
examples of how to use the tooling to achieve your engineering objectives.

The case study in the Deskbook is the Aircraft Control Surface Enactment
System (ACES). This system receives commands for movement of a rather
large set of aircraft surfaces that control the orientation of an aircraft. These
moving surfaces are collectively known as “control surfaces” and may be
independently rotated — and in some cases, extended and retracted — under
command from other aircraft subsystems. See Figure 37.

Case Study: Introduction

Leading edge slats
(extended)

Figure 37: Aircraft Control Surfaces

Some of the control surfaces only rotate. These include: ground spoiler and
flight spoiler. Some have a smaller internal and separately controllable
surface known as a trim tab. These include: inboard wing flap, outboard
wing flap, inboard aileron, outboard aileron, upper rudder, lower rudder,
and the elevator. Still other control surfaces may also be extended and
retracted. These include: the leading edge flaps and leading edge slats.
Note that all of these control surfaces, with the exception of the rudders,
have both left and right side counterparts.

The control surfaces determine the aircraft orientation. The orientation of
the aircraft is known as the attitude of the aircraft and is defined in three
aspects: roll, pitch, and yaw. See Figure 38.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 36



Fitch i

Longitudinal

Vertical

Figure 38: Aspects of Aircraft Attitude

The responsibility for determining what the orientation should be to achieve
pilot maneuvering goals are the job of another aircraft system —the
Attitude Management System (AMS). The AMS uses an internal set of
partial differential equations — known as the kinematic model — to compute
the set of desired control surface positions necessary to achieve the correct
attitude. The fundamental responsibility of the ACES is to move the control
surfaces to the commanded positions, maintain them in those positions as
forces act on them, and to report on their status.

Other involved aircraft systems include the aircraft electrical power system,
the aircraft hydraulic system, and the pilot display. The ACES must receive
and distribute electrical power and hydraulic pressure as necessary to
execute its duties. The Pilot Display System (PDS) will receive some raw
data from the ACES, although the bulk of the data display regarding
performance of attitude control will come from the AMS so that it can be
converted to information directly usable by the pilot.

Case Study: Introduction

6.1 Case Study Workflow

Figure 2 shows the overview of the Harmony aMBSE workflow that will be
used for the case study. While that workflow includes the additional
activities of Initiate Project and Define Stakeholder Requirements, those
activities will not be employed in this case study. We will begin with system
requirements.

Harmony aMSBE | Work Performed Primary Work Products

Activity

System
Requirements
Definition and
Analysis

Create Requirements
Create use case model
Analyze Control Surfaces
use case using system
function based worklow*
Analyze Start Up use case
using scenario based
workflow

System
Requirements
Context Diagram
Use case model
Use case execution
context

Activity diagram
Sequence diagram

Create Logical Data/Flow Logical Data
Schema Schema
Create dependability Logical System
analyses Interfaces
FMEA
FTA
Security Analysis
Architectural Trade studies Parametric
Analysis Diagrams
Trade study
Architectural Identify subsystems Subsystem

Design

Allocate / derive
subsystem requirements
Create subsystem use case
model

Update logical data / flow

architecture
Subsystem logical
interfaces

Logical Data/Flow
Schema

4 See Figure 4 to see the these workflows

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 37




Harmony aMSBE | Work Performed Primary Work Products
Activity
schema e FMEA
e Update dependability e FTA
analysis e Security Analysis
e Define cross-subsystem
control loops
Hand off e Create Shared Model e Shared Model

e Derive Physical Interfaces

e Derive physical data / flow
schema

e Create Subsystem Models

e Create deployment
architecture for each
subsystem

e Derive and allocate
discpline-specific
requirements

e Define inter-disciplinary
interfaces

e Physical Interfaces

e Physical data / flow
schema

e Subsystem
deployment
architecture

e Software/
electronic /
mechanical
requirements

e Inter-disciplinary
interfaces

Figure 39: Case Study Workflow

We will focus on two use cases in this case study. The first use case, Start
Up, will use the System Function-Based use case analysis workflow. The

second, Control Air Surfaces will use the Scenario-Based use case analysis
workflow in Figure 4.

Figure 40 shows the overall case study workflow.

Case Study: Introduction

] Case Study Workflow

C’erform System Requirments Definition and Analysis
H‘I

Perform Trade Sudy

Design System Architecture

H‘I
Perform Hand off

H‘I

Figure 40: Overall Case Study Workflow

Figure 41 shows the details of the primary activities to be done in the
definition of requirements and the analysis of use cases for the case study.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 38



Case Study: Introduction

Requirements Definition

SystemRequirements and Analysis
[¢]
Get Requirements into DOORS j

C)reate System Use Case Model ]

C\IIocate requirements to use cases ]

Analyze Control Air Surface use case Analyze Start Up use case with
with scenario-based approach system function-based approach

N\
AOK

Figure 41: Case Study Requirements Definition and Analysis Workflow

Figure 42 shows the detailed actions to be performed during the
architectural design of the case study. In the case study, two different
approaches will be taken to allocating the requirements for the two system
use cases under consideration.

Design Architecture

Cdentify Subsystems j

Cﬁ\llocate requirements to subsystems ]

Create subsystem use cases using Create subsystem use cases using
bottom up approach for Start Up use top-down approach for Control Air
case Surface use case

CQesolve any interface issues from merged use cases ]

Figure 42: Case Study Architectural Design Workflow

Lastly, Figure 43 shows the hand off workflow for the case study. In the case
study, we will create a shared model that refines the logical interfaces from
the two analyzed use cases and creates physical interfaces and data schema
from the logical specifications. Then a single subsystem model will be
created (of the several that would be created in a real project). This
subsystem model will then be detailed by creating a deployment
architecture for the subsystem and requirements will be allocated to those
disciplines. Finally, the interfaces between the engineering disciplines will
be defined.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 39



Case Study Hand off

\l Workflow

) L

[Create Shared Model 1 (Create Subsystem

.

Control Surface No Trim

rlmport Subsystem
Specification from
\ System Model

(Deﬁne Deployment
Architecture

Refine Logical into Physical
Interfaces

.

\/

rCreate / Allocate
discipline-specific
\ requirements

Refine Logical Data / Flow

Schema into Physical Flow /
Data Schema

Interfaces
\

rDeﬁne Interdisplinary

|

Figure 43: Case Study Hand Off Workflow

At this point, the systems engineering work for the case study is complete
and has resulted in specifications that downstream engineering teams can
take and begin the detailed design and implementation of the subsystems.

Case Study: Introduction

6.2 Creating the Harmony Project Structure

The Harmony aMBSE process recommends a particular project structure
that has proven to be useful. Once an initial Rhapsody model has been
created, this can be quickly done with the SE Toolkit feature Create
Harmony Project.

Start Rhapsody

In the main menu select File > New and enter the project name (e.g.
AirSurfaceControlSystem) and click on the Browse button to select
the directory for its placement.

@ Under the Project Type, select SysML. Under Project Settings, select
SysML Perspectives.

e e

Mew Project

Froject name: |ﬂir8 urfaceControlSystem |

In folder: |F: W'orkh_DocumentsSHarmonySE Deskbook'kd 0dels‘| Browse. ..
Project Type: SyzhdL bl

Froject Settings: SyzhLPerspectives i

Froject Type: Thiz is the Rhapsody implementation of the OMG SyshL profile,

Project Settings: SysMLPerspectives

Cancel Help

o

@ Click on the OK button. If a diagram appears asking if you want to
add the SysML Perspectives, click on Yes.

@ If a dialog appears asking if you want to create the project directory,
click on Yes.

@ Select File > Add Profile to Model and double-click the HarmonySE
directory, then double-click again on the HarmonySE.sbs file.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 40



Case Study: Introduction

@ A dialog will appear for initial settings. Select Agile Harmony, select @ If desired, you can reorder the packages in the browser by selecting

the Do not ask again checkbox and click on the OK button.

View > Browser Display Options > Enable ordering. Once selected,

Systems Engineering Toolkit Startup Wizard
Options

B you can then select a package and using the up and down arrows of
the browser to order the packages as you like. This is the ordering

Initial Settings
r . & Uses proxy ports

O e Taaee & Actors are turned into blocks

O MNone created atthe same time

[ OK J l Cancel J

@& When a system model is generated from
@ Agile Harmony ause case - ports and interfaces are

| | & Actor block names are abbreviated

that | prefer:

= AirSurfaceControlSystem
- Components
=+ Packages
..... E‘:l ActorPkg
=571 RequirementsAnalysisPkg
- Matrix Views
=B I:I Packages
- EI:I ReguirementsPkg

[+] Do not ask again EI f':l UseCaseDiagramsPkg
=5 I:I Use Case Diagrams
@ Now right-click on your project name in the browser and select SE E {7 UCD_AirSurfaceControlSystem
Toolkit > Create Harmony Project. The project browser will now B {7 RequirementsTables

have the following structure:

EI--@ AirsurfaceControlSystemn
[:I Components
EI[:I Packages
..... EI:I ActorPkg
=51 DesignSynthesisPkg
5 EI[:I Packages
£ ArchitecturalAnalysisPkg
“-£71 ArchitecturalDesignPkg
I FunctionalAnalysisPkg
£ InterfacesPkg
EI EI:I ReguirementsAnalysisPkg
! Q Matrix Views
EI I:I Packages
L b f':l RegquirementsPkg
EI f':l UseCaseDiagramsPkg
=- I:I Use Case Diagrams

. g RequirementsTakles
-0 Profiles
- Settings

------ ﬁD UCD_AirSurfaceControlSystem

----- E':I FunctionalAnalysisPkg

-I-571 DesignSynthesisPkg

EI[:I Packages
57 ArchitecturalDesignPkg
“-£7 ArchitecturalAnalysisPkg

----- £ InterfacesPkg

H-C0 Profiles

-0 Settings

Il

We are now ready to begin the engineering work on the case study.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 41



Case Study: System Requirements Definition and Analysis

7 Case Study: System Requirements Definition and
Analysis

The objectives of this phase of the Harmony aMBSE process are to
e Get requirements into the Rhapsody model
e Create the overall use case model
e For each use case
a. Allocate relevant system requirements to the use case
b. Identify and correct requirements that are missing,
incorrect, inconsistent or inaccurate by constructing a high-
fidelity model of the use case
c. Define the logical interfaces between the system in the
context of the current use case and the actors
d. Create a data and flow schema for data and flows used in
the logical interface
e. Perform dependability analyses to identify relevant safety,
reliability, and security concerns and requirements.
e As necessary, resolve interface inconsistencies between the use
cases

We will follow the overall workflow capture in Figure 3.

7.1 Get System Requirements Into Rhapsody

For the purpose of this case study, we will import the requirements into our
model from the Rhapsody project ACES_ReqsOnly. This model has a
package named SysReqsPkg with some subpackages containing the set of
system requirements.

= ACES_ReqsOnly
I:I Components
EII:I Packages
EIEI SysReqgsPkg
EII:I Packages
il ConfigurationRegs
EI ErrorRegs
EI FunctionalRegs
EI InterfaceRegs
EI MaintenanceRegs
EI OtherRegs
EI ShutDownRegs
EI StartUpRegs
EIEI StatesModesRegs
(&= Requirements
-0 Profiles
-0 Settings
Figure 44: Packages in ACES_ReqsOnly model

& To add the requirements, go to File > Add to Model. Then navigate
to the location of that model in your hard disk. Then go to the
ACES_ReqsOnly_rpy subdirectory and select the file
SysReqsPkg.sbs in the dialog. Be sure that Add Subunits is checked
and you’ve selected As Unit (not As Reference). Click on Ok to add
the package to your model. This will add the package and the
nested packages and requirements.

Note that in real projects, it is far more common to import the
requirements from a requirements management tool such as
DOORS or DOORS NG. However, in this Deskbook, we are focusing
on the modeling aspects.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 42



Case Study: System Requirements Definition and Analysis

() Add To Model

Look i |

ACES_ReqsOnly_my

v @ e m-

*

Quick access

Desktop
m
Libraries

L3

Werewolf

@

Network

MName

EConﬁguratmnRaqs.sbs

| ] DefauttComp

X ErrorReqgs.sbs
[7] filesTable,dat

onent.cmp

EFunmonalReqs‘sbs
@InterfacEReqs‘sbs
X MaintenanceRegs.shs

33 OtherReqs.sh

s

E ShutDownReqs.shs
EStartUpReqs‘sbs

@ StatesModesReqs.sbs
Z SysReqsPkg.sbs

File name:

Files of type:

Date modified
3/20/2017 914 AM
3/20/2017 %13 AM
3/20/2017 %:14 AM
3/28/2017 11:30 AM
3/20/2017 %:14 AM
3/20/2017 914 AM
3/20/2017 %14 AM
3/20/2017 %:14 AM
3/20/2017 %14 AM
3/20/2017 %:14 AM
3/20/2017 914 AM
3/20/2017 9:14 AM

Type
SBS File
CMP File
5BS File
DAT File
SBS File
SBS File
5BS File
5BS File
5BS File
SBS File
SBS File
SBS File

Size

3KB
3KB
13KB
TKB
14 KB
12KB
3KB
2KB
2KB
5KB
4KB
2KB

0l &l [#2

A Add Suburnits
[] Add Dependents
() As Referance
(®) As Unit
Copy Into Model

‘Sys ReqsPlkg.sbs

¥ ‘

Open

Al Files (".7)

~

Cancel

X =¥ «HarmonySE= AirSurfaceControlSystem
-0 Components

=+ Packages Drag to here
E ActorPlg

EIE RequirementsAnglysisPlkg
- = Matrix View

EI [0 Packages

: EI EI RequirementsPkg
- Packages

£ UseCaseDiagramsPkg
- RequirementsTables
+-571 FunctionalAnalysisPkg

+-57 DesignSynthesisPkg

Figure 45: Adding the System Requirements package to your model

@ Now select all the nested packages under SysReqsPkg and drag
them to their expected location in RequirementsAnalysisPkg >

RequirementsPkg.

H
H
-5 InterfacesPkg
-5 CommenPkg
=- f:l SysReqsPkg
=3 I:l Packages

---E‘J StartUpRegs
-3 Profiles
-0 Settings
Figure 46: Preparing to drag requirements packages to RequirementsPkg.

@ You may delete the now empty SysReqsPkg.

7.2 Create the System Use Cases
This activity corresponds to the Identify System Use Cases task in Figure 3.
When you used the Create Harmony Project tool, the SE-Toolkit created an

empty use case diagram. Unless you’ve closed it, it should be openin a
tabbed window. If it is not currently open, navigate in the browser to

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 43



RequirementsAnalysisPkg > UseCaseDiagramsPkg > UseCaseDiagrams > poltacenc oo oot eain SN SUce ooty s
UCD_AirSurfaceControlSysem. Double click on the diagram in the browser

to open.

e StartUp

e Shut Down

Control Air Surfaces
Manage Power

e Configure System

e Manage Data

e Update Status

Each of these is an important and complex system usage with several to

many requirements and interesting scenarios.

Using the tools in the use case diagram tool bar, create the use case

diagram shown in Figure 47.

In this case, the following use cases have been identified from the system @ @
requirements: O

Case Study: System Requirements Definition and Analysis

Manage Power

Pilot_Display

Aircraft_Hydraulics

O

Configure System
Manage Data
Maintainer

Figure 47: System Use Cases

A (very) short description of the objectives of the use cases:

e Start Up: Manages the start up process, including cold and warm
states, and, in the case of cold start, the Power On Self Test (POST).

e Shut Down: Manages an orderly shut down of the system, including
zeroing the positions on all surfaces.

e Manage Power: Manages the electrical power delivered to the
system from the aircraft, including the selection of the power
source.

e Update Status: Periodically updates the AMS and Pilot Display as to
the operational state of the system, including statuses for all the

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 44



Case Study: System Requirements Definition and Analysis

control surfaces, the hydraulics, the electrical power, and
operational flight mode.

e Control Air Surfaces: manages the response to AMS commands for
control surface position changes, performs station keeping at the
commanded position, and identifies positional accuracy and timing
errors.

e Configure System: sets range limits for the control surfaces, range
and time accuracy limits, and allows for software upgrades.

e Manage Data: supports storage and download of stored operational
data, including fault and failure information.

In this case study, we will limit our discussion to the Control Air Surfaces
and Start Up uses cases only. Interested readers should feel free to model
the other use cases at their leisure.

7.2.1 Add use case mini-specification

Note: to use this description wizard, you will need to apply the
«HarmonySE» to the Rhapsody project (double click on the project name in
the browser and select the stereotype in the stereotype drop down list).

Let’s add a mini-specification to these two use cases. The SE Toolkit
provides a tool for this. Right-click the Start Up use case and select SE-
Toolkit > Import Description from RTF. This provides a standard template
which you can elaborate for the description fields of various kinds of model
elements. The default template includes places for a short explanation of
its purpose, description, security constraints, preconditions, post-
conditions, and invariants (assumptions).

Use Case: Start Up in UseCaseDiagramsPkg - |

Genesl Desciiption  Value Properties Operations  Pots  Flow Pots  Relations  Tags  Properties
sl ~| [0 -

A | H

A B 7 uAlE= =

Name: Start Up

Purpose: This use case defines the start up procedures for the system. This includes selection of the proper aircraft electrical power system and
performing the Power On Self Test (POST).

Description:

The system initially selects the proper aircraft power system. It then tests that each control surface can be moved to its minimum, maximum, and
zeroed positions with the required accuracy and within the required time frame. Any control surfaces that fail are identified. Following a successful
control surface test, the power, hydraulics, and software integrity are tested.

Security Constraints:
Mone. The system is expected to be enclosed within a security boundary.

Precondition:
The aircraft can provide electrical power for the system to begin the start up sequence.

Post-conditions:
If all tests pass, then system shall complete the start up procedure and enter an operational state. If any of the tests fail, then system shall enter a
non-operational failed state, while both reporting and storing the identified errors_

Invariants:
None.

Locate 0K

Figure 48: Start Up Use Case Description

Add a similar description of the Control Air Surfaces use case.

Use Case : Control Air Surfaces in ControlAirSurfacesPkg - n

General Description  Value Propetties Operations Pots  Flow Ports  Relations Tags  Fropetties
Aial w| |10 ~

i
[}
i
ir
>
=

ATAN|B 7 U#A

Name: Control Air Surface

Purpose: This use case provides the primary functional behavior of the system’ specifically to move the various control surfaces to their commanded
positions, maintain them in their commanded positions and report status and errors to the AMS and Pilat Display.

Description:

The system received movement commands from the AMS. The system verifies that they are valid commands and then executes them. Verification
includes that the position of the control surfaces are in a valid range. Then system then moves the control surfaces to those position within the timing
and accuracy constraints. [f the system is unable to meet either the positional accuracy or the timing, errors are reported to the AMS and pilot
display

Movement can be control in degraded mode if non-critical surfaces fail. If critical surface fail, the system enters a fail safe mode of operation.
Special behavior is defined for warm-restarts to permit in-flight shut down-restart sequences. See the requirements for the details.

Security Constraints:
MNone. The system is expected to be enclosed within a security boundary.

Preconditions:
The system is powered and has successfully passed Power On Self Test.

Post-conditions;
The system has properly executed all movement commands or appropriately handled all errors.

Invariants:
Electrical and hydraulic power are continuously available from the aircraft.

Locate 0K

Figure 49: Control Air Surfaces Use Case Description

7.2.2 Allocate requirements to the use cases

Each use case must be linked with the functional and quality of service
requirements it collectively represents. This can be done in multiple ways.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 45



Case Study: System Requirements Definition and Analysis

Let’s do one diagrammatically and one using the pre-defined Use Case Trace
Matrix Layout in that is predefined in the HarmonySE profile.

7.2.2.1 Adding Traces on a Use Case Diagram
Creating dependencies on a diagram is easy and it provides a nice visual
reference of the traced requirements.

& In the RequirementsAnalysisPkg > UseCaseDiagramsPkg, add a new
use case diagram.
Name this diagram Start Up Use Case Requirements.
Drag the use case Start Up on to it.
Now, drag the appropriate requirements from the
RequirementsAnalysisPkg > RequirementsPkg on to the diagram
(All the requirements in the StartUpReqs package plus the
StateModeReq_1 from the StatesModesReqs package - see Figure
50).

uc [Package] UseCaseDagramsPhg [RebitionsBetweeniements]

Mission: Show the
requirements allocated to
the StartUp use case

StartlpReq_3

......

Folowng successful achievement of
maximum poston fobwing an el
pover on, each control surface shal

Asqurenents
StartUpReq_1

Upon nitil poweer up, each control
surface shal be postioned to ts
minmum range and ks paskon
verified. If the poston achieved &
more than 1.0 degree off
spedfication or requires more than
3.0 seconds to complete, the
system shal enter FAIL_STATE.

Figure 50: Adding Use Case Trace relations diagrammatically — step 1

G

The Modeling Toolbox dialog should now look like this:

be commanded to &s zero poston.
If the postion achieved 5 more
than 1.0 degree off specficaton
requires more than 3.0 seconds to
mpkte, the system shal enter
FAIL_STATE.

Upon inkal pover
up, the ACES shal
defaut to battery

Requrements
StartlipReq 4

Start Up

“isqurements

StartUpReq_2

Folovng successful achievement of
minmum poston folowng an intial power
up, each control surface shal be
commanded to ks maxmum poston. If
the poston achieved s more than 1.0
degree off spedfication requres more
than 3.0 seconds to compkte, the
system shall enter FAIL_STATE.

rr—
StartUpReq_6

Folwng successful achevement of zero
poskin, the system shal perform a Buk
In Test (BIT) to check the ntegriy of
the baded software, that the motwe
ekctro-mechancal aspedts vork wthn
specicaton, and that the ntemal
communcaten bus functons without
unrecaverable error. If any of these
tests fai, the system shal enter
FAIL_STATE.

“Reawements
StartUpReq_5

The system shal not automaticaly
perform mnimum, maxmum, and
zero postion tests durng a restart,
where “restart” s defned to be
starting up wthin 5 minutes after
beng enabld, or beng operatonal
Rationak: ths & ta akow n-fight
restarts safel.

Right click on the use case in the diagram and select SE Toolkit > Add

“Fequements
StateModesReq_1

The system can be mmmanded nto a
restart mode from the OFF_STATE by the

Atttude Management System. In addbon,
the system may be expkil commanded
nto restart from other operatonal modes
wih an ndependent command from the
AMS, however, ths command must be
verfied by salotng and receivig a piot
overrde nstruction. An exception to this &
the phne s not Weight on Whees (WoW); n
ths case, the restart shal not requre an

BIT_STATE: In this state, the
system & performing an automatc
or requested Buk In Test. The
system & not permited to
transtion to ths state drectly from
OPERATIONAL_STATE wih a piot
overrde acton.

ndependent plot canfrmatn.

Dependencies > From Selected. This will open the Modeling Toolbox
dialog. (NOTE: Yes, the trace relation goes FROM the use case TO
the requirement!)
Now select all the requirements (select the first requirement, then
click on the others one at a time with the control key depressed).
Once all the requirements are selected, click on the Select Target
button in the Modeling Toolbox dialog.
Next, select the HarmonySE profile from the Profile drop down list
on the diagram and the trace stereotype in the Stereotype drop
down list on the dialog.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 46




Case Study: System Requirements Definition and Analysis

|£| Modeling Toolbox — O X
Options
Selecta Source and Target Panel
[ Select Source J [ Select Target J Colla
pse
UseCase ———es
Expand
Start Up Multiple Elements
[ Create Basic Dependency J
Profile: Stereotype:
[HarmonySE | T] [trace | T]
[ Create Dependency with Selected Stereotype J
Existing Dependencies Existing Dependencies to Remote Resources

—[ Dependencies | Selection Information |

& Click on the Create Dependency with Selected Stereotype button.

The relations may not show in the diagram. If not, while the diagram has
focus using the menu Layout > Complete Relations > All to show the
elaborated diagram. It should look like this:

ue [Package] UseCaseDigramsPhg [R Ements)

epurements
StartUpReq_3

-
Mission: Show the
requirements allocated to

Erer—
StartUpReg_0

Fokowng successful adhevement of
maximum pestion fobwng an ntal

the StartUp use case poveer on, each control surface shal
Upon ikl paver be commanded to ts zero poston.
up, the ACES shal If the postion achieved & more
defauk to battery than 1.0 degree off specficaton
requires more than 3.0 seconds to = 7
wmpkte, the system shal enter qurements
FAIL_STATE StatUpReq 4
Requrements
StartlpReq_1
Fobwing successful achevement of zero
«trace» poston, the system shal perform a Buit
Upon nitil power up, each control In Test (BIT) to chedk the ntegrty of
surface shal be postioned to ts wiraces the loaded software, that the motve
minmum range and ts poston ekcro-mechanical aspedts work wi
werified. If the postion achieved & specficaton, and that the ntemal
more than 1.0 degree off Start Up traces communication bus functons vithout
spedfication or requres more than } unrecoverabie eror. If any of these
3.0 seconds to compkte, the atraces tests faj, the system shal enter
system shal enter FAIL_STATE FAIL_STATE.
atrace» Regurement=
atraces
o StartlpReq 5
Aequrement>
StartUpReq_2
ST The system shal not automaticaly
atraces erform mnimurm, maxmum, and
Foloving successful achievement of Lasld hoston tests durng a restart,
minmum postion folowng an ntial power et et & defe 15 be
up, each control surface shal be startng up wthn 5 minutes after
commanded to ks maxmum poston. If beng enabled, or beng operatonal
the poston achieved s more than 1.0 Rationake: this i to alow in-fight
degree off specfcation requres more sarts safcl.
than 3.0 seconds to complete, the itz S
system shal enter FAIL_STATE. pry—
StartUpReq_6

“Reauems
StateModesReq 1

The system can be commanded into a

restart mode from the OFF_STATE by the

Atttude Management System. In addbon, BIT_STATE: In this state, the

the system may be expktly commanded system & performng an automatc

fto restart from other operational modes or requested Buk In Test., The

with an ndependent command from the system & hot permited to

AMS, hovever, ths command must be transiton to ths state drectly from

verfed by soktng and receng a plot OPERATIONAL STATE wth @ piot

overrde nstruction. An exception to this & £ override acton.

the phne is not Weght on Wheek (WoW); n

th case, the restart shal not require an

independent piot confimation.

Figure 51: Adding Use Case Trace relations diagrammatically — complete

7.2.2.2 Adding Traces using the Use Case Trace Matrix

The other approach is to do this in a matrix. The Harmony SE toolkit
provides such a matrix layout. In fact, the toolkit adds a layout for you in the
RequirementsAnalysisPkg when you used the SE Toolkit > Create Harmony
Project tool previously.

@ Double-Click on the matrix view to open it up.

0 Because there are many more requirements than use cases, click on
the Switch Rows and Columns tool option (normally located to the
right of the open view).

If you scroll through the matrix, you will see the trace relations we added in
the previous step for the Start Up use case.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 47



Case Study: System Requirements Definition and Analysis

Add the traces
& Trace all the functional requirements (with identifies FuncReq_0
through FuncReq_40) to the Control Air Surfaces use case. To do
this,
o Inthe row in the matrix labelled Control Air Surfaces
(assuming you previously toggled rows and columns), Select
all the corresponding cells
o Right click and select Add New > trace.
& Similarly add ErrorReq_0 through ErrorReq_36 in the same fashion.

You’'ve now successfully traced from the Control Air Surfaces to the
relevant 76 requirements. A portion of the matrix is shown in Figure 52.

From: UseCase  Scope: ArSurfaceControlSystem
2 Shut Down | Manage Power ‘D Manage Data [ Corfigure System | Control Air Sufaces (<O Update Status |C) Start Up
- |[[1]EmorReg_15 ., ErorReq_15
[ EmorRea_16 ., ErorReq_16
- |17 EmorRea_17 ., ErorReq_17
[( ] EmorReq_18 *., EmorReq_18
[( 1] EmorReq_13 *., EmorReq_15
[( 1] EmorReq_20 *., EmorReq_20
[¢ 1] EmorReg_21 *., EmorReq_21
@ | [£J|EmorReq_22 *., EmorReq_22
[¢ ] EmorReq_23 *., EmorReq_23
. |[£ ] EmorReq_24 *., EmorReq_24
[¢ ] EmorReq_25 *., EmorReq_28
[¢ ] EmorReq_26 *., EmorReq_26
[¢ ] EmarReq_27 *., EmorReq_27
[¢ ] EmarReq_28 *., EmorReq_28
[¢ ] EmorReq_29 *., EmorReq_29
[¢ 7] EmorReq_30 *., EmorReq_30
[£ 7] EmarReg_31 *., EmorReq_31
[£ ] EmorReq_32 *., EmorReq_32
[£7]EmorReq_33 “., ErorReq_33
[£7]EmorReq_34 “., ErrorReq_34
[£7]EmorReq_35 “., ErorReq_35
ot
EmorReq_37
[¢|CorfigReq_D
gz ConfigReq_1
)| CorfigReq_2
;2 CorfigReq_3
7] CtherReq_0
;2 OtherReq_1
EﬂS{anUpH&q_ﬂ *, StattUpReq_0
EﬂS{anUpHeq_W *, StatUpReq_1
[£]] StartUpReq_2 *, StatUpReq_2
[£]] StartUpReg_3 *, StatUpReq_3
[£]] StartUpReg_4 *, StatUpReq_4
[£ 1] StartUpReq_5 *, StatUpReq_5
[£ 1] StartUpReq_6 *, StatUpReq_&

Figure 52: Portion of the Use Case - Requirements trace matrix

Let’s now analyze the two use cases to identify missing, incorrect,
inaccurate, or inconsistent requirements.

7.3 Analyze the Start Up Use Case

We're going to analyze two use cases. The first, and simpler of the two, is
the Start Up use case. This use case is concerned with how the system goes
from off to ready to operate. Most of the behavior for this use case is
focused around the executing the Power On Self Test (POST) and managing
its outcomes. We will analyze this use case using the System Function Based
Approach from Figure 4. We'll create an activity diagram to organize the
various actions (system functions) associated with the use case. From that
we’ll use the Harmony SE Toolkit to generate the scenarios. Then we'll
construct an executable state machine that simulates the system functions
and the system interaction with the system actors as a means to verify the
quality and completeness of the requirements.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 48



Case Study: System Requirements Definition and Analysis

J/ System Function-Based Workflow

[Create Use Case Functional Anaysis Model Structure ]

Create Use Case Execution Context ]

[Creaﬁe or Update Activity Diagram

[[‘.reate Scendaips

C:reate Data Model

[Create Safety Analyss

[Creaﬁe Use Case State

Machine

N N N U S N

[Execute Model and identify requirements issues j

J

decision

é [EEE]

[miore reguire ments]

Figure 53: Detailed Workflow for System Function-Based Analysis

Let’s get started.

7.3.1 Create Use Case Functional Analysis Model Structure

First, we'll set up the model structure using the SE Toolkit. On the use case

diagram or the browser, right-click the Start Up use case and select SE-

Toolkit > Create System Model From Use Case (Figure 54).

= @ =HarmonySEs AirSurfaceControlSystem »>  SysML AirSurfaceContiolSystem

D Components

£+ Packages

E‘:’ ActorPkg

BE‘:’ RequirementsiAnalysisPlg

() Matrix Views

=10 Packages

: RequirementsPkg

=57 UseCaseDiagramsPkg

. &ﬂ Actors

(20 Use Case Diagrams

BB Use Cases
C) Start Up,

5~ Shut Do Features...
> Manage]
C) Manage Add New
- Configu
2] Q RequirementsTable Cut

#-57 FunctionalAnalysisPlg c
- - opy
EJ--&I DesignSynthesisPkg
-5 InterfacesPkg Paste
#-57) CommonPkg Delete from Model
B0 Profiles
Set St
- Settings ereotype
Change to
Edit Order of Types
Navigate

Realize Base Classes...
Create Unit

Check Model
Spell Check

Rational Rhapsody Gateway
SE-Toolkit
Design Manager

Apps

Ctrl+ X
Ctrl+C
Ctrl+V
Del

e

L4

Import Description from RTF

Add Referenced Sequence Diagrams
Create System Model From Use Case

Export to New Model
Create Scenario

Add Hyperlinks

Add Dependencies

s

Figure 54: Create System Model from Use Case

© Bruce Powel Douglass

2017. All Rights Reserved

Harmony aMBSE Deskbook 49




Case Study: System Requirements Definition and Analysis

This tool creates a package called FunctionalAnalysisPkg > StartUpPkg and
then populates it with the appropriate blocks for the use case and actors,
creates the appropriate links and even creates a new internal block diagram
(IBD) showing the use case execution context. The
StartUpExecutionScopePkg also contains a new component named
StartUp_Sim for building the executable model (to come later). The fully
elaborated package structure for this functional analysis package is shown
in Figure 55.

El-4d «HarmonySEs AirSurfaceControlSystem
D Components
=5 D Packages

-7 ActorPkg

D&l RequirementsAnalysisPkg

- Matrix Views

- Packages

~E7 RequirementsPkg

=- E:I UseCaseDlagramstg

I ['g Actors

B 20 Use Case Diagrams

i 7 UCD_AirSurfaceControlSystem
H-2 Use Cases

T RequirementsTables
=R FunctionalAnalysisPkg

-0 Packages
=53 StartUpPkg

B ['g Blocks

. B~ Uc_StartUp
B {3 Internal Block Diagrams
. 35 IBD_Start Up
g- ‘[0 Packages
#-f7 StartUpBBScenariosPkg
=57 StartUpExecutionScopePkg
=0 Components
i =g Start_UpSim

= D Cenfigurations

- -3 Animate
. [,:—,, connectors
= er Parts
----- [g itsUc_StartUp
..... Eé prtAMS
----- L_E' prtAircraft_Power
""" L_g' priAircraft_Hydraulics
----- [T StartUpTypesPkg
=5 b StartUpInterfacestg
'E? Interface Blocks
----- H iUc_StartUp_aSU_AMS
----- H iuc_StartUp_aSU_Aircraft_Power
----- H iuc_StartUp_aSU_Aircraft_Hydraulics
=F StartUpActorPkg
=5 b ActorBlocks
- asu_Ams
E aSU_Aircraft_Power
- aSU_Aircraft_Hydraulics
----- [T StartUpSafetyPkg
B Use Cases
(- Start Up

Figure 55: Start Up Use Case Analysis Model Structure

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 50



Case Study: System Requirements Definition and Analysis

There are a couple of interesting things to note in this structure. First, the
“actor blocks” (i.e. blocks derived from the use case actors) are named with
‘aSU_’ prepended to the original actor name. These actor blocks represent
custom versions of the actor to support construction and execution of
specific use case simulations without affecting any other use case, even if
that other use case also uses the same system actor.

Secondly, while the tool creates a default IBD, it isn’t very pretty. This is due
to limitations in the Rhapsody tool API. You must open the diagram and
manually resize and reorient the elements to beautify the diagram. The IBD
resulting from this beautification effort is shown in Figure 118:

ibd [Package] StartUpPkg [IBD_Start Up]
anterfaceSiods <interfaceBlock» <interfaceBlock>
iUic_StartUp_aSU_Aircraft_Power iUlc_StartUp_aSU_AMS iUlc_StartUp_aSU_Aircraft_Hydraulics

Opeations Opertions Operations

Flow Properties Flow Properties Flow Propeities

«proxy»
1 prtAMS:aSU_AMS pUc_StartUp:~ilc_StartUp_aSU_AMS 1 itsUc_StartUp:Uc_StartUp

valres
pasU_AMS:iUc_StartUp_aSU_AMS

«proxy»

«proxy»
pUc_StartUp:~iUc_StartUp_aSU_Aireraft_Power
1 prtAircraft_Power:asu_Aircraft_Power

pasU_Aircraft_Power:iUc_StartUp_aSU_Aircraft_Power

Opeations
“proxy»

«proxy»
pUc_StartUp: ~iUc_StartUp_aSU_Aircraft_Hydraulics

preAircraft_| _Aircraft_|

paSU_Aircraft_Hydraulics:iUc_StartUp_aSU_Aircraft_Hydraulics
«proxy»

Figure 56: Beautified Use Case Execution Context IBD

The default interface block names may see a little long; you should feel free
to shorten them as you like.

7.3.2 Create the Activity Diagram
The requirements spell out what is required for the system start up:
e If the elapsed time since the last start was less than 5 minutes, go
directly to WARM state, ready to go directly to operational mode
when commanded, otherwise:

o Switch to battery power from whatever power source is
currently being used

o Move each control surface to its minimum and maximum
positions, verifying the accuracy and timing of the
movements

o Zero each control surface position, verifying the movement
accuracy and timing

o Verify the power is within specified limits

o Verify the hydraulic pressure being provided by the aircraft
hydraulic system is within limits and there are no internal
pressure losses

o Verify the integrity of the software

o If all the tests pass, then proceed to the WARM state;
otherwise do not.

The SE Toolkit has created an empty activity diagram for you to elaborate
the activity view. You can open it by navigating to FunctionalAnalysisPkg >
StartUpPkg > Use Cases > Start Up > StartUpBlackBoxView > Activities and
double clicking on activity_0. Here you can add activities, decisions and
flows from the diagram toolbar.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 51



Case Study: System Requirements Definition and Analysis

actions, and there details are shown on other diagrams (Figure 58 and

A little bit about naming conventions
Figure 59).

The two most common naming conventions for compound
names are to use upper case words separated with underscores
and to use what is called “camel case.” An example of the
former approach is Determine_Time_Since_Last_Restart. The
latter is the practice of writing names by removing the white
space between the words but making each new word upper
case, as in DetermineTimeSincelLastRestart.

To add the call behavior actions on Figure 57, simply
Add a regular action
Name the action Range_Surface_Test
Right-click on the action and select SE-Toolkit > Create Call
Behavior.
Delete the original action you added.

Complicating the naming rule is the common practice of
beginning the names of types (such as blocks and use cases) with
upper case (such as ErrorReport) but the names of features of
types (value properties/attributes and operations) and instances
with lower case (such as myErrorReport or
ErrorReport.errorNumber).

Repeat this process to add a call behavior for Perform_BIT. Subsequently,
clicking on the fork icon in the action box will directly open the activity
diagram it now references. Now you can elaborate the behavior on those
referenced activity diagrams

See the different colors for the Decision and Merge nodes on the
Whichever you choose is fine, but you should be consistent. activity diagams? This isn’t the default, but you can make it the so,
by adding a Merge node to the diagram, coloring and sizing it as you
like, then right-click on it and select Make/Restore Default... This will
open a dialog that allows you to make this the default format and
size for the element within the selected scope.

Indicating input and output events to/from Actors
There are two ways to show inputs and output events on activity
diagrams. The standard UML/SysML way is to use Send Action

and Receive Event Action from the toolbar. This works fine but -

the latter does not identify the source of the event. The Make/Restore Default X
Harmony Profile adds the notion of an Actor Pin for an action. ltam Level

To do this, add a normal action, right click and select SE-Toolkit > Display Options O Diagram

Add Actor Pin. This will bring up a dialog where you can specify St O Package Fiestore Defaul
the actor with a drop down list and the direction (in, out or News Element Size ® Project Cancel
both). The actor pins are used in the automatic generation of

sequence diagrams from activity diagrams, which will be used | set my scope to Project.

later.

The high level activity diagram for this behavior is shown in Figure 57.
Because running the tests involves a large number of actions, the
Range_Surface_Test and Perform_BIT actions on Figure 57 are call behavior

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 52



dy: System Requirements Definition and Analysis

act [Activity View] Start UpBlackBoxView [activity_0]

Select Battery As_Source

aSU_AircraftPower |

[Dele rmine_Time_Since_Last_Restart j

| [Time_Since_Last_Reset < NORMAL_START_TIME]

o] e R S

|

|

n :
|

‘ |

|

Range_Surface_Test

|

!

W
laSU_AM SE{Enter_Operatmg_State
Figure 57: Start Up Use Case High Level Activity Diagram

act [Activity View] Start UpBlackBoxView [Range_Surface_Test]

Select_First_Surface

Command_To_Minimum_Position ]

\
Ay

CiarlfyiF'na|t|nn7And7T|meI|ness

4
[l >{ Store_Error

J» 9[ Augment_Error_Count ]

|
| pelse] \

Command_To_Maximum_Position
- - - Report_Error
e e— e e e aSU_AMS
| [

Vi

[Verify_Position_And_'ﬁme\mess ]

[Error_Found]

Augment_Error_Count
Report_Error
7777777777777 oU-AMS
(3

Ny
[Zem_Contml_Su rface j

S
[SelecLN ext_Control_Surface j

[Mare_Surfaces] elsel :

Figure 58: Range Surface Test Activity

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 53



act [Activity View] Start UpBlackBoxView [Perform_BIT]
aSU_AircraftPower [@

[Chec k_Power_Status } Request_Power_Status ]
= |
Errer_Found] Augment_Error_Count

aSU_AircraftPower \l/
| [else] |

Report_Error
—————— aSuU_AMS
[+

W

[Re quest_Hydraulic_Status JEasu_Aimaﬁ;_Hydrau lics

R
[Ch eck_Hydraulic_Pressure

[Error_Found] Augment_Error_Count
Report_Error
asU_AMS
El

aSU_Aircraft_Hydraulics

v

Report_Error .
—————— asu_AMS
E

®<

Figure 59: Perform BIT Activity

Case Study: System Requirements Definition and Analysis

7.3.3 Generate Scenarios from the Activity Diagram

The next step in this workflow is to generate scenarios. Fortunately, the SE
Toolkit has a tool that saves lots of time and effort. To use it, simply right-
click on the activity diagram and select SE-Toolkit > Generate Sequence
Diagrams.

The diagrams created in this way follow a single flow, so you will have to
provide guidance as to which path when multiple paths are available, such
as at decision points.

Note: although it is possible to run the Range Surface Tests for all the
surfaces, in practice it is enough to do a single one, but be sure to generate
both successful and unsuccessful test cases at all test case branch points.

When you select the tool, a modeling toolbox dialog pops up to allow you to
guide the process (Figure 60). In this first example, we'll create a sequence
diagram that shows the flow for a warm restart.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 54



Case Study: System Requirements Definition and Analysis

[£] Modeling Toolbox = | B el
QOptions
Select a Source and Target Panel
[ Select Source J [ Select Target J
Collapse
Activity Diagram Block
Expand
[Start UpBlackBoxView] Uc_StartUp
Data Gathering
Generation
General Options | Collect Actions | | Cancel ]
Message Options
- Auto Select Path
Copy Options
Design Rules Select Next Action
Actions Collected So Far
Create Sequence Diagram from Collection
‘ Status: Idle

—l Generate Sequence Diagrams l Selection Information J

Figure 60: Dialog for Generating Sequence Diagrams

For the tool to proceed, you must see if you need to apply design rules.
Because Rhapsody builds executable models, it is picky about naming. The
design rules allow the tool to force the names of the actions to conform to
the rules. If you select the Design Rules tab in the dialog, you’ll see that it
has identified some invalid naming of actions:

|£| Modeling Toolbox - o X
QOptions
Select a Source and Target Panel——
( Select Source /1 Select Target J Collal
pse
Activity Diagram Block Expand
[Start UpBlackBoxView] Uc_StartUp

Design Rules

Generation
General Options
- [2] Use NamesRegExp Property
Message Options

Copy Options /] Apply Design Rules

Design Rules

O Remaove lllegal Characters
@ Replace lllegal Characters With Underscores

Use Camel Case

Invalid Actions

‘ Status: Idle

—[ Generate Sequence Diagrams J Selection Information J

Figure 61: Applying Design Rules

Select Apply Design Rules and you can either Remove Illegal Characters or
Replace lllegal Characters with Underscores. If you select the former option,
the toolkit will remove the parentheses in the names of the actions. BTW,
be sure, under the Message Optons tab that the Use Operations instead of
Events option is NOT checked.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 55



Case Study: System Requirements Definition and Analysis

Now select the Generation tab and hit Collect Actions. The Toolkit will

proceed to the end of the activity OR until it reaches a branching decision.

The decisions will be shown via highlighting on the diagram and the
different options are shown in the Select Next Action list.

act [Activity View] Start UpBlackBoxView [activity_0]

Select_Battery As_Source [&] Modeling Toolbox - o %
al ptions
[ SelectaSourceand Target
aSU_AircraftPower | Fanet
W l Select Source J { Select Target J Collapse
Determine_Time_Since_Last_Restart Activity Diagram Block
Expand
[Start UpBlackBoxView] Uc_StartUp

o o | Data i
Zero_E1 i
kel T
General Options { Collect Actions J { Cancel J
o o Message Options
Auto Select Path

| [Time_Since_Last_Reset < NORMAL_STAR] Copy Options
Design Rules Select Next Action

Zero_Error_Counffelse]
Enter_WARM_State[Time_Since_Last_Reset < NORMAL,

hSU_AMS
Actions Collected So Far

ol Enter_WARM_State

aSU_AMS

[¥ ENABLE_Command
‘ { Create Sequence Diagram from Collection J
El Enter_oy
_Operating_State
aSU_AMS
) . ‘

| —l Generate Sequence Diagrams 1 Selection Information J

Figure 62: Selecting the path to take

Double click on the Enter_WARM_state option. Because there are no more

decisions to make, the Toolkit can finish the process and create the entire
sequence diagram (Figure 63).

sd [Package] StartUpBBScenariosPkg [Start UpBlackBoxViewd]

wer

:asU_AircraftPo :asU_AMS :Uc_StartUp

(=]
Use Case: Start Up

| Select_Battery_As_Source()

T

Scenario: Warm restart

Description:
System is restarted in less
that NORMAL_START_TIME

.~ evSelect Battery_As Source() |
I T 1

| Determine_Time_Since_Last_Restart()

th

Time_Since_Last_Reset <
MORMAL_START _TIME

Preconditions:
Warm start condition.

Enter WARM_State()

U

Post-conditions:
System enters operational

reqEMABLE Comm@?ﬂ[}

state. | EMABLE_Command()
Invariants: ;
| Enter_Operating_State()

Aircraft power is supplied.
Aircraft hydraulic pressure is
supplied.

evEnbEl%Qgeraﬁng State()

Figure 63: Generated Sequence diagram for warm restart

t

|
|
|
|
|
| evBnter_WARM_State
|
|
|
|
|
|

Be aware that | made two changes to this diagram manually. It is common
to annotate and/or elaborate scenarios generated in this fashion. The
generated sequences provide most of what you need to capture, but we
expect that there will be a small about of manual update to them.

First, | added a comment on the left hand side of the diagram describing the
flow. Second, the toolkit replaced “illegal characters” in the condition box so
that it read

[Time Since Last Restart NORMAL RESTART TIME]

| edited that text to put the ‘<’ operator back in place.

[Time Since Last Restart < NORMAL RESTART TIME]

Let’s do some more scenarios. We'll need to take the else path when we
gettothe [Time Since Last Restart <

NORMAL RESTART TIME] decision. This will put usinto the
Range_Surface_Test subactivity (Figure 58). Here there are 4 “interesting”

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 56



Case Study: System Requirements Definition and Analysis

decisions to make (found various errors or not). For our purposes, it is
enough to parse the large loop (decision at the bottom of Figure 58) once.
There are also six “interesting” scenarios from the Perform_BIT subactivity.
Ideally, each decision path would be taken in at least one scenario. To save
space in this document, we will do only three more.

1. Range surface and POST tests all pass

2. Range test fails minimum position test but passes all other tests

3. Maximum range test fails and SW integrity test fails

If the Modeling Toolbox isn’t already open, right-click again in the main
activity diagram and select SE-Toolkit > Generate Sequence Diagrams. Make
sure the design rules are set, and then click on Collect Actions. Double click
the Zero_Error_Count(else) path and continue to generate the sequence
diagrams.

|£:) Modeling Toolbox - m] *
Options
Select a Source and Target Panel
l Select Source j l Select Target J c
ollapse
Activity Diagram Block z A
xpan
[Start UpBlackBoxView] Uc_StartUp
Data Gathering
Generation
General Options { Collect Actions J l Cancel J
Message Options
Auto Select Path
Copy Options
Design Rules Select Next Action

Enter_WARM_state[timeSinceLastRestart < NORMAL_RE
zeroErmorCountfelse]

ELS Yo

Actions Collected So Far

Select_Baltery_A
Determine_Time,

L Create Sequence Diagram from Collection |

Status: Gathering Data |

—l Generate Sequence Diagrams l Selection Information J

Figure 64: Selecting the else path

For the current sequence diagram, select the else paths (no errors) until

you’re back at the main diagram, then double click on the noErrors path to
get to the WARM state. From there, there are no more decision points, so
the tool will complete the generation of the sequence diagram (Figure 65).

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 57



sd [Package] StartUpBSScenariosPkg [Start UpBlackBoxview]

:35U_AircraftPower :Uc_Startp :a50_Aircraft_Hydraulics :aSU_AMS

‘ Select_Battery_As_Source)
\ \

evSE\ec*%attEry As_Source:

(=]
Use Case: Start Up

Datermina;nmejmce,La%t,Restart(}
\
Scenario: Cold start, all }
\

Zero_Error_Count()
tests pass
Description: Select_First_Surface()

Good cold start

[ ]

. Cammand_To_M\mmum_PJyhanO
Preconditions: ‘

Cold start condition.
‘eril _Poyﬁon_And_‘HmelressO

Cummand_To_Mammum_PFsmunO

Ven;?oﬂhont\ndTmelJnEssO
Zero_Control_Surface() }

Select Mext_Control_Surface()

Request_Power_Status() |

\

\

\

\

\

\

\

\

Post-conditions: ‘

System enters ‘

operational state. ‘

Invariants: ‘

Aircraft power is ‘
supplied.

Aircraft hydraulic ‘

pressure is supplied. ‘

\

\

\

\

\

\

Check_Power_Status()

L]

\

\

|
Re uest,Hydrauhcfsmmsb

\

\

\

\

\

‘ evRequest Hydrauic Status)
| reqCheck_Hydraulic_Pressure

‘ Caadc_Hydrauh:_Pres:ura%
| ﬁ

} Check_SW_Integrity

\

\

\

\

\

\

\

\

\

|

Enter_WARM_State()

| recEnABLE Command()

L

Ev_j|LE_Commando \
Enter_Operating_State() }
F’v_;t[r Operating smte+
Figure 65: Scenario 2: Cold Start All Tests Pass

Note that toolkit modifies the messages associated with the actor pins to
become events to or from that actor on the sequence diagram.

y: System Require

Generating the other cases is straight-forward. The scenario for case 2
“Minimum range test fails but all other tests pass is shown in Figure 66.

sd [Package] StartUpBBScenariosPkg [Start UpBlackBoxView 1]

:asU_AiraraftPo
wer

“Uc_Startp :aSU_AMS :asU_Aircraft_Hy

draulics

(]
Use Case: Start Up

Scenario: Cold start,
minimum position test
fails

Description:

Cold start, but system
fails minimum position
test; passes all others.
Preconditions:

Cold start condition.

Post-conditions:
System enters failed
state.

Aircraft power is supplied.
Aircraft hydraulic pressure
is supplied.

|
|
|
|
|
|
|
|
|
|
|
|
_ |
Invariants: |
|
|
|
|
|
|
|
|
|
|
|
|
|

|

evSalect,@q As_Source()
Zero_Error_Count() }
5e\actj|rstjurfa:ab
[ \

reqCheck_Power. %ms(}

Enter FAILEDthtEP

Selact Battery_As_Source()

Debermina_ﬁma_smT_Last_Rastarto

Command_To_Minimqm_Poyﬁon(}

Verify_Position_And, _"ﬁmelmess(}

| store Erorg)

Au?ment_Enur_Cuurrt(]
Repart_Error() }
evReport_Error() ;‘

Command_To_MaximJm_Positian()

Ver;_Poyﬁon_And_‘Tmelnass(}

R uest_Power_SlaﬁJs(}
L_j \

Ched{jnwerjiam{ﬁ

]

=
R uest_HydrauIic_J‘EmsO

]
| evrequest Hydrauid status)

|- reqCheck_Hydraulic_Pressuref)
hedﬂjydrauhc}refsurao

\
Chedx_SW_IntegrityP

evEnter_FAILED % 0

[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
\ |
\ |
Zero, Cunh’ulisurﬁcrﬁ |
SE\Ect_Next_Cuntru\‘_SurﬁcEO |
L \ |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Is

Figure 66: Scenario where minimum range test fai

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 58

nts Definition a




Case Study: System Requirements Definition and Analysis

Lastly, we'll generate the longest scenario. In this scenario, the maximum

position test fails and the SW integrity test fails as well (all other tests pass).

Because of the length of this scenario, it is shown in the next two figures,
Figure 67 and Figure 68.

aSLU_AircraftPower | :Uc_Startlp

aSU_AMS | :aSU_Aircraft_Hydrauli..]

=d [Package] StartUpBBScenariosPkg [Start UpBlackBoxView2]

1asU_AircraftPower :Uc_StartUp 1asU_AMS +a5U_Aircraft_Hydraulics

| Selectjatheryj-\sjlzurce()
| |

evSeIad%atterg As_Source |

Deberm|ne;ﬁme,SmcrafLastfRestartO

|
|
ero_Error_Count() |
Select_F\rst_Surfaceb

P |

CommandfTDfMlnlmquPusmonO

Veri _Posiﬁan_»'-\nd{l’lmalinesso
ﬂ |
|

\
\
\
\
\
\
\
\
|
\
\
\
|
\
E‘nand_Tn_Max\mFm_PnsiﬁnnO ‘
\
|
\
\
\
|
\
\
\
|
\
\
\
|
\
|

=]
Use Case: Start Up

NH

Scenario: Cold start, Max
position and SW Integrity
tests fail

Description:

Cold start, and all tests pass
except Maximum Position
and SW Integrity.

Preconditions:
Cold start condition.

Post-conditions:
System enters failed state.

Aircraft hydraulic pressure is

supplied.
Store_Error() |

Aug mEnt_Eerr_CDurltO
N |

Report_Error() |
evReport Error() \7\
Zero Cnnh’nI_Surfacl 0

SeIect_Next_Conh'DIJ_Surface0

il

& uest_Power_Stalf.lsO

|
|
|
|
|
|
|
|
|
|
|
|
Invariants: | Verify_Position_And l'I'|mt2|iness[)
Aircraft power is supplied. | —|
| |
| |
|
|
|
|
|
|
|
|
|
|
|

q @ER
reqChedk_Power_5 0 !

Figure 67: Scenario multiple errors (part 1)

:aSU?AlrcraﬂPDwer| Lc_Startlp | asll_AMS |:aSU7A|r:raﬁ7Hydraul|.|

Iregcha:k Power S%EO ! !
ChEEk_PDV\'EI’_StatLIJO

Re uest_HydrauIic_Jtab.lsO

evRequest Hydrau\in:l_StahJs )
|- reqC?‘!1eck Hydraulic_Pressure()

I-Ehet:k_H\y'drauhc_F'rerure['_)
|
|
Ched SW_IntegrityP

Error_Found

Store_Error()

|

|
Au?mant_Error_Cour:utO

|

|

Report_Error()

evReiort Error() ;

Enter FAILED_StatEP

evEnter_FAILED 0

Figure 68: Scenario multiple errors (part 2)

Update the Interface Blocks to include the Events and Flows

Now that the scenarios are done, we can use the Ports and Interfaces tool
to add the events (generated along with the sequence diagram), to the
interface blocks. The toolkit created events for the messages between the
actor blocks and the use case block, using the actor pins as a guide. We will
have to modify them later to add data for them to carry but for now, we can
go ahead and add these to the actor blocks and the interface blocks.

In the browser, right click on the package StartUpBBScenariosPkg and select
SE-Toolkit > Ports and Interfaces > Create Ports and Interfaces. This will add
the events as directed features to the interfaces (Figure 69). Figure 70
shows the feaures added to the actor blocks during the earlier sequence
diagram generation.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 59



Case Study: System Requirements Definition and Analysis

=43 StartUpInterfacestg
. {& Ewvents
=- [;_—,- Interface Blocks
= iUc_StartUp_aSU_AircraftPower
EI[E Operations
- £ wdirectedFeatures evSelect_Battery_As_Source()
------ e adirectedFeatures reqCheck_Power_Status()
= iUc StartUp_aSU_AMS
= [E- Operations
-~ «directedFeatures evEnter WARM_State()
= £ «directedFeatures reqENABLE_Command()
E‘f'" =directedFeatures evEnter_Operating_State()
E‘f'" =directedFeatures evReport_Error()
E‘f'" adirectedFeatures evEnter_FAILED State()
I'_—'IQ iUc_StartUp_aSU_Aircraft_Hydraulics
== Operations
- £ «directedFeatures evRequest_Hydraulic_Status()
------ e «directedFeatures reqCheck_Hydraulic_Pressure()
Figure 69: Events added to Interface Blocks

=k & StartUpActorPkg
=- ['g ActorBlocks
= E asU_AircraftPower
. [“g Association Ends
Dependencies
EI Operations
L e ET'“ evielect_Battery_As_Source()
- = Proxy Ports
=-H asu_AMs
.---lf"g- Aszociation Ends
“[=2 Dependencies
Operations
F,r- evEnter WARM_State()
- evEnter_Operating_State()
- evReport_Error()
. L evEnter_FAILED State()
G- = Proxy Ports
=E E aSU_Aircraft_Hydraulics
. lf‘:,- Aszociation Ends
Dependencies
EI Operations
L ET'“ evRequest_Hydraulic_Status()
- Proxy Ports
Figure 70: Event Receptions added to the Actor Blocks

7.3.4 Create the Logical Data and Flow Model

The previous steps have identified some flows between the actors and the
system while executing the use case and added these as events. More are
likely to be identified as we proceed. It is important to note that while some
events are data-less, such as the evEnter_WARM_state and
evRequest_Hydraulic_Status. Others need to pass information, such as
evReport_Error and the poorly-named reqCheck_Hydraulic_Pressure. We
must create a logical data schema to describe this information and add this
information to the events, as appropriate.

The SE-Toolkit uses an automatic naming schema to name the events it
generates. The Check_Hydraulic_Pressure action is marked with an
incoming actor pin from the aSU_Aircraft_Hydraulics actor block. The

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 60



Case Study: System Requirements Definition and Analysis

toolkit assumes this must be a request but really it is a response from a
query. Let’s rename the event to herezaHydraulic_Pressure®. Do this in the
browser. The event is located in the StartUpinterfacesPkg. In the browser,
select the event and then click again to change the name (or alternatively,
double click and do this in the Features dialog for the event). While you’'re
at it, change the name of the reqCheck_Power_Status to
herezaPower_Status event.

Rhapsody will retain all the relations to the various messages automatically.
If you look at the features of the interface blocks and the actor blocks, you
will see that the event receptions are renamed as well. Likewise, the
messages on the sequence diagrams are renamed. That’s one of the
advantages of using a modeling tool.

5 As is “here’s a Hydraulic Pressure”.

Entire Model View ¥ ﬁ—l]

=-§ StartUpPkg
&E’ Blocks
(- Internal Block Diagrams
-0 Packages
(-5 StartUpActorPkg
(-7 StartUpBBScenariosPkg
(-5 StartUpExecutionScopePkg
£ StartUpTypesPkg
[—]E:l StartUplnterfacesPkg
L;—_I"{Z; Events
""" ¥ evSelect B attery_As Source()
----- ¥ evEnter WARM_ State()
----- 7 reqENABLE_Command()
""" 7 evEnter_Operating_State()
----- ™ hereza_Power_Status()
----- 7 evRequest Hydraulic_Status()
----- " oh ereza_Hydraulic_Pressure(]
""" ' evReport_Error()
----- ¥ evEnter_FAILED State()
B@ Interface Blocks
= E ilc_StartUp_aSU_AircraftPower
B2 Operations
[ E’ﬁ' «directedFeature= evSelect_Battery As_Source()
E}" «directedFeatures hereza_Power_Status()
2-H iUc_StartUp_aSU_AMS
BE Operations
+ E’f‘v sdirectedFeatures evEnter WARM_State()
£ wdirectedFeatures reqgENABLE_Commandy)
£ wdirectedFeatures evEnter_Operating_State()
£ «directedFeatures evReport_Error()
E’f’ wdirectedFeatures evEnter_FAILED State()
=~ E iUc_StartUp_aSU_Aircraft_Hydraulics
Bé Operations
: E’f" «directedFeature= evRequest_Hydraulic_Status()
E’f‘v «directedFeature= hereza_Hydraulic_Pressure()
-E StartUpSafetyPkg
-5 Use Cases

Figure 71: Renaming some events

Now let’s model the data.

When we created the functional analysis package structure for the Start Up
use case with the Generate System Model from Use Case tool, a subpackage
was created for this purpose. It is the StartUpTypesPkg package.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 61



Case Study: System Requirements Definition and Analysis

Right click on this package and select Add New > Diagrams > Block Definition
Diagram. Name this diagram Start Up Data Schema. We will enter our types
and blocks into this diagram.

We are going to want to see the value properties of the blocks. To do this
for the elements we are about to enter, Right click on the diagram and
select Display Options. Here, click on Compartment pane and the Customize
button to add EnumerationLiteral to the compartments displayed. Make
sure the All radio button is selected and hit OK. Now when blocks are
added, these visual properties will be used.

Let’s think about what information should be returned with an
evReport_Error event. It makes sense that the AMS would want to know
what error occurred, when it occurred and either which surface failed (if,
indeed, it was a surface fault), or which power source failed (if a power
fault). That gives us a block such as

«Blocks
Error_Report
Valnas
= error:ERROR_TYPE
= date_time:DATETIME TYPE
E surfacelD:int
E source:POWERSOURCE_TYPE

Operafions

Figure 72: Error Report Type

Let’s go about making this type. Let’s first define the types of the attributes
of the ErrorReport type.

We need to characterize the specific attribute types, such as ERROR_TYPE,
DATETIME_TYPE and POWERSOURCE_TYPE. The first and the last are best
represented as enumerated types. For our purpose, DATETIME_TYPE can be
represented as a string.

It is important to remember that we are trying to characterize the logical
properties of the data and flow — which is why we call this the logical data
and flow schema. We are not trying to define the final type that will be used
in the implementation (this is known as the physical data and flow schema
and is defined during the hand off to downstream engineering).

Let’s create the ERROR_TYPE type. In our new BDD, add a DataType
(alternatively, you can use a ValueType) element from the toolbar and name
it ERROR_TYPE. Double click on it to open its Features dialog and in the
General window pane, set its Kind to Enumeration. Then click on the Literals
pane and enter the following values:

Data Type : ERROR_TYPE in StartUpTypesPkg

- 2

General Descrption Literals Relstions Tags  Propeties

Hx 4o

Comment ™

Mame Value

¢§ NO_ERROR
¢§ POSITION_ERROR
¢§ TIMING_ERROR
¢§ POWER_LEVEL_ERROR.
<}§ POWER_SOURCE_ERROR
¢§ HYDRAULIC_PRESSURE_ERROR
Qg HYDRAULIC_PRESSURE_HIGH_ERROR
¢§ HYDRAULIC_PRESSURE_LOW_ERROR
¢§ HYDRAULIC_ACCURACY_ERROR
¢§ SW_INTEGRITY_ERROR
¢§ COMMAND_VALUE_ERROR
¢§ COMMAND_VALIDATIOMN_ERROR
< Mews> b

Locate OK

Figure 73: ERROR_TYPE

The ERROR_TYPE element on the diagram will now look like this:

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 62



Case Study: System Requirements Definition and Analysis

«DataTypes
ERROR_TYPE

Enumerationliterals
4INO_ERROR
<»§ POSITION_ERROR
4 TIMING_ERROR
¢ POWER_LEVEL_ERROR
¢ POWER_SOURCE_ERROR
4 HYDRAULIC_PRESSURE_ERROR
4§ HYDRAULIC_PRESSURE_HIGH_ERROR
4 I HYDRAULIC_PRESSURE_LOW_ERROR
4 HYDRAULIC_ACCURACY_ERROR
I SW_INTEGRITY_ERROR
4 COMMAND_VALUE_ERROR
4»$ COMMAND_VALIDATION_ERROR

Figure 74: Display of ERROR_TYPE

Similarly, update the POWERSOURCE _TYPE with the following literals:

«DataType»
POWERSOURCE_TYPE

Enumerationliterals

4+3NO_POWER_SOURCE
£EBATTERY_SOURCE

42 APS_SOURCE

4+ ALTERNATOR_SOURCE
48 OTHER_SOURCE

Figure 75: POWERSOURCE_TYPE

Add a new DataType or ValueType and name it DATETIME_TYPE. In its
feature dialog, select Typedef. In the Details window pane, define the base
type as RhpString.

Data Type : DATETIME_TVPE in StartUpTypesPkg = [ | Data Type: DATETIME_TYPE in StartUpTypesPkg « H
General  Description Details Relations Tags  Properties General Description Details  Relations Tags ~ Properties
Name: [DATETIME_TYPE || Label.. Basichpe:  |RhpReal M=)
Stersotype | V|@E Muttiplicity: |1 \,‘ Ordered
Visibility: Public v [ Constant
Kind: |T‘,rpedei ~ | [ Reference
Locate oK Locate oK

Figure 76: Defining the DATETIME_TYPE as a string

We are now ready to create the Error_Report type per se. Add a new block
to the diagram and name it Error_Report. Double click on the block and
click on the window pane Value Properties. Add each of the following
values, using the Type drop down list to select the appropriate types we just
created:

Block : Error_Report in StartUpTypesPkg - n
Relations Tags Properties
General Description Value Properties Flow Properties Operations Forts Flow Partg Full Ports Proxy Ports Constraints
[ Show Inherited :? E X
Name Visibility ~Type Initi; *
= error Public ERROR_TYPE in FunctionalAnalysisPkg:StartUpPkg:StartUpTypesPkg
= date_time Public DATETIME_TYPE in FunctionalAnalysisPkg:StartUpPkg: StartUpTypesPkg
E surfacelD Public int
= source Public POWERSQURCE_TYPE in FunctionalAnalysisPkg: StartUpPkg:StartUpTypesPkg
v
P
< >
Locate oK

Figure 77: ErrorReport block

We have requirements about keeping a list of identified errors, so add an
Error_Log block that is composed of zero-or-more (“*”) Error_Reports.

Other message carry power and hydraulic status, so let’s add blocks for
those as well. In this case, we’re using only predefined types for the
attributes, but some of them can be found by navigating to the SysML
profile SIDefinitions package:

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 63




Case Study: System Requirements Definition and Analysis

(5 Select Type x

E|[:I Profiles ~
-3 SysML (REF)
B0 Packages
i) Requirements (RO)
#-F3 Blacks (RO)
[ ConstraintBlocks (RO)
- [ Diagrams (RO)
-7 Allocation (RO)
-3 Activities (RO)
3 ModelElements (RO)
#-F3 PortsindFlows (RQ)
E—]@ «=ModelLibrary» SIDefinitions (RO)
BD Packages
- BazeSlUnits (RO)

Dimensions
(= Units
o () Ampere (RO)
(@) Candela (RO)

) Kelvin (RO)

-~ Kilogram (RO}
() Meter (RO)
- Mole (RO)
i () Second (RO)
=[5 DerivedSiUnits (RO)

(#1-¢l, Dimensions

- Units
o () SquareMeter (RO)
() CubicMeter (RO)
() MeterPerSecond (RO)
--(#) MeterPerSecondSquared (RO}
o () CandelaPerSquareMeter (RO)
e () ReciprocalMeter (RO)

(] AmperePerSquareMeter (RO)
-~ KilogramPerCubicMeter (RO)
() AmperePerMeter (RO)

o () CubicMeterPerkilogram (RO)
() MolePerCubicMeter (RO)
() Mewton (RO)

- Joule (RO)

- () Watt (RO)

- (# Coulomb (RO)

®

(@ Ohm (RO)

- () Pascal (RO)

-8 «=ModelLibrary» StandardValueTypes (RO)

E]-"@ «ModelLibrany= Common (RO)

[-fF5] HarmonySE (REF)

[#-f5] FTAProfile (REF)

(- Settings W

ok I Cancel |

Figure 78: SysML Profile SIDefinitions Package

Using the tool facilities we’ve already used, add the Power_Status and
Hydraulic_Status blocks to the diagram:

E voltage:Volt=120
E amperage: Ampere=10

E has_faults:RhpBoolean=FALSE

wBhoche «Block=
Power_Status Hydraulic_Status
Valas Valres

E pressure:Pascal
E has_faults:RhpBoolean

Operations

Figure 79: PowerStatus and HydraulicStatus

Note that we assigned the default values to the value properties. This is just
good practice and it means that we know the starting conditions when we
start simulating. We can do this either on the Value Properties tab of the
block Features dialog or on the General tab for the Features dialog for the
individual value properties.

Lastly, we also have some requirements about storing test results, so define
that as well. When completed, the diagram should look something like

Figure 80.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 64




Case Study: System Requirements Definition and Analysis

bdd [Package] StartUpTypesFkg [Start Up Data Schema]

i —

Entie Model View v| & qp ‘ 5] ‘

[ =-f0 StartUplnterfacesPkg
EI{Z%P Events

evhelect_Battery_As_Source()
evEnter WARM_State()
reqEMABLE_Command()
evEnter_Operating_State()
hereza_Power_Status()
evRequest_Hydraulic_Status()
hereza_Hydraulic_Pressure()
evReport_Error()
evEnter_FAILED Statel)

EEI---[E- Interface Blocks

E wvoltage:Volt=120
amperage:Ampere=10

E has_faults:RhpBoolean =FALSE

= pressure:Pascal
E has_faults:RhpBoalean

ERROR_TYPE
«Blocks Enumerationliterals
Eos-Loo ~ ©ENO_ERROR
velues . asages 7] $IPOSITION_ERROR
-~ $3TIMING_ERROR
wBlocke £EPOWER LEVEL_ERROR
Operations Error_Report < EPOWER_SOURCE_ERROR
Viales € EHYDRAULIC_PRESSURE_ERROR.
] error:ERROR_TYPE $EHYDRAULIC_PRESSURE_HIGH_ERROR
= date_tme:DATETIVE TYPE EHYDRAULIC_PRESSURE | OW_ERROR.
18 surfacelDeint - £rEHYDRAULIC_ACCURACY_ERROR
. . @
sage» .| = source:POWERSOURCE_TYPE ©35W_INTEGRITY_ERRCR
- ECOMMAND _VALUE_ERROR
H
L, pa $ECOMMAND _VALTDATION_ERROR.
i -
DATETIME_TYPE
- -
T Doo, = DataTypms
dsagex “-.. POWERSOURCE_TYPE
) Enumerstiontitersis
1;% - . sage ©3NO_POWER_SOURCE
= . - <3BATTERY_SOURCE
Values 3 APS_SOURCE
wBlocks <3 ALTERNATOR._SOURCE
Test_Outcome $30THER_SOURCE
p—
Valuies
= testip:TEST TYRE -
= date_tme:DATETIME_TYPE s oo = o
E pass:RhpBoolean
E surfacelD:int Enumerationt derals
©3No_TEST
Operations QEMIN_TEST
EMAX_TEST
<3POWER_TEST
<Blodes “Blode $3HYDRAULIC_TEST
Power_Status Hydraulic_Status ©SSW_INTEGRITY_TEST
Vlures Vles

Figure 80: Start Up Use Case Logical Data Schema

| like to use the «Usage» dependency between the composite blocks and
the type definitions for the attributes, since | find this makes the
information more comprehensible. It is, however, optional.

We’ve now defined the type of interest in this use case (we may find more
later but we’ll add those as we discover their need). Let’s now update the
events so that they can pass along that information.

Adding parameters to events is easy in Rhapsody. Open the browser to the
StartUplinterfacesPkg and click on the plus sign on the events to view the

list.

Figure 81: Start Up Use Case events

To add parameters to the evReport_Error event, double click on that event
to open its Features dialog and click on the Arguments pane. Here, add an

argument err of type Error_Report.

Event: evReport_Error in StartUplnterfacesPkg

-~ H

General Arguments Descrption Relations Tags  Properties
|e1.r Report_Emor (Emor_Report™ em) |
HEX T L
Mame Type Yalue
& e Error_Report
<[ews
Locate oK Spply J

Figure 82: Adding err Argument to evError_Report

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 65



Case Study: System Requirements Definition and Analysis

Too many entries in the type drop down list?
When you select the Type drop down list, you often get a (very)
long list of types from which to choose and finding the one you’re
looking for can be hard.

So here’s a Pro Tip:

Start typing the name of the type you’re looking for and Rhapsody
will shortened the displayed list to just those types that match the
partially filled out name.

Using similar methods, add an argument ps of type Power_Status to event
hereza_Power_Status, hs of type Hydraulic_Status to event
hereza_Hydraulic_Pressure and source to event evRequest_Power_Status.
The browser listing of the events should now look like this:

Entire Model View ~ | & 4 | OB

=4 StartUplnterfacesPkg
E-EF Events
----- P evSelect_Battery_As_Source()
----- ¥ evEnter WARM_State()
----- ™ reqENABLE_Command()
----- P evEnter_Operating_State()
----- 7 hereza_Power_Status(Power_Status ps)
----- P evRequest_Hydraulic_Status()
----- ™ herera_Hydraulic_Pressure(Hydraulic_Status hs)
----- = evReport_Error(Error_Report err)
----- ¥ evEnter_FAILED State()
----- P evRequest_Power_Status(POWERSOURCE_TYPE source)
- Interface Blocks

Figure 83: Events updated with arguments

If you want to know more about passing data with events, see Section 12:
Appendix: Passing Data Around in Rhapsody for C++ on page 235.

7.3.5 Create the Safety Analysis

Note: this section is optional. If you never create high-reliability, safety
critical, or security-sensitive systems, feel free to skip this section and go on
to Section 7.3.6.

Another important source of quality of service requirements are safety
requirements. To that end, we will perform a safety analysis of the
functional and quality of service requirements on a use base basis.

Installing the Rhapsody Dependability Profile

We will use the Rhapsody Dependability (formerly, the “FTA Profile”). This
profile doesn’t ship with Rhapsody, so you’ll have to download it from
Merlin’s Cave, where it is part of the Dependability Profile:
http://merlinscave.info/Merlins _Cave/Models/Entries/2017/3/3 Dependab
ility Analysis Profile.html.

(If you prefer to work in a third party tool, that’s fine as well. We'll continue
this section assuming you're using the Dependability profile.)

Once you download the zip file, place it in the Rhapsody Share/Profiles
directory (the same place from which you got the Harmony SE profile) and
then unzip it. The proper directories will be created. Then add the
Dependability profile in the same way that you added the Harmony SE
profile. Inside the FunctionalAnalysisPkg > StartUpPkg add a new package
StartUpSafetyPkg package (the SE Toolkit may have already added this
package for you). This package will hold all our safety analysis for the use
case.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 66


http://merlinscave.info/Merlins_Cave/Models/Entries/2017/3/3_Dependability_Analysis_Profile.html
http://merlinscave.info/Merlins_Cave/Models/Entries/2017/3/3_Dependability_Analysis_Profile.html

Case Study: System Requirements Definition and Analysis

Note: At the time of this writing, there is an “idiosyncrasy” in the way
Rhapsody uses some properties in its API. For this reason, the
background of some of the iconic images in FTA diagrams will be red.
If you change the type of the project to an Dependability Profile type,
then that issue is resolved. We recommend that when you’re working
in the Dependability profile, you change the type of the project to
Dependability Profile and when you’re doing other things in SysMIL,
you change the project back to a SysML project.

Changing the project type is easy. In the browser, right click on the
project name and select Change To > Dependability Profile. To change
it back, select Change To > SysMIL.

Doing the Safety Analysis

Let’s think about the hazards related to this use case. A hazard is a
condition that leads to an accident, loss, or incident of concern. In this use
case, one hazard is “allowing the pilot to proceed with operations even
though the control surfaces cannot be properly controlled.” For short, let’s
call this Unable to Control Surface.

Let’s be a bit more specific by identifying special cases of this:
e Unable to accurately achieve desired position
e Unable to achieve position within required timeframe
e Unable to power the system
e Unable to move surface
e Operating with faulty software

Any of these conditions could result in the manifestation of the hazard
condition. These “sub-conditions” are called resulting conditions, because
the result from more primitive underlying conditions, events, and faults.

In the context of this use case we’re only concerned about safety issues that
occur due to or resulting from starting the system up. We are not concerned
here about using the system operationally — we’ll talk about those concerns
when we analyze the Control Air Surfaces use case later.

Given that scope, with what functionality must we be concerned? Basically,
we must test the system to ensure it is ready to begin operations, and
prevent it from going operational if not. This is the basis for the definition of
the Power On Self Test (POST) functionality. Clearly, the authors of the
requirements were thinking about safety when they identified the need for
the POST. Our job in this safety analysis is to ensure that those
requirements are complete, accurate, and correct with respect to the
maintenance of system safety.

Each of the identified resulting conditions that can lead to the hazard are
the result of more primitive faults. In this case, these basic faults might be
things like:

e Hydraulic pressure failure or leak

e Hydraulic overpressure

e Insufficient or intermittent electrical power

e Fault at the site of the control surface itself causing inability to

move accurately enough or fast enough
e Previous installation of invalid software

An FTA diagram graphically represents the logical relations between events
and conditions (such as faults) with outcomes (such as resulting conditions
or hazards). The logic flow is how we causally connect the elements, and the
logical operators (AND, OR, NOT, etc) are how we combine them.

Since we have a number of tests, the way to arrive at the hazardous
situation is for BOTH the underlying fault to occur AND the test for that fault
fails positively (that is — it gives a positive result (test passed) when the
result should have been negative).

Let’s create a new FTA diagram to capture our safety analysis. Right click on
the StartupSafetyPkg package and select Add New > Safety Analysis Profile
> FTA Diagram (Figure 84). Name the diagram Start Up FTA.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 67



E-4# <HarmonySE= AirSurfaceControlSystem

(7 Components
() Packages
£7 ActorPkg
£ RequirementsAnalysisPkg
-E7 FunctionalAnalysisPkg
£ Packages
-5 ControlAirSurfacesPkg
UpdateStatusPkg
=-§7 StartUpPkg
-2 Blocks
£ Internal Block Diagrams
1BD_Start Up
(] Packages
£ StartUpBBScenariosPkg
£ StartUpExecutionScopePkg
£ StartUpTypesPkg
£ StartUplInterfacesPkg
£ StartUpActorPkg
il StartUpSafctyPkg

2 Use Cases Features...
£ DesignSynthesisPkg
£ InterfacesPkg Add New
£ CommonPkg
(3 Profiles Cut

31 SysML (REF) Copy
{551 HarmonySE (REF)

[ FTAProfile RER) Pz

([ Settings Delete from Model
Set Stereotype
Changeto
Refactor

Edit Order of Types
Navigate

Browse Hierarchy
Refresh inferred

Unit

Configuration Management

Check Medel
Spell Check
Generate Code
Edit Code
Roundtrip

Format.

Calculate ATG Requirements Coverage Summary

Rational Rhapsody Gateway

SysML
SE-Toolkit
Design Manager
Apps

Figure 84: Adding an FTA Diagram

Fill out the analysis in the new diagram by adding the hazards and resulting
conditions discussed previously, the logic operators, and the basic faults.
The result should look like Figure 85.

Ctrl+X
Ctrl+C
Ctrl+V

Del

>

Diagrams
General Elements
Blocks

Ports and Flows
Requirements
Use Cases
Constraint Blacks
Allocations
Extensions

Views and Layouts

Query
Safety Analysis Profile
Safety Analysis Tables
Function

Object

Varisble

Dependency
Constraint

Comment
Requirement
Controlled File

Link

Hyperlink

Package
Type
ftem Flow
Flow
Event
Actor

Use Case

Table Layout
Table View
Matrix Layout

Matrix View

Sequence Diagram
Use Case Diagram
Panel Diagram

Timing Diagram
Component
Activity
Stereotype

Tag

Case Study: System Requirements Definition and Analysis

FTA Diagram
Safety Diagram
Normal Event

Basic Fault
Undeveloped Fault
Required Condition
Resulting Condition
Hazard

Safety Measure
AND Operator

OR Operator

NOT Operator
Transfer Operator
NAND Operator
NOR Operator
XOR Operator
Logic Flow
Manifests

Detects

Extenuates
Trace to Requirement

Requirement

«Hazard»

Unable to Control Surface

—3( "\

es itingFondition» «Rsisu}tk jgCondition» «Resutingfondtion» «Re;ulﬂ _oLd(Pn»
@ ® (
e® J { e®
@ @O @ 9O
Unable f\accurately UnableAs achieve
achievk desired postion within tmeframe
pofition
«BasicFault>
BASIC I l
FAULT
Surface Fault T «Basibaub «BagicFault> «Basicfaul» «BasicHault>
BASIC BASIC] [BASIC]  [BASIC Q
FAULT FAULT| |FAULT FAULT ;
Power Fault Power test fais SW Integrity Test fais
B T postively POSVE o kcFaubs by
BASIC BASIC
FAULT FAULT
Minimum Acauracy Maximum Accuracy Maximum Timing  Minimum Timing Unverified SW SW Corruption
Test Fails Postive Test Fails Postive test Fals Posttive  Test Fais Postive Loaded

Figure 85: Start Up Use Case FTA Diagram

Figure 85 identifies two ways that the SW Integrity could be faulty. Either an
unvalidated software load was performed or the software was corrupted.
The existing requirement just calls for a software integrity check but doesn’t
specify what needed. Here, we need to be able to identify both basic faults.
This means with this safety analysis, we’ve identified the need for three new
requirements:

The software load shall provide a key that indicates it has been certified for
use.

The system shall verify the software load has been certified by checking the
verification key.

The software shall provide a means by which to detect software corruption
from initial load, such as a 32-bit CRC check over its contents.

These requirements must now be added into the requirements set in the
RequirementsAnalysisPkg > RequirementsPkg > ErrorReqs package and

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 68



Case Study: System Requirements Definition and Analysis

linked to the use case with the appropriate trace dependency relations to
the Start Up use case. Note that the Dependability profile has a stereotype
«SafetyRequirement» to mark such requirements if you like; it is available
when the project type is DependabilityProfile.

Specifying the Safety Metadata
The diagram is a great aid in understanding, but you also need to specify the
underlying safety metadata. All the fault and hazard elements have tags to

specify this information.

Here’s a quick list of the metadata you can specify for the safety relevant

Safety Element

Tag

Description

Recommended Action

What are recommendations for additional
behaviors for fault control?

Responsible Party

Which engineer, role, or party is
responsible to address the fault?

Risk Priority The product of likelihood, severity,
criticality and detectability
Severity How bad are the outcomes from this

fault?

Fault Source

Fault Mechanism

How does the fault happen?

Normal Event
Required Condition

Probability

Likelihood of occurrence

elements:
Safety Element Tag Description
Hazard Severity How bad is an incident resulting from
manifestation of this hazard
Probability How likely is the accident to manifest?
Risk The products of Severity * Probability

Safety Integrity Level

The level of safety assurance needed —
both system- and standard-specific.

Safety Measure

Fault Detection Time

How long to detect the fault after it
occurs?

Fault Time Units

Time units for fault detection and action
times

Fault Action Time

Once a fault action is initiated, how long
until it is complete?

Safety Mechanism

How does the safety control work to
mitigate risk?

Fault Tolerance Time

How long can a fault be tolerated before
the hazard manifests into an incident?

Fault Tolerance Time
Unit

The time unit for Fault Tolerance Time

Basic Fault
Undeveloped Fault
Resulting
Condition

Probability

How likely is the fault to occur?

MTBF Time Units

The time units for MTBF

MTBF

The Mean Time Between Failure

Action Taken

What does the system do to detect,
correct or respond to the fault?

Cause

The underlying cause factor resulting in
the fault

SIL Safety Integrity Level — this is safety
standard-specific
Hazardous Event Probability Likelihood of occurrence
ASIL Automotive Safety Integrity Level — this is

standard to the ISO 26262 standard

ASIL Controllability

How well can the fault event be
mitigated?

ASIL Prob Exposure

Likelihood of exposure of the system to
the fault

ASIL Severity

How bad is an event resulting from
manifestation of this hazardous event?

Effect of Failure

Outcome of the fault

Current Controls

What is in place now to mitigate or control
the effect of the fault?

Detection Mechanism

How the system detects when the fault
has occurred?

Effect

The real-world outcome(s) should the
fault occur

Failure Mode

The mode or ways in which a system or
element might fail

System Function

A behavior of a system which is atomic at
a system black box level

Figure 86: Safety and Reliability Metadata

We can fill in some of this metadata later. For now, let’s fill out the fault

tree analysis.

By the way, after you’re done with the safety analysis, don’t forget to
change the project back to a SysML project by right clicking on the project
name at the top of the browser and selecting Change To > SysML.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 69




Case Study: System Requirements Definition and Analysis

7.3.6 Create the Use Case State Machine and Execute Model

Next, we want to construct an executable version of the use case model so
that we can make sure that the requirements result in the outcomes we
want and expect. To do this, we will construct a state machine that takes
inputs from the actor blocks, executes internal system functions, and sends
output to those actor blocks. This is a black box simulation so it neither
reflects the actual internal design nor actually performs the internal system
functions needed to actually do anything “real”. Our goal is to cast the
informally stated textual requirements into the formal language of state
machines and run various event sequences through to ensure that we have
a correct and complete set of requirements. If we discover inadequacies in
the requirements, we update the requirements and our model, and repeat.
Again, the state machine used here is just a statement of the requirements in
a more formal language, not a specification of internal design.

By the way, did you remember to change the project back to a
SysML project?

A Note about Simulation Fidelity
Simulation can be done at different levels of detail, known as
“fidelity”. These simulation levels have both benefits and costs.

A low-fidelity simulation can be done by executing the data
machine with no event parameters and keeping the data model and
the behavioral model separate. This approach was taken for
“Harmony Classic” and can still be used, if desired. This level of
fidelity does allow the verification of the control flow of the use
case but not the correctness of the data model. While this simplifies
the work to get the simulation running, you still have to add the
data elements to the interfaces later, because they are a very
important part of the specification.

A medium-fidelity simulation models the logical data passed by the
events. It's a bit more work to get the simulation working but the
executing state machine relies on the actual logical interfaces, so
this verifies, through execution, the correctness of these logical
interfaces and the data they support. This is the level of fidelity we
will use in this Deskbook.

In contrast, a high-fidelity simulation also models the internal
behaviors and algorithms. This is useful in architecture and design,
but less so in requirements analysis. This is level of fidelity requires
the most work on the part of the engineer but allows for the
effectiveness of design decisions to be ascertained.

Create the State Machine

Correctly constructing complex state machines is hard. Therefore, we will
construct this state machine in three phases (“nanocycles” in Harmony-
speak). Each phase will be executed before moving on. This incremental
construction of potentially complex state machines is highly recommended.

Ideally, a complex state machine should be constructed by representing a
small set of requirements and executing it after no more than an hour of

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 70



Case Study: System Requirements Definition and Analysis

development. Only after that simple state machine verifiably works should
the engineer move on to elaborating the state machine with more
requirements. In reality, a state machine of this complexity would probably
be constructed with 6-10 iterations but we will only show three here to
conserve space. Again, the recommended workflow is simple and iterative:
e Model a few requirements in the state machine
o Get this model to compile and run
o Verify that it is correct so far
e Repeat until done

Phase 1: Overall state machine

In the browser, navigate to the use case block at FunctionalAnalysisPkg >
StartUpPkg > Blocks, right click on the block Uc_StartUp, and select Add
New > Diagrams > Statechart. Then create the following state machine
(Figure 87):

stm [Block] Uc_StartLp [statechart_1]
off

levaegm,smrmu
evSelect_Battery_As_Source to paSU_AircraftPower
i/ [time_since_last_reset >= NORMAL_RESTART_TIME] SurfaceRangeTesting
\L[e\se]
VWARM_STATE
evENter_WARM_State to pasU_AMS —
JrEqENABLEC mmmmm d
evEnter_Operating_State to paSU_AMS
OPERATING_STATE
[no_errors(]
PerformBIT
=
J/ else]
FAILED_STATE
evEnter_FAILED_State to pasU_AMS N

Figure 87: Start Up Use Case State Machine Phase 1

Notice that we added a new event evBegin_Startup (we did this for
simulation control reasons, so we should stereotype it as «nonNormative»).
We defined a state OFF and the event evBegin_Startup invokes a transition
to get things started. This will end up coming from the aSU_AMS actor block
(sitting in for the AMS actor). The event evBegin_Startup must be manually
added to the interface block iUc_StartUp_aSU_AMS as a directed feature
with the direction of provided.

One easy way to do this is to select the event in the browser (it’s in the
StartUpPkg > Events list) and drag it with the control key pressed to name in
the browser of the iUc_StartUp_aSU_AMS interface. Then a dialog will pop
up asking if you want to add an event reception for this event to the
interface block.

Rhapsody

Thiz will add a reception for the event. Do you want to continue?

| Yes ] [ Mo ]

Click on Yes. Then double click on the event reception in the interface block
to add the stereotype directedFeature.

Reception : evBegin_StartUp in iUc_StartUp_aSU_AMS N |

General Description Relations Tags ~ Properties

evBegn_Statlp |

Name svBegn_StatLp Label..
Stereotype
Visibilty: Public

Type: Reception ~
Event evBegin_StartUp in Functional AnalysisPkg::Start LipPkg::Start UpInterfacesPlg M=

|recteaFesture, nonhiomistive:

Locate oK

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 71



Case Study: System Requirements Definition and Analysis

Since the default direction is provided, that’s all we need to do.

The other event on the diagram evRequest_Enable is located in the nested
StartUpinterfacesPkg. The easy way to find it is to, when entering the name
of the event, type a few letters, such as “req” and then press Control-Space
to bring up the intellisense editor. If the desired event isn’t shown, double
click on the Select option that pops up and navigate the mini-browser to fine
the desired event and click on OK.

To enter the Send Action pseudostates on the diagram, add the Send
pseudostate on the diagram and double click on it. Then you can fill out the
Target and Event fields from the drop down lists.

SendAction : sendaction_1 in statechart_4 + B

General | Description I Relations | Tags | Properties

Name: sendaction_1 Label...

Stersotype: T @ %

Preview: |evSelect_Battery As_Source to paSU_Aircraft_Power

Tanget

Target: pasU_Aircraft_Power in Functior + ]

m

Evert
Event: [edeed_Eaﬁery_ﬁs_Source in - ]
Arguments:

MName Type Value

Locate oK

Figure 88: Filling in the details for a Send action

There are a number of minor things we need to do to get this to compile
and execute.

Two values are referenced in a guard in Figure 87. time_since_last_reset
will need to be defined (and initialized) as a value property (attribute) of the
Uc_StartUp block. The other value, NORMAL_RESTART_TIME, we will
define as a constant.

There is the use of a function no_errors() that must be added as an
operation to the Uc_StartUp block.

After that, we’ll need to add state behavior to the actors, to send and
receive the events during the simulation.

Let’s begin by adding the value property time_since_last_reset. In the
browser, right click the Uc_StartUp block and select Add New > Blocks >
Value Property. Give it the name time_since_last_reset. The default type
(int) is ok. Since most of the time we want to execute the start up tests, let’s
set it to a large value, 100,000. Double click on the timeSinceLastReset
value property® in the browser and enter this value as the Initial Value. Click
on OK.

6 Attributes in UML are known as Value Properties in SysML. Sometimes what you
expect to be a value property will appear as a attribute.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 72



Case Study: System Requirements Definition and Analysis

Value Property : time_since_last_reset in Uc_StartUp - n

General  Description FRelations Tags ~ Properties

|int time_since_last_reset |

Name: |time_since_last_reset | Label...
Swwtre: | ) @l
Visibility: Public o

Attribute type

Use existing type

Type: [int M=
Muttiplicity | 1 - | Ordered

[ Constart [ Reference [ static

Initial Value: |1ggngrJ |

Advanced

Redefines: w

Locate oK

Figure 89: Setting the initial value of an attribute

To define the constant NORMAL_RESTART_TIME, right-click on the nested
StartUpTypePkg, and select Add New > Blocks > DataType. Double click on
the type to open the features dialog and type in the name of the value.
Make sure the Kind is Language.

Data Type: NORMAL_RESTART_TIME in StartUpTypesPkg - (8]
General |Descrip1ion | Declaration | Relations | Tags | Properties
Name: NORMAL_RESTART_TIME Label...
Stereotype: - @| g |
Visibility: [Public =)
Kind: Language -
Locate OK

Click on the Declaration tab and type
#define %s 10000

Data Type : NORMAL_RESTART_TIME in StartUpTypesPkg * = (e

General | Description | Declaration F{elationslTags |Propertie5

Declaration:

00 #define %= 10000

»

m

< | 1 | 3

Locate oK Apply

This value is less than the true value (5 minutes) as 10,000 represents only
10 seconds (timeout units in Rhapsody are milliseconds). The actual value is
a bit cumbersome to use in simulations, so we’ll employ this shorter value.
To get a warm restart we only must set the time_since_last_reset to less
than 10,000. The use of named constants like this makes the model more
readable and easier to customize for different simulation effects.

Adding the operation no_errors() is likewise easy. Let’s do this by

1. Adding an error_count attribute/value property and initializing it to zero
2. As we add errors during tests (we’ll start doing this in nanocycle phase 2),
we’ll augment this value

3. no_errors() will return TRUE if the value of error_count is zero.

First, let’s add error_count as an integer value. Follow the same procedure
we used for time_since_last_reset but instead give it an initial value of 0.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 73



Value Property : error_count in Uc_StartUp

Genersl Description Relations Tags  Properties
|in1 emor_count — ‘
Name |err0r_c:ount g | Label. ..
Sterectype: | ~ | @%
Visibility: Public ~

Attribute type

Use existing type

PEm—

Type [ ~] 1B

Multiplicity |1 - | Ordered

[ Constant [] Refere [ Static

Initial Value: | g | .

Advanced

Redefines:
Locate oK

Now, right click on Uc_StartUp > operations in the browser and select Add
New > Operation. Type in the name noError and hit the ENTER key. Then

double click on the operation to open its features dialog.

In the General pane, set the return type to RhpBoolean.

Case Study: System Requirements Definition and Analysis

Operation : no_errors in Uc_StartUp - n
A
General Description  Implementation Aguments Relations Tags  Properties
RhpBoolean no_emors() e |
—
MName: |no_errors 5 | Label...
Stereatype: | V| % g
Visibility: Public il
Type: COperation ~ | Template
Retums
Use existing type DConstal'L/
Type: |thBooIean E i vl =]
Modifiers
[ Virtual Static [ Inline  []Constant Bhstract
v
Locate oK

Click on the Implementation pane and type in the implementation code.

Operation : no_errers in Uc_StartUp

~ B

General Description Implementation  Agumerts Relations Tags

Properties

| RhpBoolean no_emors()

00 return (error count == 0);

Locate oK

L4l

b
>

Be sure to use double equals sign (“==") as the operator.

This is all we need to do to the Uc_StartUp block for simulation. We still
must “instrument the actor blocks” to support the simulation. That means
that the actor blocks must be able to send the events through the correct
ports and must be able to receive the events from the use case block. To
simulate the the initial use case block state machine (Figure 87), we must
instrument the aSU_Aircraft_Power and aSU_AMS actors to accept and
receive the events generated by the use case state machine. We need not

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 74



Case Study: System Requirements Definition and Analysis

do anything (yet) with the aSU_Aircraft_Hydraulics as it isn’t used (it will be
added in Phase 3 of building out this use case state machine).

First, let’s do the aSU_Aircraft_Power, as this is simple:

stm [Actor Block] aSU_AircraftPower [statechart_1]

Power_State [/ -
*

b evSelect Battery As Source
(5 Select Trigger x

«HarmonySE» AirSurfaceControlSystem
CI Packages
-3 FunctionalAnalysisPkg
[ Packages
=-§7 StartUpPkg
&\w Events
B+ Packages
571 StartUpActorPkg
E-£7 StartUplnterfacesPkg
E"&w Events
Ly

P evEnter WARM_State()

™ reqENABLE_Command()

T evEnter_Operating_State()

T hereza_Power_Status(Power_Status |
o evRequest_Hydraulic_Status()

I hereza_Hydraulic_Pressure{Hydrauli
I evReport_Error(Error_Report err)

P evEnter_FAILED State()

l i evRequest_Power_Status{POWERSO
P evBegin_StartlUp()

< >

Cancel

Figure 90: Initial state machine for aSU_Aircraft_Power

This allows us to show the message sent from the system to select the
power source. Note that we used the intellisense feature (ctrl-space) follow
by Select > StartUplinterfacesPkg > Events to find and select the event
already present in that package. We could have just typed it in as well but in
general it is better to select when the event already exists to avoid
accidently misspelling and creating a whole new event.

The aSU_AMS actor block state machine is a little more complex.

stm [Actor Block] aSU_AMS [statechart_1]

. AMS_State

<—e

startSystem

evBegin_StartUp to pUc_StartUp

goOperational

reqENABLE_Command to pUc_StartUp

; evEnter_WARM_State/ std::cout << "WARM!" << std::endl;

evEnter_Operating_State/ std: :cout << "OPERATING!" << std::endl;

evEnter_FAILED_State/ std::cout << "FAILED!" << std::endl;

\

Figure 91: Initial state machine for aSU_AMS

Look at the transition event signatures on the state machine such as

evEnter WARM state/ std::cout << "WARM!" << std::endl;

The action (the part of the event signature following the “/”) is optional.
Note, by the way, that the std: : preface for the cout and end1 applicators
is required by some compliers (such as Cygwin) but cannot be added in
other (such as some versions of the Microsoft C++ compiler). The action list
shown just sends the text out to the standard output window for inspection
when the event is received. To receive the event, you must minimally have a
transition with the triggering event on it; the following action is optional but
helpful in debugging.

Adding the behavior to the actor blocks allows us to see the events flowing
between the use case and actor blocks during simulation. It also means that
we can control execution directly by stimulating the actors.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 75



Case Study: System Requirements Definition and Analysis

We are now ready to run this initial state machine. It doesn’t do any actual
tests yet, but we’ll add that behavior in Phase 2 and 3.

Make sure that the simulation toolbar has the (toolkit — generated)
component selected.

| Rk

”ﬁ H - iiﬁ %ﬁ Start_UpSim in Start UpBExecutionSco) ~ | Animate

Navigate to the StartUpSim component in the browser; it’s located in the
StartUpPkg > StartUpExecutionScopePkg. Double click to open and make
sure that the right elements to include are selected in the Scope tab.

Component : Start_UpSim in StartUpExecutionScopePkg - &

General Scope Varation Points Description Relations Tags Properties

Language: |C++ v | Fiter: m_‘]
(O All Blements
(®) Selected Elements

[ ActorPkg

[J CommonPkg

13- F-#

[C] DesignSynthesisPkg
[ FunctionalAnalysisPkg
+- [] ControlAirSurfacesPkg
—- [] StatUpPkg
+- ¥ Start Up
+)- ¥ StartUpActorPkg
[¥] Start UpBBScenariosPkg
v Start UpExecutionScopePkg
+- ¥ Start UpinterfacesPkg

+)- ] StartUpSafetyPkg
+)- V] StatUp TypesPkg \
v Uc_StatUp

+- [] UpdateStatusPkg
[ InterfacesPkg
+- ] RequirementsAnalysisPkg

&

< >
Locate 0K

Figure 92: Start Up component execution scope

In particular, note that the StartUpSafetyPkg is NOT included in the scope
but all the other packages within the StartUpPkg are.

Now, verify the configuration is set up for your compiler and for animation:

Configuration : Animate in Start_UpSim - 3

A
General Description Intislization Settings Checks Relations Tags Properties
Directory: F:\Work\_Documents\HarmonySE Deskbook\Models\AirSufaceControlSystemStart_LipSim'y 4 Use Default
Libraries: ‘ ‘ .
Addiional Sources: |

Standard Headers: ‘
Include Path: [ -

Instumentation /
Instrumentation Mode: Animation

~| | Advanced..
Webily
\Web Enabling Advanced

Time Modek @) Real O Simulsted
Statechart Implementation () Reusable ®Flat

Environment Settings

Envitonment: Cygwin ~| | Default

Build Set: Debug -

Compiler Switches: | $includeDirectories $DefinedSymbols $INST_FLAGS) $INCLUDE_PATH) ${INST_INCLUDES)

$CompilerFlags $OMCPPCompileCommandSet -¢

Link Switches: $0MLinkCommandSet $LinkerFlags

[ Inchde Requirements as Comments in Code

Locate 0K

Figure 93: StartUpSim component configuration

In the case here, I’'m using the Cygwin compiler but it must be set up for
your particular environment. In any case, you want the Instrumentation
mode set to Animation.

To compile and run the model at this point, just click on the
Generate/Make/Run button (highlighted in green on the simulation toolbar.
If you’ve make mistakes entering information, the system will stop and
identify the error to fix. Don’t worry if you’ve made a mistake. It is so
normal that I’'m surprised when my compilation succeeds on the first try!
The good news is that Rhapsody makes it easy to locate and repair the
errors.

Once the system in in simulation mode, you’ll see the animation toolbar:

[1os e ®o%e P @

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 76



Case Study: System Requirements Definition and Analysis

Click on the Run Step tool (third button from the left). This initializes the sd [Package] StartUpBBScenariosPhg [Animated Cold start al tests pass)
simulation and the state machine. Let’s add an animated sequence diagram aSU_ArafiPower | | Uz Startp i25U_Ararsft_Hydrauics ia5U_AMS
to watch the simulation run.

|
|
\
}
|
|
|
|

|

|

Select Tools > Animated Sequence Diagram. Then select one of the diagrams |
we created previously as the template and click OK. |
|

|

|
|
|
Open Sequence Diagram > | |
Power_State
ﬁ, AMS A Shiw | |
o np Arcraft_Hydraulics Editable | |
Pilat _Drisplay | | Hydraulic_State |
L gp Aircraft_Power Fiead Only | | |
- RequirementsanalysisPkg | | |
E-E3 FunctionalinalysisPkg Reference | | | |
03 ControlairSutacesPkg
-7 UpdateStatusFlkg . . . .
5-F StatUpPlg Now, let’s just let the simulation run. Click on the Go button on the
- Ue_Startllp Animation toolbar (second button from the left)’.
-0 Start Up
Blj__l StartlpBES cenaniosPkg
R SN 1] Cold start all tests pass Nothing happens because it’s waiting for you to kick things off with an
L1 Wam Restat . event. On the animated sequence diagram, right-click the aSU_AMS lifeline
D:I] Cold Start Min pos test failed .
070 Cold start Hydraulic Errar and select Generate Event. On the opened Events dialog, select the
50 Coldstart Mt pos and SW errr startSystem event, and click Generate.
[ @ Cancel Help

This should open up the diagram and display the current states of the
elements.

7 If you don’t see the State Marks, you can enable the Features Dialog by double-
cliicking on the project at the top of the browser, selecting the Properties Pane,
then View > All, navigating to SequenceDiagram > General > ShowAnimStateMark
and selecting the checkbox. Seeing the states is optional but useful.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 77



Case Study: System Requirements Definition and Analysis

Events

Obiect:  [a5U_aAMS sckel
Ewent: shartSyzstem i
Arguments:
MHame Type Walue Edt
Hiztory:
Clear

At this point, we expect the system to run through the SurfaceRangeTesting
and PerformBIT states, and eventually end up in the WARM_STATE. And

that’s what you should see (Figure 94)

sd [Package] StartUpBBScenariosPkg [Animated Cold start all tests pass]

:a5U_ArraftPower :Uc_StartUp :a5U_Aircraft_Hydraulics :35U_AMS

\

\

\

| \

| ‘
| \

| \

| \

| \

|
|

|

|

|

|

I
|
|
|
|
|

evBegin_StartUp()

evSelect_Battery_As_Source()

HceRange
esting

Pawer_State

Figure 94: Running the simulation

At this point, using the Events Dialog, send the goOperational event to the
aSU_AMS actor block. The system should end up in the OPERATING_STATE
and the state changes should show up on both the sequence diagram and
the standard output window. Alternatively, you can open a Features dialog
on the animated instance to see its current values.

The sequence diagram looks a bit messy because it marks the arrival of sent
events when they are actually processed by the receiving element.
However, the SE Toolkit has a great tool to clean this up.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 78



Case Study: System Requirements Definition and Analysis

Complete the simulation by pressing the Stop button (red square). Then
click anywhere in the generated sequence diagram and select SE Toolkit >
Straighten Messages. Now with a little bit of moving messages up to
remove white space, your diagram should look like Figure 95.

sd [ ] [Animated Cold start all tests

:aSU_AircraftPower :Uc_StartUp :aSU_Aircraft_Hydraulics :aSU_AMS
Power State :' Off \ <' Hydraulic_State N\ /  AMS State
evBegin_StartUp()
evSeIecE,\_Battery_As_Sourte()

AMS_State
' SurfaceRangeTesting ™,
N /

PerformBIT N

no_errors()

evEnter WARM_State()

Power State “, / WARM_STATE ' /' AMS_State

regENABLE_Command()

AMS_State

evEnter_Operating_State()

/ OPERATING_STATE N [/ AMS_State

Figure 95: Completed first simulation

To run the other case (warm restart), we'll have to change the values and
recompile (in a little bit, I'll show you another way to do this). Stop the
simulation. Edit the default value of the time_since_last_reset to be a small
number, say “10”, and now the other main path will be taken. Do this to
generate the following sequence diagram:

sd [] [Animated Warm Restart]

:asU_AircraftPower :asU_AMS :Uc_Startlp

Power_State AMS_State

| evBegin_StartUp()
I

ev&elev:t Battery_As Source() !
| evEnter WARM_State()

AMS_State WARM_STATE

| reqENABLE_Command()
[

AMS_State

|,eh'Enher Operating_State() |
I ]

< AMS State >

AT T

Power_State

OPERATING_STATE

Figure 96: Simulation warm restart

Let’s do a final simulation, one where the errors are detected. This is an
easy case to do. In this case, stop the simulation, change the default value of
time_since_last_reset back to it’s original 100,000 value and change the
default of error_count to 1 (thus no_errors() will return FALSE and the other
state machine path will be taken). Then compile and simulate to generate
the final sequence diagram of this phase.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 79



Case Study: System Requirements Definition and Analysis

sd [] [Animated Cold start Min Pos test fails]

:a5U_AircraftPower :Uc_Startp :aSU_AMS :aSU_Aircraft_Hydraulics

Power_State Off

AMS_State
| evBegin_Startp) |
evSeIe\% Battery As_Source() |

Power_State SurfaceRange
Testing
PerformBIT

| no_errors()
I

Hydraulic_State

|

|

|

|

|
evEnter_FAILED %}EO

FAILED_STATE AMS_State

Figure 97: Simulation of error flow

So far, setting values is done by changing the model and recompiling. This is
a little tedious. Rhapsody provides a number of ways to change values
during run time, including the Webify feature, panel diagrams, or simply
adding special events for the purpose of changing values to run specific test
cases (something we’ll do in Phase 2)2.

Before we move on, be sure to set the default value of error_count back to
0.

Phase 2: Add movement tests

We’ve had a successful first simulation run, but we didn’t model all the
requirements. Specifically, the use case block states SurfaceRangeTesting
and PerformingBIT didn’t actually do anything. In this phase, we’ll add a
submachine to the SurfaceRangeTestings state to model those
requirements.

8 There are many short but useful videos on YouTube on the use of these features.
You might start here to search for video content of interest:
https://www.youtube.com/watch?v=z0ODaYIqL1 A&list=PL1122E405F2CCA4EE5

Open the state machine for the use case block Uc_StartUp. Right click on
the state SurfaceRangeTestings and select Create Sub-Statechart. This will
create another state machine diagram which is logically a part of its parent.
This is a good way to manage large, complex state machines. Select the
SurfaceRangeTestings state on the newly created diagram and drag a
corner to make it large. Everything you do on this diagram must go inside
that composite state. We will base this state behavior on the activity
diagram specification we made at the start of this use case analysis (Figure
58). It will look a bit different because this is a state machine and not an
activity diagram (and we want it to actually execute), but it’s lineage should
be obvious.

SurtaceRangeTesting

[error_found)/emer_counts-;

Juetying. ke Postos Sore_Erer(;

+.J Commard_To_Mmmum_Poston(sufaceID); 8
ermor_ound = 1 Veriy_Postion_And_Timeiness(surfacelD):

evReport_Ermor(Smy_smor) to pasU_AMS

"1 rommand_To_Maximum_Poston(sufaceiD);
exrer_found = ! erfy_Postion_And_Tmelness{surfacelD);
error_fourd ) error_count -+ ooy Mo foslion
Sore_Emo);

evReport_Erorf&my_error) to pasu_AMS s

[eke]
[#re_There_More_Surfaces()]
| Zero_Control_ Surface(sur:

faceD;
SUBCeID = Seect_ et Contrel Surtoce:
Zeroing_Surtace
&)
fese)

@®

Figure 98: Surface Range Testings Submachine

Note that error_found is set to the NOT (“!1”) of
Verify_Position_And_Timeliness().

Surfaf

error_count = 0;

I// select_first_surface(); // sets surfacelD to 0

Verifying_Minimum_Position ‘

error_found = ! Verify_Position_And_Timeliness(surfacelD);

™

/ Command_To_Minimum_Position(surfacelD); T

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 80


https://www.youtube.com/watch?v=zODaYlqL1_A&list=PL1122E405F2CC4EE5

Case Study: System Requirements Definition and Analysis

Figure 98 is the state machine equivalent of activity diagram in Figure 58.
To do this, we’ve used eight operations that will need some implementation
for the simulation:

e Select_First_Surface()

o Command_To_Minimum_Position(surfacelD);

e Verify_Position_And_Timeliness(surfacelD);

e Store_Error();

e Command_To_Maximum_Position(surfacelD);

e Zero_Control_Surface(surfacelD);

e Select_Next_Control_Surface();

o Are_There_More_Surfaces(surfacelD);

and three value properties:
e surfacelD (of type int) (holds the number of the surface of current
interest)
o error_found (of type RhpBoolean) (holds whether errors have been
found)
e pos_ok (of type RhpBoolean and a default value of TRUE) (holds
whether the surface correctly achieved commanded position)

The operations were added to the use case block Uc_StartUp during the
creation of the sequence diagrams from the activity diagram; the value
properties must be added as new elements. Let’s deal with the value
properties first. Using the same method we used to add
time_since_last_reset and error_count in Phase 1, add these two new
variables, giving surfacelD a default value of 0 and error_found a default
value of FALSE.

Adding the operation implementations is similarly easy.

o Select_First_Surface()

set the implementation to
surfaceID = 0;

e Command_To_Minimum_Position(surfacelD);
No implementation needed to support the simulation at this time.
Add an argument sID, of type int but you needn’t do anything with
it.

e Verify_Position_And_Timeliness(surfacelD);
This should return a RhpBoolean. Add an argument sID, of type int
but you needn’t do anything with it. The implementation can simply
be

return pos ok;

e Store_Error();
No implementation necessary.

e Command_To_Maximum_Position(surfacelD);
No implementation needed to support the simulation at this time.
Add an argument sID, of type int but you needn’t do anything with
it.

e Zero_Control_Surface(surfacelD);
No implementation needed to support the simulation at this time.
Add an argument sID, of type int but you needn’t do anything with
it.

e Select_Next_Control_Surface();
Set to return an int value and add the following implementation:

return surfaceID +1;

e Are_There_More_Surfaces();
This is a new operation (it was missed in the scenario creation), so it
must be added to the use case block. This must return an

RhpBoolean. Add the following implementation:
return (surface ID == 0);

Again, we’re trying to support the black box view; we don’t really care
exactly how things happen inside the system, so we don’t have to actually
move surfaces around and check them. We just have to simulate what that
looks like from an external perspective. That’s what this simulation does.

This is set up to run the test for only the first surfacelD. If you want to run
multiple surfaces, then change the implementation of
Are_There_More_Surfaces() to return FALSE as soon as you’ve done the
desired number of surfaces. In the implementation provided, it only returns
TRUE if the surfacelD is zero. As soon as it is augmented by the operation
Select_Next_Control_Surface(), then it will return FALSE.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 81



Case Study: System Requirements Definition and Analysis

The more interesting part is we have to add values to send to the aSU_AMS SendAction: sendaction_ 14 in StatechartOfSurfaceRangeTesting o x|
actor block via the evReport_Event. You may remember that this event General | Description | Relations | Tags | Properies o
takes an argument err of type Error_Report (see Figure 80). Neme: [pondacton 1 |
Stereotype: | hd |@I EI
Let’s add another value property named my_error of type Error_Report to Preview: |evReport_Emor(émy_emor)to paSU_AMS
the use case block Uc_StartUp. We will update the specific fields of this Terast
. T: : i i it v "
attribute when we send the error report to the aSU_AMS. In the Send @ost [peSULANS T Rndionalivebs v
Actions of Figure 98, add &my_error to the parameter list®.
Event
Event: evReport_Emorin Functionalfna ~ || ] T—
Value Property : my_error in Uc_StartUp = n Arguments:
General  Description  Relations Tags  Properties 2 Mame Type Value
|E|T0r_Report my_emor | iy err  Error_Report &umy_error
Name: |m=,'_err0r | Label...
Stereotype: | v | @IEI
Visibility: Public v
W
Attibute type | Locate 0K Apply J
Use existing type Figure 100: Adding parameter my_error to Send Action
Type: |Err0r_ﬂeport in Functional AnalysisPkg::StartUp Pkg::StartUp TypesPkg  ~ | =]
This results in an updated state machine for the use case block. Note that
Muipiciy [+ v] [JOrdered not only do the send actions have parameters for the event being sent,
OConstant  [JReference [ Static we’ve also added actions to set up values to identify the errors detected.
Initial Value: | |
Advanced JSelect_First_Surface(); /] sets surfacelD to zero SMERE@ETES[::'—‘““”W error_count++;
error_found = 1 Verify_Position_And_Timeliness(surfaceID);
B Locate oK Apply J

Figure 99: Defining attribute my_error

[error_found]/ error_count++;
my_errorse tError (POSITION_ERROR);
et setSurfaceID{aurfscelD);
Store Ermor

evReport Error(Smy_error) o paSU_Arcraftponer c

1 2ero_Control_Surface surfacelD);
surfaceID = Select_Next_Control_Surface();
Zeroing_Surface

[Are_There_More_Surfaces(]

=
[el<]

Verifying_Maximum_Position

° The & operator is interpreted as “the address of the value property named
my_error.” See Section 12 for details.

Figure 101: Uc_StartUp state machine updated with event parameters

The next figure shows a close up of the event paramers in use:

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 82



Case Study: System Requirements Definition and Analysis

[error_found]/ error_count++;
my_error.setError(POSITION_ERROR);

Fying_Minimum_Pasition my_error.setSurfacelD(surfacelD);
— — Store_Error();

' evReport]

\ [error_found]/ error_count++;

my_error.setError(POSITION_ERROR);
my_error.setSurfaceID{surfacelD); i Verify

Store_Error()
[\ tn nasll AircraftPower & U‘:} E

Figure 102: setting up my_error values

[else]

The only remaining thing to do before we can run this is to update the
aSU_AMS state machine to receive the evReport_Error event.

A quick note: it sometimes happens that Rhapsody doesn’t quite get
the generated dependencies correct. If Figure 101 compile fails with
errors accessing the err parameter of the evError_Report, you
might need to go into the browser and add a «Usage» dependency
from the actor block aSU_AMS to the Error_Report block in the

StartUpTypes package.

. AMS_State
;.
startSystem
evBegin_StartUp to pUc_StartUp >
goOperational
reqENABLE_Command to pUc_StartUp >

; evEnter WARM_State/ std::cout << "WARM!" << std::endl;
evEnter_Operating_State/ std::cout << "OPERATING!" << std::endl;
evEnter_FAILED_State/ std::cout << "FAILED!" << std::endl;

; evReport_Error/ std::cout << "Error: " << params->err->getError() <<
" from surface " < < params->err->getSurfacelD() << std::endl;

Figure 103: Updated state machine of aSU_AMS

Let’s now run two simulations. The first will find no errors. That should
compile and run as-is. The second will require a small tweak.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 83




sd [] [Animated Animated Cold start all tests pass]

t

Verif

Tt ]

Verif

tEt]

Zero

£k 3t

PerformBIT

no_er

1aSU_AircraftPower iUc_StartUp :85U_Aircraft_Hydraulics iaSU_AMS
Power_State off Hydraulic_State AMS_State
evBegin_StartUp
evSelect Battery As_Source!
w AMS_State

SurfaceRangeTesting

Select_First_Surface()

Command_To_Minimum_Pdsition(sID = 0)

_Position_And_Timeliness(sID = 0)

Verifying_Minimum_Position

Command_To_Maximum_Position(sID = 0)

_Position_And_Timeliness(sID = 0)

Verifying_Maximum_Position

Control_Surface(sID'= 0)

il

Select_Next_Control_Surface()

Zeroing_Surface

Are_There_More_Surfaces()

terminationstate_15

rors()

evEnter_WARM_State()

Power_State VWARM_STATE AMS_State

regENABLE_Command:

AMS_State

evEnter_Operating_State()

OPERATING_STATE AMS_State

Figure 104: Start Up with surface r.

Now, let’s do the same simulation with the surface ranging tests failed. Stop
the execution and edit the pos_ok value property of the Uc_StartUp block
so that its default value is FALSE. Now, recompile and run.

ange tests passed (Phase 2)

The standard output window should look like this:

The scenario result should indicate the system ending in the FAILED state.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 84




sd [] [Animated Animated Cold start Min Pos test fails]

:aSU_AircraftPower :Ue_StartUp &S0 _AMS :aSU_Aircraft_Hydraulics

Power_State AMS_State Hydraulic_State

| %Evﬁegln Startlp: !
evSe\e Battery_As_Source AMS_State
SurfaceRange
Teshnu

Select_First Surﬁoe}]

b
Command_To_Minimllm_Posiﬁon(sID =0)

|

|

|

|

|

|

|

|

|
- | |
Store_Error() | |
L——| | |
evReport_Error (et Error_Report[0]) |
Command_To_Maximrm_Positon(sID =0) |
Veri _Posiﬁon_And_l'I’lmeIiness(sID =0) |
il |
i |
Store_Error() | :
|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

|

evReport Errorjerr_;J Error_Report[0])

|

|

|

|

|

|

|

|

|

|

|

|

|

|

| Zerg, ControI_Surfaqlz(sID =0)

| |

| Select_Next_Conholi_Surfaoe{}
AMS_State

| .

|

|

|

|

|

|

|

|

|

|

|

1
Zeroing_Surface I

"are There_More_Surfaces()

terminationstate_15
PerformBIT

no_errors()

|
|
|
|
|
evEnter_FAILED %L‘EO
|
|

FAILED_STATE

Figure 105: Start Up with surface range tests failed (Phase 2)

Case Study: System Requirements Definition and Analysis

Don’t forget to change the value of posOk value property back to its default

value of TRUE.

Phase 3: Add power, hydraulic, and SW integrity tests

This nanocycle iteration of the analysis of the Start Up use case adds the

remaining requirements into the mix.

First, let’s add the state behavior for the Uc_StartUp block for these tests.
Open the use case block main state machine diagram, right click on the

PerformingBIT state and select Create Sub-Statechart.

Just as we added details for the surface ranging tests in the submachine for
SurfaceRangingTesting state in Phase 2, we’ll add the tests for power,
hydraulics, and software integrity into the submachine for the

PerformingBIT state.

[ PerformelT ]

[elself
error_count++;
Store_Error();

my_error, setError(SW_INTEGRITY_ERROR);
my_error. setSurfacelD(-1);
evReport_Error(8my_error) to pasu_AMS
[sw_ok]

Wiaiting_For_Hydrauiic_Status

evRequest Hydraulic_Status to paSU_Aircraft_Hydrauiics

ol hereza_Hydrauic_Pressure/
error_counta-+;

Store_Error();

my_eitor setError (HYDRALLIC_PRESSLRE_ERROR);
my_error setsurfaceID(-1);

Checking_Hydraulic_Status

evReport_Error (my_error) to paSU_AMS

g [hydrauiics_ok]

hydraulics_ok = Check_Hydraulic_Pressure(params->hs);

!

evRequest_Power_Status(BATTERY_SOURCE) to pasL_sircraftPower

Waiting_For_Power_Status

hereza_Power_Status
[elsel/ o e
error_count+;

Store_Error;

my_error.setError POWER_LEVEL ERROR);
my_error setSurfaceID(-1);

Chedng_Power_Status

evReport_Error(8my_error) to pasU_AMS

é< [power_ok]

g

pawer_ok = Check_Pomer_Status(params->ps);

Figure 106: Submachine for PerformingBIT state

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 85



Case Study: System Requirements Definition and Analysis

Be sure to include the paramers for the Check_Power_Status and
Check_Hydraulic_Status operations, as shown in Figure 106.

In the process of elaborating this state machine, we’ve added three Boolean
variables to the Uc_StartUp block (the last one will be used shortly):

o sw_ok (default TRUE)

e hydraulics_ok (default TRUE)

e power_ok (default TRUE)

o sw_fault (default FALSE)

Go ahead and add them to the Uc_StartUp use case block with the specified
default values.

The state machine uses another three operations to the block as well:
o Check_SW_lIntegrity()
e Check_Hydraulic_Pressure(h: HydraulicStatus);
e Check_Power_Status(p: PowerStatus)

Be aware that the SE Toolkit has previously added these functions when we
parsed the activity diagram to create the scenarios. Nevertheless, we must
still add parameters and implementation.

In the browser, double click on the Check_SW_Integrity operation to open
its Features dialog. In the General pane, change the return type from void to
RhpBoolean. In the implementation pane, add the implementation

return ! sw_ fault;
(be sure use to include the NOT (“1”).).

Then add sw_fault as a value property (or attribute) of type RhpBoolean to

the use case block Uc_StartUp, and give it a default of FALSE. Having this as
an internal variable allows us an easy way to simulate cases where this test

passes or fails.

Next, update the Check_Hydraulic_Pressure operation. In the General tab,
make sure it returns an RhpBoolean value. In the Arguments pane, add an
argument h of type Hydraulic_Status. Note that Rhapsody will
automatically pass a pointer to the typel®. Now add the following to the
Implementation tab:

return ! h->getHas faults();

Similarly, update the Check_Power_Status function to return an
RhpBoolean, add an argument p of type Power_Status, and add the
implementation:

return ! p->getHas faults();
Now let’s update the actor blocks.
The aSU_Aircraft_Power and aSU_Aircraft_Hydraulics blocks are really

pretty simple. Add the follow state machines to these blocks (don’t forget
they are located in the nested package StartUpActorPkg.

stm [Actor Block] aSU_AircraftPower [statechart_1]

Power_State ;
= <——e

evSelect_Battery_As_Source

%

evRequest_Power_Status

<—. hereza_Power_Status() to pUc_StartUp

Figure 107: aSE_Aircraft_Power state machine

10 Again, see Section 12 for more details on parameter passing.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 86



Case Study: System Requirements Definition and Analysis

stm [Actor Block] aSU_Aircraft_Hydraulics [statechart_1]

Hydraulic_State

e

evRequest_Hydraulic_Status

L

hereza_Hydraulic_Pressure() to plc_Start

Figure 108: aSU_Aircraft_Hydraulics state machine

Ok, hold on. It’s not quite that simple. These state machines send events

herezaPowerStatus!! and herezaHydraulicStatus, both of which pass data.

WEe'll need to create local attributes of type Power_Status and
Hydraulic_Status and pass the values along with the events.

Right click on the actor block aSU_Aircraft_Power and select Add New >
Value Property. Name this attribute p_status. Double click on this to open
the Features dialog. In the General pane of the dialog, choose the
<<Select>> option in the drop down list and navigate to the
StartUpTypesPkg to select the Power_Status block as the type.

11 “hereza” asin “hereisa... “

Value Property : p_status in aSU_AircraftPower - |

§eneal Description Relations Tags  Propetties

Power_Status p_status |

Name [pstatus | [ Label
— | izl
Visibilty: Public >
Attribute type [ Select Type X
L] U i
e exing tipe S8 ~HarmanySE» ArsurfaceControlystem ~
Type: Power_Status in Functiof -1 Packages =
£ ActorPkg
£ RequirementsAnalysisPkg
- =5 FunctionalAnalysisPkg
Muttiplicity 1 203 Packages ~ Ordered
=5 StartUpPkg
Constant Reference P
C o o (£ Blocks
Initial Value: - Events :l
£~ Packages
Advanced -f7 StartUpActorPkg

=2 ActorBlocks

- aSu_aircraftPower
{%2) Statechart

E& asu_ams

[E% aSu_Aircraft_Hydraulics

% Events

[ StartUpBBScenariosPkg

-£7 StartUpExecutionScopePkg

£ StartUpTypesPkg

(5 Blocks

Error_Report

Hydraulic_Status

Error_Log

Test_Outcome

Test_Log

 Data Types

-7 StartUplinterfacesPkg

Redefines:

Locate oK -§7 StartUpSafetyPkg
(2 Use Cases v
_DK Cancel

Figure 109: Selecting a type from the StartUpTypesPkg

At run-time, we want to be able to provide status that is either good or bad.
We'll do this by elaborating the actor block state machine. This means that
we can, at run-time, easily send either value during a simulation.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 87



Case Study: System Requirements Definition and Analysis

stm [Actor Block] aSU_AircraftPower [statechart_1]

Power_State Y/ p_status.has_faults = FALSE;
= p_status.amperage = 10;
p_status.voltage = 120;

<—e

<

evSelect_Battery_As_Source

evRequest_Power_ Status

\
.
H hereza_Power_Status(&p_status) to pUc_StartUp \)

setFault/
p_status.has_faults = TRUE;
p_status.amperage = 0;

- p_status.voltage = 0;
\\
clearFault/
p_status.has_faults = FALSE;
< p_status.amperage = 10;

p_status.voltage = 120;

Figure 110: Setting power status values during simulation

Figure 110 shows how we do this. We’ve added setFault and clearFault
events to set appropriate values for the p_status attribute. And we updated
the Send action for herezaPower_Status to pass the value “&p_status”
(read as “the address of the value named p_status”).

We must now do the equivalent thing for the hydraulic status. This will
require similar modifications to the state machine for the block
aSU_Aircraft_Hydraulics, although we will add a value property named
h_Status (of type Hydraulic_Status) to the actor block.

stm [Actor Block] aSU_Aircraft_Hydraulics [statechart_1]
(.

Hydraulic_State N

/ h_status.has_faults = FALSE;
h_status.pressure = 32000;

evRequest_Hydraulic_Status

hereza_Hydraulic_Pressure(&h_status) to pUc_StartUp

setFault/
h_status.has_faults = TRUE;
h_status.pressure = 0;

clearFault/
h_status.has_faults = FALSE;
h_status.pressure = 32000;

Figure 111: Setting hydraulic status values during simulation

Let’s now run the case in which all tests pass2.

21n the actor blocks, we could use the automatic accessor and mutator operations
but we’re now directly accessing attributes. If you haven’t already done this, you
can change the Rhapsody settings to allow this by right-clicking on the project in the
browser going to the Properties Pane, select View All, and going to the topic
CG_CPP > Attribute > Visibility. Here you have a drop down list. The default visibility
is set to protected, but you can select fromAttribute.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 88



:asU_AircraftPower :Uc_StartUp :aSU_Aircraft_Hydraulics :aSU_AMS

Power_State O

Hydraulic_State AMS_State

S

| L- | evBegin_StartUp() |
evselect Battery_ts Source() |
|

Select First Surface) |

't

cUmmandju,wmmumj:{sinun(sID =0

tl

FE

eri _Posihon_And_‘ﬁmalhess(sID =0)

Verifying_Minimum_Position |

Command_To_Maximum_PLs\ﬁon(sID =0)

eri _Pnsmun_»:nd_ﬂmalhess(sID =0

Werifying_Maximum_Position |

Zero, Controljurface(sIDL o)

|

alect_Next_ControI_Surf#ceD

TET]

Zeroing_Surface

Are, Thara_Mure_Surfaca%O

Check_SW_Integrity() I

evRequest_Hydraulic %\%\ASD

evRequest_Poner_Status(source = 1
Power_State

hEr*za_Hy'drauhE_PrEssurEE = Hydraulic_Status[0])

Hydraulic_State

hereza_Power Stahifs[rs =Power_Status[0]) |

Power_State |
Chedk Hydrauic_Pressure(n = Hydrauc_Status(o])

o_errors()

FEt]

evEnter WARM_State()

|
|
|
|
|
| (o )
|
|
|
|
|

Check_Power_Status(p = %ower_stabm[o])
|
|
|
T
|
|

z reqEMABLE_Command

| | AMS_State
| evEnter_Operating_State()

k t

OPERATING_STATE | AMS_State
L

Figure 112: All tests pass (Phase 3)

Case Study: System Requirements Definition and Analysis

Figure 112 shows the successful start up of the system with all tests
modeled and passing. | removed some of the state condition marks on the
generated sequence diagram to shorten it a bit.

Let’s together do one more scenario. In this scenario, we’ll start the system
running, but before we signal the system to proceed (by generating the
startSystem event), we’ll set the hydraulic system to have an error. We

Il do this by sending the event setFault to the aSE_Aircraft_Hydraulics actor
block after we start the system. We want to ensure that the system
properly detects the error and reports it to the AMS.

Run the simulation by clicking on the Go button on the animation toolbar. If
you don’t have an animated sequence diagram open to capture the flow,
open one with the Tools > Animated Sequence Diagram menu option,
selecting one of the sequence diagrams in the FunctionalAnalysisPkg >
StartUpPkg > StartUpBBScenariosPkg package.

Right click on the :aSU_Aircraft_Hydraulics lifeline on the animated
sequence diagram and select Generate Event. In the drop down box, select
the setFault event and click on Generate. Then, in the Generate Event
dialog box, select the aSU_AMS object and generate the event startSystem.
It should generate something like Figure 113. Note that | added the System
Border lifeline so that the scenario shows the user-entered events. The
resulting scenario is shown in Figure 114. This figure has also been edited a
bit to remove some condition marks and comments were added.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 89



dy: System Requirements Definition and Analysis

>
i

:a5U_AircraftPower :Uc_Startlp :aSU_Aircraft_Hydraulics 1a5U_AMS
=d [Package] StartUpBEScenariosPkg [Animated Template with system boarder]

:aSlU_AircraftPower :Uc_Startlp :aSU_Aircraft_Hydraulics :asU_AMS ‘ ‘ ‘

|
|

Power_State Off Hydraulic_State

B

setFault)

Hydraulic_State
evBegin_Startup()

|
i
|
\
\

:\e_\_eT First_Surface()
Command_To_Minimum_P sA(mn(sID =0)
% Position_And, TlmeIJnass(sID 0)

NN

]

setFault()

\
\
\
\
\
\
\
Events Hydraulic_State ‘
‘ Command_To_Maximum Pfasmon(sID o)
Object: | aSU_Aireraft_Hydraulics | Select ‘
Verify_Position_And TlrnEIJnEss(sID 0)
Event setFault w | |
| |
Mame Type Walug Edit | } Zero_Contral Surﬁce(sID‘— 0)
| ‘ Select_Next_Control SurﬁLcEO
| [ ; |
| |
| |
Higtary: | ‘
25U _Aireraft_Hydraulics-» GEM [setF ault(]] Clear | ‘ ‘
a5U_AMS-»GEN[go0perationall]] ‘ Check_sW_Integrity() ‘
a5U_AMS-> GEM[startSystem(]] | ‘ ‘
| | | vReaues: pycrauie St140
| evReguest_Power_Status(source = 1) ‘
| \ \
|

hereza_Hydraulic_Pressure(hs = Hydraulic_Status[0] ‘

1

hereza_Power Status(hs = Power_Status[0]) |

Power_Stats ‘ Cheda_Hydraulic_Prassureb = Hydraulic_Status[0])

Figure 113: Entering the setFaults event to simulate error

Store_Error() }

t

evReport_Error(err = Errof_Report[0])

Check_Power_Status(p = Lower _Status[0])

1

na_errors()

\
\
\
|
\
\
\
\
\
|
\
\
\
\
|
\ \
\ \
:}_e_rere More, Surfaoe%() ‘
\
\
|
\
\
\
\
|
\
\
\
\
|
\
|
\
\
\
|
|

\
|
evEnter_FAILED_State() ‘
\
|

|

Figure 114: Cold Start Up with hydraulic test failure

AMS _State

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 90



Case Study: System Requirements Definition and Analysis

Now, on your own, generate the sequence diagrams for the case where the
SW integrity fails and one for when the Power System fails.

We have now completed the black box analysis of the Start up use case. We
did this using an incremental approach following the system function-based
approach outlined in Figure 53. We have traceability from the use case to
the requirements, but we have not added more detailed traces from the use
case block value properties, event receptions, and operations to the
requirements.

In a fully formed systems engineering model, all normative model
elements have descriptions and all elements have trace relations. If a
value property, an event reception, and two operations all trace to a
single requirement, then you should add these relations.

Let’s now move on to the second use case we will study.

7.4 Analyze the Control Air Surfaces Use Case
This use case is considerably more complex than the previous use case and
so its analysis will require correspondingly more detail.

This use case will be analyzed using the interaction-based (or scenario-
based) approach from Figure 4. A detailed look at the workflow is shown in
Figure 115.

Scenario-Based Workflow

C}reate Use Case Functional Analysis Model Structure j

[Create Use Case Execution Context ]

[C reate Scenarios

Create Data Model

|

[Create Safety Analysis

[Create Use Case State Machine

N U A A R

CExecute Model and identify requirements issues

\:

decisioni

Jj [else]

Figure 115: Detailed Work Flow for Scenario-Based Use Case Analysis

[more requirements]

7.4.1 Create Use Case Functional Analysis Model Structure

The SE-Toolkit provides a handy tool for the creation of the internal package
structure for the Control Air Surfaces use case analysis within the
FunctionalAnalysisPkg package. Right-click on the use case in the browser
and select SE-Toolkit > Create System Model from Use Case (Figure 116).

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 91



EI-w AirsurfaceControlSystem
D Components
() Packages
[ ActorPkg
RequirementsAnalysisPkg
Q Matrix Views
-0 Packages
E:l RequirementsPkg
57 UseCaseDiagramsPkg
&6 Actors
-] Use Case Diagrams
-5 Use Cases
[~ Start Up
[~ Shut Down
e
© Manage Por Features...
- Manage Da
- Configure § Add New
EJ---@ RequirementsTables

¥

Case Study: System Requirements Definition and Analysis

-7 FunctionalAnalysisPkg Cut Ctrl+X
E=§0) DesignSynthesisPkg Copy Ctrl+C
-0 Packages .
-7 ArchitecturalDesig Paste Ctrl+V
-0 Block Definition Delete from Model Del
g 33 ACES Conte Set Stereotype ¥y
[t~ Blocks
-3 Comments Changeto *
(-5 connectors Edit Order of Types
--lg Interface Blocks
-5 Parts Mavigate »
E:l ArchitecturalAnaly
E:l InterfacesPkg Realize Base Classes...
-0 Profiles Create Unit
- Settings reate Lni
Check Model
Spell Check
Rational Rhapsedy Gateway »
SE-Toolkit » Add Referenced Sequence Diagrams
Design Manager > Create System Model From Use Case
Apps > Export to New Model

Create Scenario
Add Hyperlinks
Add Dependencies

EI--w AirSurfaceControlSystem
(-3 Components
-0 Packages
E:I ActorPkg
EI RequirementsAnalysisPlg
=¥ ] FunctionalAnalysisPkg
EI[:I Packages
=57 ControlAirSurfacesPkg
&E’ Blocks
[:l Internal Block Diagrams
-0 Packages
7 ControlAirSurfacesBBScenariosPkg
L:JE:I ControlAirSurfacesExecutionScopePkg
-3 Components
. =g Control_Air_SurfacesSim
Ell:l Configurations
: -3 Animate
% connectors
&

2- — Parts
; fé itsUc_ControlAirSurfaces
[ preAMS
fé prtAircraft_Hydraulics
fé priPilot_Display
fé priAircraft_Power
-7 ControlAirSurfacesActorPkg
B@ ActorBlocks
- aCcAS_AMS
- aCAS_Aircraft_Hydraulics
-[= aCAS_Pilot_Display
-=] aCAS_Aircraft Power
-5 ControlAirSurfacesinterfacesPkg
-5 ControlAirSurfacesTypesPkg
B[B Use Cases

[ Control Air Surfaces

Figure 117: ControlAirSurfacePkg structure

[m

Figure 116: Using the Create System Model from Use Case tool

Similar to our use of this tool for the Start Up use case, the tool creates a
package called ControlAirSurfacesPkg and then populates it with the
appropriate blocks for the use case and actors, creates the appropriate links
and even creates a new internal block diagram (IBD) showing the use case
execution context. The ControlAirSurfaceExecutionScopePkg also contains
a new component named Control_Air_SurfacesSim for building the
executable model (to come later). The fully elaborated package structure for
this functional analysis package is shown in Figure 117.

The IBD created by the toolkit and subsequently beautified manually is
shown in Figure 118.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 92



Case Study: System Requirements Definition and Analysis

bd [Fackage] ControrSurfacesPig [180_Control Ar Surfaces]

anterfaceSiocks nterfacetiodks —r N
We_controlAirsurfaces_aCAS_Pilot_Display iuc_ControlairSurfaces_aCAS_AMS Wc_ControlAirSurfaces_aCAS_AlrcraftPower
Operations Operations

Qpentions

w Properts w s
Pow Properties Fow Properties prem——

nterfaceBlocks
We_controlArSurfaces_aCAS_Aircraft_Hydraulics

Opeatens Qpentons

anterfacefiocks
We_ControlAirSurfaces_aCAS_Maintainer

Fow Properves Flow Propertes

1 pripilot_Display:aCAS_pilot_Disply L prisircraftPower:aCAS_AircraftPower

“proxys «proxys T pUC c-ilUc_Ce aCAS_
pllic_ControlAirSurfaces: ~lic_ControlAirSurfaces_aCAS_Piot_Display

I pronys
pacas_Pilat_Display:ilc_ControlAirsurfaces_acAS._Pilat_Dispiay PACAS_ e _aCAS
1 itsUc_ControlAirSurfaces:Uc_ControlAirSurfaces.

priAMS:acAs_ams | P07 values
! 8 plc_ControlAirSurfaces:~iUc_ContralAirSurfaces_aCAS_AMS

wproxys
Qpemtions
PACAS_AMS:iUc_ControlAirSurfaces_aCAS_AMS

prowys “prowys PpaCAS_Maintainer:ic_ControlAirSurfaces aCAS_Maintainer
paCAS_Aircralt_Hydraulics:iUc_ControlairSurfaces_aCAS_Aircraft_fydraulics

onys spraxys
pUc_ControlAirSurfoces: Uc_ControlAirSurfaces_aCAS._Akrcraft Hydroukes plc_ControlairSurfaces: ~iUc_ControlAirSurfaces_aCAS_Maintainer

1 praircraft_Hydraulics:aCAS_Alrcraft_Hydraulics i priMaintainer:acAs_Maintainer

Figure 118: Beautified Control Air Surfaces Use Case Execution Context IBD

7.4.2 Create Scenarios

Since we are using the Scenario-based use case analysis strategy from Figure
4, the next thing to do is start creating scenarios of interest. This strategy is
appropriate when
e working with non-technical stakeholders to identify or explore the
requirements
e the use case is primary interaction-based, that is, the focus of the
use case is on the interaction of the system and its actors rather
than on internal functionality

The SE Toolkit provides a tool for creating new scenarios that share a
common lifeline structure. If you used the Create System Model From Use
Case tool previously, then the SE Toolkit already created an activity view

under the use case (which it moved to its own package in the
FunctionalAnalysisPkg package). Right-click the Control Air
SurfacesBlackBoxView activity diagram under the use case Activity Views,
and select SE-Toolkit > Create Scenario. This diagram should look something
like Figure 119.

sd [Package] ControlAirSurfacesBBScenariosPkg [5D_0]

itslc_ControlirSur faces priaMs priPlot_Display pridircraft_Hydraulics priirc aftPower priMaintainer
=]
Use Case:

Scenario:
Description:
Preconditions:

Post-conditions:

Figure 119: Created Scenario Diagram

Note that it has a template comment for you to elaborate information to
help readers understand the scenario you are about to enter.

Creating Good Scenarios: Best Practices
Almost everybody asks at this point “How do | know when | am done?” After
all, there are an infinite set of possible scenarios if you consider all
variations of sequence, timing, values, responses, and iterations. There are
several different answers to this question which are essentially equivalent:
e When every requirement allocated to the use case is expressed in at
least one scenario
e  When all “interestingly different” flows have been captured
e When every path and action on defining activity diagrams or state
machines are represented
e When all the normal path, or “sunny day” scenarios are captured
AND all the exceptional, or “rainy day” scenarios are captured
We call such as set of scenarios, the minimal spanning set, as it fully
represents all the requirements of the use case.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 93



Case Study: System Requirements Definition and Analysis

Recommendations

The point of scenarios is not to show internal functionality as much

as to show the interaction of the elements of interest. Thus,

messages between the use case and the actors will be modeled as

events (possibly carrying data) or flows. “Messages to self” in the

use case lifeline represent the execution of system functions.

For sequences in which the flow is identical but the actual values

passed are different, it is enough to show a single scenario, but you

can add comments or constraints that show the range of values or

events that can participate. If the flows are different because the

values differ, then this warrants a new scenario.

Start with the sunny day scenarios and once normal functionality is

established and understood, add rainy day scenarios.

As you create the scenarios, you identify requirements that are

missing, incorrect, incomplete, or inaccurate. At that point, add the

new requirements into your textual requirements, allocate them to

the use case, and express them in one or more scenarios.

Use events for discrete messages between the actors and the use

case and operations for system functions

Use flows for continuous values.

e Most commonly, flows are only shown in the sequences at
the point at which the value changes
e For continuous flows, stereotype the flow as «continuous»

possibly within a continuous interaction fragment. Note:
you may have to right-click and check Show Stereotype on
the Display Options of the flows to see the stereotype after
you’ve added it.

@ Most sequence diagram operators — such as loop, optional, and

alternative — are just a means by which multiple scenarios can be
represented on a single diagram. We recommend not nesting
interaction operators more than three levels deep or you risk
creating unreadable sequence diagrams.

Creating the First Sunny Day Scenario

Open the diagram you just created (if it's not now open) and add the
description text to the comment to the upper left hand corner:

Use Case: Control Air Surfaces
Scenario: Scenario 1
Description:

Normal operation, no faults.

Preconditions:

System has passed self-tests without error.

System

is in an Inactive condition (WARM state).

Post-conditions:

After cooling,
condition.

the system goes to Inactive

Rename the diagram Control Air Surface Scenario 1. Draw the flows as
shown in Figure 120

(]
Use Case: Control Ar
Surfaces

Scenario: Scenario 1
Description:

Normal operation, no
fauks.

Precondttions:

System has passed self-
tests without error.
System & in an Inactive
condition (WARM state)

Post-conditions:

After cooling, the system
goes to Inactive
condition.

sd [Package] ControlirSurfacesBBScenariosPhg [ Control Air Surfaces Scenario 1]

itsic_ControlAlrSurfaces priAMS
<
«continuouss
<
WARM
evEnter_Opesational_State(}
<
OPERATIONAL
evlipdate_State(ORERATIONAL)
7
loop,
~ evUpdate_Positions(pasitions)
<
Mave_Ta(positions)
evUpdate_Status(currenit_status)
<& evDisable()
Cooling
[{m{COOLING_INTERVAL)

-

Inactive

evUndate_State({INACTIVE)
>

priPilot_Display

«continuouss

hydraulic_pressure

Luntil

prtAiraaft_Hydraulics

priAiraaftPower priMaintainer

Figure 120: Control Air Surfaces Scenario 1

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 94



Case Study: System Requirements Definition and Analysis

The scenario shows the recommended descriptive comment in the upper
left hand corner®® and the flows. The scenario starts out showing that the
aircraft power and hydraulics continuously providing energy and pressure.
Since they don’t vary in the scenario, showing these flow at the top of the
sequence is fine. Note that this is not the «continuous» provided by the
SysML profile (which only applies to ObjectNode, Pin, State, and Transition);
rather this is the one provided in the Harmony SE Profile.

Note that | often define stereotypes is likely to be used
multiple places in the model, so | add a package at the
system level called CommonPkg and added those
stereotype there. In this case, the stereotype is provided by
the Harmony SE Profile.

When the AMS decides some or all of the control surface positions should
change, it sends an evUpdate_Positions(positions) message. The use case
then executes the Move_To(positions) system function and then responds
with its current status. The data elements positions and current_status are
identified and used here but are not detailed. We will detail them in the
logical data and flow schema.

These activities continue until the AMS disables the movement. This is
shown with the loop interaction operator. At that point, the use case enters
a Cooling period. After the cooling period is over, the system becomes
Inactive and notifies the AMS. The Cooling period is necessary to support
rapid restarts by the pilot (via the AMS), should that become necessary.

Creating the Second Sunny Day Scenario

The next sunny day scenario elaborates the first scenario. The system goes
operational, as before, but then is re-enabled during the cooling period.

13 Some people prefer to add this information in the description field of the features

dialog of the diagram. | prefer this because of its visibility. Either is ok.

To make this scenario shorter, we will abstract the parallel region of normal
operation into a separate sequence diagram and then reference on the
main scenario. To do this, complete the following steps:

Create a new sequence diagram as before and name it Control Air
Surface Normal Operation Fragment.

Add descriptive text to the comment:

Scenario: Fragment of normal

operations for Control Air Surface use

case

Description:
Just shows normal flow while moving
control surfaces

Preconditions:
System has entered normal control of
air surfaces

Post-condition:
System is in the process of
terminating normal control behavior

Invariants:
No errors are found

You should now have a diagram named Control Air Surface Normal
Operation Fragment that looks like Figure 121:

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 95



Case Study: System Requirements Definition and Analysis

=]

Scenario: Fragment of
normal operations for
Control Air Surface use
case

Description:

Just shows normal flow
while moving control
surfaces

Preconditions
System has entered
normal control of air
surfaces

sd [Package] ControlAirSurfacesBBScenariosPkg [Control Air Surface Normal Operation Fragment]

itsUc_ControléirSurfaces prEAMS priiot_Display prifiraraft_Hydradics | [ prodircraftower priMaintainer

\

| |

\ |
evUpdate_Positions(pdstions)

Move T (positions) |

|

evUpdate_Status(current_status)

loop ]

[untl disabled]

|

Scenario: Scenario 2

Description:

Normal operation, no
faults. System in stopped,
for less than the cooling
period, and then restarted

Preconditions:
System has passed self-

sd [Package] ControlAirSurfacesBBScenariosPkg [Control A Surfaces Scenario 2]

o

|
|

EvLIpdatE_StatE(OPERATJFNAL)

itsUc_ControlAirSurfaces PrtAMS priPilot_Display priAircraft_Hydraulics prtArcraftPower prtMaintainer
[en]
Use Case: Control Arr
Surfaces LI T e pone: |
» S [ 1

\

\

Post-condition: |

System is in the process |
of terminating normal

control behavior |

\

\

\

Invariants:
No errors are found

\ !
Figure 121: Referenced Interaction Fragment

Now we can use this to build the second sunny day scenario.
& Create a new sequence diagram and name it Control Air Surface UC
Scenario 2
@ Fill out the sequence diagram as shown.

o To add the reference to the normal operation fragment, add
an Interaction Occurrence from the toolbar. Once placed,
double click and select Control Air Surface Normal
Operation Fragment from the list of possible sequence
diagrams

o Notice the use of the CanTm() (cancelled timeout) message
following the first Cooling condition. That’s to indicate the
system timing was interrupted by an arriving
eventer_Operational_State message.

I I
,,,,,,,,,,,,,,,,,,,, 1 N _ hydrauiic_pressure
I I 1
WARM

) | | |
evEnter_Operational_State() ‘ } }
\ \
\ \
\ \
\ \

tests without error.
System is in an Inactive
condition (WARM state)

- Control Alr Surface Normal Operation Fragment
Post-conditions:

After cooling, the system
goes to Inactive
condition.

evDssbieq | \ \
Note that this is a cancelled timeout; this

Is because in this case the
Coaling evENter_Operational_State eventis
received before the fime out lapses

{m(COOLING_INTERVAL)
gRtconCMEN) |

g J \
nter_Operational_State() ; ;

Cantrol Air Surface Normal Operation Fragment

evi
Ref

E evDisable

Cooling

tm(COOLING_INTERVAL)

evundate_state(‘[NACl‘lvj)

Figure 122: Control Air Surfaces UC Scenario 2

T

For the 3™ scenario, let’s try to start the use case up after the system has
failed its power on self test (as detailed in the Start Up use case analysis).
Repeat the scenario creation procedure as before to create the Control Air
Surface UC Scenario 3 sequence diagram.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 96



Case Study: System Requirements Definition and Analysis

sd [Package] ControlAirSurfacesBBScenariosPkg [Control Air Surfaces Scenario 3]

itsUc_ControlAirSurfaces prEAMS priPiot_Display prifircraft_Hydraulics privaintainer

‘ prtAircraftPower

[ wontinuous>

o=} f
Use Case: Control Ar

.................... ‘ .- hydraulic pressure
Surfaces T i
FAILED |
Scenario: Scenario 3 |
Description: evEnter_Operational_State()

POST failed. Cannot start.

Check_For_Errors()
Precondtions:
System has failed self-tests. |

|

|

|

\ |

\ |

System s in an [nactive |eveEpun_Ermr(ermr_starhs) |
condtion (FAILED state) 'ﬂ |
|

|

|

|

|

)

Post-conditions: FAILED
System remains in FAILED

state

Figure 123: Control Air Surface Scenario 3

For our final scenario in this example, let’s consider what should happen if
an accuracy or position error occurs in the critical flight control surfaces
when commanded to a new position. Both timing and accuracy errors are
treated the same, so it is enough to show a single scenario for both with a
constraint identifying the conditions that are consistent with the scenario.
In addition, sufficiently severe errors in power or hydraulic pressure can also
result in the system shutting down.

To show this scenario, we’ve used an interaction fragment called Control Air
Surface Unflyable Operation Fragment. First, here’s the main scenario.

=d [Package] ContralAr SUrfacesBE5cenariosPkg [Control Alr Surfaces Scenario 4]

[}
Use Case: Control Air
Surfaces

Scenario: Scenario 4

Description:
error occurs
during fight ops

Preconditions:

System has passed
self-tests. System is in
an WARM condition but
not operational

Post-conditions:
System transitions to a
FAILESAFE state.

itsUc_ControlAirSurfaces

PrEAMS

it

|
\

EvUpdEDe_Stahe(DPERATIFNAL)

|
|

evlpdate_Statel EA]LSA_fg)

‘ evDisable() ‘

A

|
\

Figure 124: Control Air Surfaces Scenario 4 main

The detail for the actual error handling and detection is shown in Figure
125.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 97

\
]

* o
|
evEnter_Operational_State() ‘

Control Air Surfaces Unfiyable Error Fragment




Case Study: System Requirements Definition and Analysis

o]

Scenario: Fragment of
faled operations for
Control Air Surface use
case

Description:

During flight ops, a

timing or position error

that results in an
crcumstances

arises.

Preconditions:
System has entered
normal control of air
surfaces

Post-condttion:
System enters failed
state.

Invariants

sd [Package] ConirolAirSur facesBB5cenariosPkg [Control Air Surfaces Unflyabie Error Fragment]

itsUc_ControlAirSurfaces preAMS

priPilot_Display

priAircraft_Hydraulics

‘ prtAircraftPower

‘ priMaintziner

T

paralel ] i ‘
,
T

T
T
; ;

[unt disabled OR Unfiyable_Error_Detectzd(]

loop)

\ \
ﬁ‘mﬂ:nsmnns) ‘
\

vEnj/Jusmuns,And;ﬁmngUs,ﬁvable)
pdte_Status(arent_Status)

—

[opt) \ mnﬂyama_am_netmed

| avnepnrtﬁmr(ermr,g;{us)
\ \

| evDispla: status)
I

|
\

|
\
|
\
|
|
\
01
\
|
|
I
|
\

«continuous»

lunt (! power_good OR | pressure_good)]

\
\
s |
Check_Poner(poner_good)

hydraulic_pressure

Ehedc_wdramt_pressum}uressme _good)

avReport,Ermr[ermr,ﬁ; 5)

\ evDispla: stlar,us)

I
opt )| [ipressure_good OR. Ipressure_good]

T
unflyable condition detected }

|

I

Figure 125: Unflyable Interaction Fragment

At this point, you may autorealize the messages on the created sequence
diagrams and run the SE Toolkit > Ports and Interfaces > Create Ports and
Interfaces tool to add the event receptions and operations to the actor and

use case blocks. This is the outcome, as shown in the browser:

(=0

T

1 ControlAirSurfacesTypesPkg
#-J Block Definition Diagrams
—bEI Blocks
CAS_Surface_Position
CAS_Surface_Positions
CAS_Status
CAS_Surface_Position_Status
- CAS_Error_Report
Bbﬂ Value Properties
date_time
: E surfacelD
. E error
E—JE> Data Types
o4 CAS_TimeDateType
- 4» CAS_SysternOperationalState
- 4r CAS_SurfacelD
-4 MUMBER_OF_SURFACES
-4» CAS_ERROR_TYPE
B@ Types
b4 NORMAL_RESTART_INTERVAL
EIEI ControlAirSurfacesinterfacesPkg
9--127" Events
""" ™ evEnter_Operational_State()
""" ™ evlpdate_Positions(CAS_Surface_Positions sp)
""" ™ evlpdate_Status()
----- ¥ evDisable()
""" ™ evUndate_State()
""" ™ evlpdate_State()
""" ™ eveEport_Error()
""" ™ evReport_Error(CAS_Error_Report err)
""" ™ evDisplay_Status()
BQ% Interface Blocks
----- Q iUc_ControlAirSurfaces_aCAS_AircraftPower
----- Q iUc_ControlAirSurfaces_aCAS_Aircraft_Hydraulics
E—]Q iUc_ControlAirSurfaces_aCAS_AMS
B@ Operations
; E’F" «directedFeatures evEnter_Operational_State()
E’ﬁ' «directedFeatures evlpdate_Positions(CAS_Surface_Positions sp)
R «directedFeatures evlpdate_Status()
P wdirectedFeatures evDisable()
E’ﬁ' xdirectedFeature» evlUndate State()
£ «directedFeatures evlpdate_State()
£ «directedFeatures eveEport_Error()
E’P" «directedFeatures evReport_Error{CAS_Error_Report err)
E—]Q iUc_ControlAirSurfaces_aCAS_Pilot_Display
B@ Operations
(£ «directedFeatures evDisplay_Status()
----- Q iUc_ControlAirSurfaces_aCAS_Maintail

Figure 126: Interface details added for Control Air Surfaces Use Case

0-E

7.4.3 Creating the Logical Data and Flow Schema

There are many more scenarios that could be added. We’ll stop here in
interest of keeping the Deskbook short. Now we can proceed to the next
step in the process, which will be to create the logical data and flow schema
(which we will just call the “data schema” for short) for the values and flows
we’ve identified. The data schema will be placed in the

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 98



Case Study: System Requirements Definition and Analysis

FunctionalAnalysisPkg > ControlAirSurfacesPkg >
ControlAirSurfacesTypesPkg package. This package will contain block
definition diagrams (BDDs) showing the schema as well as the types and
their relations. Note that we are not identifying types internal to the system
at this point, but rather focused on the types that must be exchanged via
the interfaces defined for the use case block.

What data and flows can you identify from the scenarios we’ve identified?
The most obvious one is the data to set the positions of the control surfaces
that comes from the AMS (or in this case, the aCAS_AMS actor block) used
in the message evUpdate_Positions() and Move_To() system function in
Figure 120 and Figure 121. Also note the response of the evUpdate_Status()
message in response to that. What information should that pass back to the
AMS?

In discussion with the AMS stakeholders, we discover that they would like
to set all positions on every evUpdate_Positions() message, even if the
position hasn’t changed. Further, they stated that they would like the
following information back in the evUpdate_Status() message:

e For each control surface, its current commanded and measured
position, time when the measurement was taken, and the time
necessary to achieve that position from receipt of the movement
command

e For each failed control surface, its time of failure and whether the
control surface is currently operational or failed.

e The overall system state, such as operational, degraded, cooling,
warm, off, etc.

This new understanding of the needs of the AMS stakeholders should result
in new requirements. Indeed, this is one of the primary objectives of doing
the use case functional analysis — identify missing requirements. Thus, we
will add the following requirements to the requirements database and
allocate them to the current use case (this occurs in the Generate/Update
System Requirements task in the workflow shown in Figure 3). These new
requirements are:

In response to a movement command from the AMS, the
system shall respond with a status message that
provides the operational status for each control
surface as well as the overall system operational

state.

The operational status reported to the AMS for each
control surface shall include its current commanded
position, its current measured position, the time
of measurement, and the time required to enact the
movement command for that control surface.

Add these as functional requirements in the RequirementsAnalysisPkg >
RequirementsPkg > FunctionalReqs package. | named these requirements
FuncReq100 and FuncReq101. Be sure to add trace links from the Control
Air Surface use case to these requirements.

Jown | Manage Power | © Lpdate Status | Configure System |© Manage Data |O Start Up © Cortrol Ar Sufaces

-, FuncReq_0

Figure 127: Adding trace links from new requirements to use case

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 99



Case Study: System Requirements Definition and Analysis

Note that this status information is likely related to the Update Status use
case, which periodically updates both the AMS and Pilot Display on a
periodic basis. We expect that the Update Status use case will also have to
send updates on the outcomes of periodic tests on hydraulics and power as
well. These additional messages are not a part of this (the Control Air
Surfaces) use case, so we can ignore them for now. When the
Update_Status use case is analysed in a subsequent iteration, those
additional needs will need to be merged together.

The data schema for the commanded positions and status placed are shown
in Figure 128.

bdd [Package] ControlAirSurfacesTypesPkg [Posibons Schema]

«Blocke OetaTypee e ———
CAS_Surface_Positions CAS_SurfacelD qualified
Values EnumerationLiteras Tags

Left_Ground_Spoiler 3it_Layolut:RhpString
Right_Ground_Spoiler “Qtigh_Range:RhpString
Left_Flight_Spoiler Low_Range:RhpString
Right_Flight_Spoiler ZIMax_Latency:RhpString
Upper_Rudder 4=Prohibited_Values:RhpString
Lower_Rudder 4c35pace_Complexity:RhpString
Left Elevator iQaccuracy:RhpString
Right_Elevator i preasion:Rhpstring
Left_Inboard_Aileron
Right_Inboard_ileron
Left_Outhoard_Aieron e
Right_Outhoard _aileron NUMBER_OF_SURFACES
Left_Inboard_Wing_Flap
Right_Inboard_Wing_Flap
Left_Outboard_Wing_Flap
Right_Outhoard_Wing_Fiap
Upper_Rudder_Trim_Tab et
Lower_Rudder_Trim_Tab (CAS_TimeDateType

Operations

I/ NUMBER _OF_SURFACES

<Block
(CAs_Surface_Position

Values

= surfaceIn:cas_surfaceld

= measured_positionzint
low_rangezint

= high_range:int
commanded_position:int

= time_to_achieve_position:Second

 hes_faultiRhpBoolean—FALSE

Left_Elevator_Trim_Tab Attributes
Right_Flevator_Trim_Tab
Left_Inboard_Aliieron_Trim_Tab
Right_Inboard_Aleron_Trim_Tab
Left_Outbaard_Aileran Trim_Tab
Right_Outhoard_aileron_Trim_Tab
Left_Inboard_Wing_Flap_Trim_Tab “OstaTyoms
Right_Inboard_Wing_Flap_Trim_Tab CAS_SystemOperationalState
Left_Outboard_Wing_Flap_Trim_Tab Erumerstiontiersts
Right_Outhoard_Wing_Flap_Trim_Tab S OPSTATE CFF
Left_Leading_Edge_Fiap i opsTATE BIT
Right_Leacing_Edge_Flap 5 OPSTATE CPERATING
Left_Leading_Fdge _Slat EopsTATE COLD
Right_Leacing_Edge_Slat 2 OPSTATE_COOLING

Left Leading_Edge_Flap_Extender S opsTAE maRH
Right_Leacing_Edge_Fiap_Extender oS opSTATE FAILED

Left Leading_Edge_Slat_Extender 5 OPSTATE DEGRADED
Right_Leacing_Edge_Slat_Extender S OPSTATE FATLSAFE

[ «alueProperty» date:RhpString
E <ValueProperty» ime:RhpString

«Blcks
CAS_Status

Values

[ status:CAS_SystemOperationalState

LLLLLLOLLOLLLLLLOLVLOLLLLLLOVLOLLOLOLOOOO

NUMBER_OF_SURFACES

oBockr
CAS_Surface_Position_Status B =5
: Uc_ControlAirSurfaces
vles
[ surfaceIDicAs_Surfaceld Values
= measured_positonint = position_set:cas_surface_positions

= commanded_positiorsint
= time_to_moverint

‘Operations
= time_of_failre:CAS _TimeDateType
[ time_of_measurement:CAS_TimeDateType
[ is_functional:RhpBoolean Flow Properties

Figure 128: Control Air Surfaces Use Case Data Schema

CAS_Surface_Positions contains an array of the IDs and positions for all the
surfaces. This data structure will be used later when we construct the
executable state machine for the use case block as the means by which the
aCAS_AMS actor sends commands to the use case block. The constant
NUMBER_OF_SURFACES is defined as

Data Type : NUMBER_OF_SURFACES in ControlAirSurfacesTypess. n

General Description Declarstion  Relations Tags — Properties
Declaration:
#define %= 36 -
W
£ >
Locate oK

and the CAS_SurfacelD type is an enumerated type listing all of the control
surfaces.

What about surfaces that have trim tabs or extensible surfaces? These will
be modeled as having unique surfacelDs and so can be separately
referenced.

The other interesting use of types is the use of «qualified» stereotype (from
the HarmonySE profile) which adds the tags of accuracy (how close the
measured value is to its true value) and precision (number of valid
significant digits). These are important aspects of the specification and will
drive downstream technology and design decisions. In this case, the
requirements state:

The precision of the commanded values shall be +/-
0.1 degrees of angle or +/- .1 cm of distance. The
range of accuracy of commanded and measured
positions achieved shall be +/- 0.5 degrees or
angle of 0.5 cm of distance.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 100



Case Study: System Requirements Definition and Analysis

So the precision tags of measured_position and commanded_position
attributes will be set to “+/- 0.1 degrees or cm”. The accuracy tag for these
attributes will be set to “+/- 0.05 degrees or cm.”

We are not now interested in the bit mapping of the exact types that will be
used in the developed system (the “physical data schema”) but rather its
logical properties. This is why this is called the “logical data schema”.
Physical data schema will be specified in the Handoff workflow.

7.4.4 Safety Analysis for Control Air Surfaces Use Case

As before, the approach we will take is to identify the hazards presented by
the use case and create a fault tree analysis for each. In this case, there is
only a single hazard we will consider: Unable to Control Surfaces. Right
click on the ControlAirSurfacesSafetyPkg package in the browser and add a
new FTA diagram. Name this diagram FTA for Unable to Control Attitude.
As before, switch the project to the Dependability profile and back to SysML
when this work is done.

Using the tools in the FTA diagram toolbar (Hazard Condition, Required
Condition, Transfer Operator, Logic Flow, AND operator, and OR operator),
draw the following FTA diagram.

Q
«Hazard» FTA for Unable to Control
Attitude
«RequiredCondition» f L/ ) This is the 'master' FTA diagram
\-L/ for this hazard. It contains

‘l Unable to Control Attitude

Aircraft In Air

transfer operators that link to
different parts of the FTA where
more detailed analysis is
performed.

>~
P

«RequiredCondition»

E i)

AMS is Active /\
&
Ll

«Trangfer» «Trangfer» «Trangfer» «Trarsfer»

A L\
Movement too slow Movement Unable to Cannot Process

inaccurate stationkeep Movement Command

Figure 129: FTA Diagram for Unable to Control Attitude

The transfer operators refer to analyses on other diagrams that logically
feeds into this diagram. Let’s create those other diagrams now.

In the browser, right-click FunctionalAnalysisPkg > ControlAirSurfacesPkg >
ControlAirSurfacesSafetyPkg > FTADiagrams and select Add New FTA
Diagram. Name this diagram Movement Too Slow FTA. Before we elaborate
the diagram, let’s link it to the proper transfer operator. In the first FTA
diagram, right-click the transfer operator Movement too slow and select
Add New -> Hyperlink. Click on the Target Name radio button to show the
name of the master FTA diagram and use the drop down list to select that
original FTA diagram from the list. Click OK and then Click OK again to forge
the link.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 101



Case Study: System Requirements Definition and Analysis

Hyperlink : hyperlink_0 in transfer operator_10013 * N - |
General Description Tags  Properties
Text to display:
(O Free text (®) Target name Target label Tag value
|hyperinic_0
Link target
Enter a file, web page, select 2 model element:
| Fyperinic_0 <]
=0 Packages ~
St 53 ControlAirsurfacesBBScenariosPkg
|: £7 ControlAirSurfacesExecutionScopePkg 4@%

£ ControlAirSurfacesActorPlg
Ej ControlAirSurfacesinterfacesPkg
57 ControlAirSurfacesTypesPkg
E-£7 ControlAirSurfacesSafetyPlkg
-] AND Operators
bﬁ Comments
-3 FTADiagrams
i FTA for Unable to Control Attitude
------ 3 Movement Too Slow FTA]
[ Hazards
-\ OR Operators v

aK Cancel

Locate oK Apply

Figure 130: Linking FTA diagrams with transfer operators

Now, when you right-click on the transfer operator, there will be an option
to select Hyperlink > Movement Too Slow FTA. Use that hyperlink now to
open and navigate to the empty FTA diagram.

At the top of this diagram add a new transfer operator and name it
Movement Too Slow Outcome. Repeat the hyperlink steps above to link
this operator with the master diagram FTA for Unable To Control Attitude.
We now have bi-directional hyperlink navigation between the two
diagrams. We will do the same for the other three FTA to come to a have a
linked set.

Now fill out the rest of the diagram as shown in Figure 131.

1 You can accomplish the same thing using Resulting Condition operators as well.
This is normally used for reusable causality “subroutines” of small interactions
resulting in a condition that will be reused in many FTAs while Transfer operators
are normally used in the decomposition of a single FTA.

«BasicFault»

e «Transfer»
used for movement
Mission: Show the portion of the
fault tree that can result in
Movement Too Slow

Hydraulic Leak
«ResultingCondition»
«BasicFault»

BASIC—{ > WT’
FAULT S ’ - LA BASIC

Hydraulic Input

o FAULT
«BasicFault» =
Ele((x‘ ault Delay in processing
B AS C command
«RequiredCondition» «BasicFault»
F AU LT -_ ResultinfCondition
J

ey BASIC
®e A

Surface Movement Inhibited N

movement

Hydraulic command fault Motor is used for T

Surface linkage fault

«BasidFault»

BASC) BASIC|
FAULT FAULT

Figure 131: Movement Too Slow FTA

The way to interpret Figure 131 is that an outcome of Movement Too Slow
can result any of from independent conditions:

1. The system is using hydraulics for movement AND (either the input
hydraulic pressure is too low OR the system has a hydraulic leak OR
there is a fault in determining the actual movement command), OR

2. The system is using an electric motor for movement AND (there is a
fault in either the electrical power system OR in the motor itself OR
there is a fault in determining the actual movement command), OR

3. Something is obstructing the free movement of the control surface
OR there is a fault in the mechanical linkage of the surface to the
moving force, OR

4. The system was delayed in processing the command

These ORed conditions that can manifest a hazard are commonly known as
cut-sets. The purpose in doing this analysis is to identify where safety
control measure should be added to improve the safety of the system.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 102



Case Study: System Requirements Definition and Analysis

To create the next few diagrams, you can reuse fault elements, such as

«Transfer»

Hydraulic Input Pressure Low by dragging them from the browser onto a ks s pomeratiea

new diagram. Remember, however, you must not reuse the logical
operators (AND, OR, NOT, NAND, NOR, XOR, or Transfer); these operators
have identity and if you attempt to reuse them, while the diagrams with

look ok, you will mess up the causality relations.

Using a similar approach, create the next three diagrams and link them bi-
directionally with hyperlinks to the original FTA For Unable to Control

Attitude diagram.

«Transfer»
o]
see master diagram here for the

details of un-decomposed
Resulting Conditions

Mission: Show the portion of the fault
tree that can result in Movement
Inaccurate

Movement In rate Outcome
«ResultingCondition»

BasicFaut
Hydraulic Fault < E

@
Oe
@ @

«BasicFaut>  Electrical Fault

BASIC A |
FAULT

VWV WV
/l\ N

Surface fault

@ @
@
Control surface «ResultingC¢ndition» @ @
configuration set to — — »
incorrectvalue > (=] ™ Surface Movement Inhibited
@ ®
@ «BasfcFault>

«BasicFaul> Control surface

BAS IC configuration fault BAS |C
FAULT FAULT

Movement command
Control surface

error
configuration corrupted
in vivo

«ResultingCondition» BAS | C
< FAULT

Figure 132:Movement Inaccurate FTA

tree that can result in Unable to
Station keep.

Unable to Stz eep Outcome
o]
Station keeping refers to the ability
of an element to maintain its position

or status dynamically as it is buffeted
by external influences, such as wind.

«ResultingCondition»

@ @
@

@ @

Surface Movement Inhibited

«ResultingCondition»

@ g

L >
Ol
Hydraulic Fault

«ResultingCondition»

(@ o A
@

@ @

Electrical Fault

«Rg§ult|ngCundltl0"” «BasigFault»

o—  feasc

Control surface configuration fault F AU LT

Surface fault

(]

see this diagram here for the
details of un-decomposed
Resulting Conditions

«BasicFault»

BASIC
FAULT

Inaccuracy in position
determination
«ResultingCondition»
° g
@

Station keeping error
determination fault

«BasicFault»

BASIC
FAULT

Processing fault in
determining corrective
movement action

Figure 133: Unable to Station keep FTA

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 103



Case Study: System Requirements Definition and Analysis

«Transfer»
Mesion: Siow fie gt f ‘%‘H A hint for resizing elements (especially the logic operators)
BSUALI DAV E Bt fi \ on the FTA diagrams — hold the SHIFT key down while
— resizing to maintain the same aspect ratio.
Cannot Process Move#ffnt Command Outcome
«BasicFault» PEp—— The next step is to use the FTA diagram to reason about the safety and
BAS C . P (@ o reliability of the system; especially the what, when and where of the use of
’Q‘ fee ® safety control measures. For the sake of brevity, we will only update one of
FAULT C.of‘ntrol ;urfaféelt the five FTA diagrams we just created. In a real system design, you would
Movement command error /[ i perform this work for all FTAs.
«Resultingfondition»
® g | . " .
la® e All safety control measures either make the hazard condition less likely or
Incoming Cofkmand Fault less severe. The easiest to model is the former; this approach leads to the
Tm identification of ANDing conditions for the fault logic flows. They are named
«BasicFault> «BasicFault> such because both, the original fault AND the fail of the safety control
BAS[C BAS C measure must occur, in order to manifest a fault. The likelihood of two
independent faults is the product of the likelihood of each separate fault. So
FAULT J . FAULT if the likelihood of fault A occurring is 10% (0.10) and the likelihood of the
Message not received @ i Surface ID error safety measure failing is 5% (0.05), then the likelihood of both occurring is
BAS|C 0.5% (0.005). The identification of the need for safety measures then
FAULT results in safety requirements which are added to the requirements
el o specification and allocated to the use case under analysis.
Figure 134: Cannot Process Movement Command FTA — In the case of this system, there are certainly opportunities to add safety

measures. Let’s consider each of the ORed conditions in Figure 132
(Movement Inaccurate) separately. If we make each of the ORed conditions
less likely, we improve the system safety with respect to their underlying
fault conditions. To improve readability, we’ll create a separate diagram to
analyze each ORed condition rather than create a (much) larger single
diagram.

First, let’s consider the Hydraulic Fault Resulting Condition. In this case, the
system is relying on the aircraft hydraulics for pressure and then distributing
that pressure internally to move some of the control surfaces. Due to
weight limitations (separate analysis, not shown here), we cannot create a
fully redundant hydraulic system, so we decide that it is enough to detect

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 104



Case Study: System Requirements Definition and Analysis

that low input pressure or internal leaks and report them to the AMS. The
other Basic Fault is that the hydraulic command for movement is incorrect
to achieve the desired position. Add the new Basic Faults, logic operators,
Safety Requirements, and traceToReqs relations to the model. Figure 135
shows the resulting FTA.

<ResutingCondtion»

o
Mission: Show the addition of 00 @
safety measures and safet
Y. s Y ® © surfaces will have 3 readable
requirements to Hydraulic configuration that specifies the
Fault Resulting Condition Hydraulc Faut pressure required to move the
surfoce within appropriate
. movement parameters.

«sefec puurenarcs
safety requirement_300133

Al hydraulically controlled

*RequiredCondition» «ResutingCondtion»

! @ ® | w¥raceToreqs
‘ @ @

Hydraulic pressure i Control surface configuration fauit

used for movement

N—D—N

A 4

A

«BasicFault> «BasfFault>

«BasFaul>

The system shall be able to detect hydraulic leaks
that result in a significant reduction in the
ability to move control surfaces.

The system shall report a hydraulic low input
pressure fault to the AMS

System fault report messages shall be send
reliably to the AMS, using up to 10 retry attempts
if delivery cannot be verified.

The system shall detect if the input hydraulic
pressure from the aircraft is below the acceptable
threshold.

All commands to move systems hydraulically shall
be verified that given the input pressure is
adequate to result in the desired movement.

All hydraulically controlled surfaces shall have a
readable configuration that specifies the pressure
required to move the surface within appropriate
movement parameters.

Pressure Low

— %

A

Hydrauic Link " <TraceToReq
Detecton Fault Hydraulic Lnk
Reporting Fault

safety requirement_260115
The system shall be able to
detect hydraulic leaks that result
ina significant reduction in the
ability to move control surfaces.

«TraceToReq»

«BasicFauk»

o el
FAULT ’ﬂ
FAULT ] FAULT

T Hydraulic Input

A Hydraukc command faut

TraceToReq Y draulic command
Verification fauk

<SsferyRerenerts
‘safety requirement_300131
All commands to move systems hydraulically vall

be venfied that given the Input pressure is
adequate to result in the desired movement.

Incomng Hydrauic Pressure

Sensor fauk
“Ssfer Reaureners
safety requirement_260119
System fault report
messages shall be send
> reliably © the AMS, using

up 1o 10 retry attempts if
delivery cannot be verified.

“TraceToReqs

safety requirement_260117
The system shall report a

hydraulic low inpust peessure
faultto the AMS

«TraceToRegs

“Sate R
safety requirement 260121
The system shall detect If

the input hydraulic
pressure from the aircraft
isbelow the acceptable
threshold.

These requirements must be added to the requirements specification. In the
RequirementsAnalysisPkg > RequirementsPkg add a new package named
SafetyReqs and add them there. Add trace links to the Control Air Surfaces
use case. This is most easily done in the
AirSurfaceControlSystemUseCaseRequirementsMatrix in the
RequirementsAnalysisPkg package. The identification of the safety
measures and corresponding requirements is the point of doing this safety
analysis within the use case functional analysis.

Next, let’s apply the same reasoning to the Resulting Condition of Electrical
Fault (Figure 136).

Figure 135: Hydraulic Fault Safety Measures FTA

We can see that we’ve (indirectly) added safety measures because the new

Basic Faults (indicated with the red dots overlaid onto the Basic Fault®®)
refer to what happens when those safety measures fail. You can also see
that we’ve added new safety requirements with appropriate trace links:

15 1’m not recommending putting red dots on the icons — this is just to show them in

this Deskbook.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 105



Case Study: System Requirements Definition and Analysis

SefetyRequrements
safety requirement_360155 (=]
Al electically controlled surfaces Mission: Show the addition of safety
wil hve a readable confiuration measures and safety requirements to R

‘hﬁ;”eﬂdﬁes “f’de ot et Electrical Fault Resulting Condition o
PIOCRKS SCoves moveent «ResultingCondition» B ASIC
= S
'/I; TraceToRs “5 e
«ResultingCondjtion» TToREa> % U
ngCondj BasicFault @ @
® g ElectricA¥ault
@ @ BAS[C Motor Error
@ @) «RequiredCondition» Reporting Fault
Control purface
configurafion fault
«Basidrault»>

Motor cfnmand fault  yotor 1s aeed for B C

movement
Positign sensor fault . <TraceToReq»

=4
: st

; safety requirement_360163
«BagicFault> <TraceToReq>
«Basicfault> : The system shal verify

i that the motor has
B C i successull achieved the
é B ASIC : commanded position.

«Basicifault»

seetyRmpirrats
safety requirement_260119

Motor Command =
: System fault report shal
Vst P < B e
i —, Up to 10 retry attempts if deivery
raceToRegs cannot be verified.
safety requirement_360157 A
Al ommands < v
electrically wil be verified tha the Electrical power fault
input motor command is adequate. z
to resuitin the design movement. «BasicHault» «BasifFault> <TréceToReq>
Faultin elegtfical backup ="~ Electrical Fault
.~~~ Faultin electrical Reporting Fault
«TraceToReg” Lo 3
1= SifaEToReqe) PONRE fault detection TraceToReq>
«SefetyReiremerts %
safety requirement_3560159 ~
s s

The system shall detect loss of

electrical power and switch to Sfeliieoxeneot 001

back up quickly enough to The system shal report

ensure continued processing electrical problems to the

and movement. AMS.

Figure 136: Electrical Fault Safety Measures

This work has resulted in several more requirements that will be added to
the specification and linked to the use case.

Now let’s look at the condition of Control Surface Configuration Fault. In
this case, we’ll add safety measures to verify the command by returning the
command value, once set, to the Maintainer actor for verification. We’ll
also protect the configuration data by storing it redundantly, and check that
the configuration data is not corrupted prior to its use. If found to be
corrupted, the corresponding control surface is marked as disabled, and the
AMS is notified. That results in the FTA shown in Figure 137:

«ResultingCondition»

)
Mission: Show the addition of ® e
safety measures and safety @
requirements to Control Surface @ @
Configuration Fault Control surface
configuration fault

~SefenyRequrements
safety requirement_380183

1f configuration data for a
control surface Is determined

/’\ to be corrupted, a message
= & shall be sent to the AMS
notifying It of the fault and
[’\] that the control surface is
| unsable,
'S etyReqursments
‘safety requirement_380181

If configuration data for a
control surface is determined to
be corupt, the system shall
mark that surface as unusable
~7 until the corruptied data is
repaired.

«TraceToReq»

«BasicFault» «BasicFault»

«TraceToReqs
*SafetyRequirements
safety requirement_380179
" Configuration data shall
«TraceToReq» be checked for
Control surface Verification of (ST, Configuration data corruption prior to use.
configuration setto commanded value with configuration redundancy fails to identify
incorrect value «TraceToRed»  Maintainer failed corrupted in vivo corruption
Bl TaceToRens «TraceToReq»
safety requirement_360169 | 3 |
<SefetyRequrements <Satetequrements
Vihen configuration changes safety requirement_360173 safety requirement_380177
are made by the Maintainer,
the system shall return the The system shall store Movement commands

commanded value to the configuration data redundantly, shall be checked that they
Maintainer to verify the set storing the data asin one's are within the configured
value matches the desired complement form limits of the control
value. surfaces

Figure 137: Control Surface Configuration Fault Safety measures

Movement Command Error is considered a basic fault but really is that the
command from the AMS was corrupted, referenced an invalid Control
Surface ID, or commanded a position that was out of its range (as
determined by the configuration for that control surface). As for Surface
fault, that refers to mechanical damage to the control surface itself. In this
case, we increase safety by improving the reliability of the control surface.
We'll handle that by specifying the MTBF of the control surface materials
and provide a specification of resistance to impact force. This results in an
update to Figure 132. The result is shown in Figure 138.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 106



Case Study: System Requirements Definition and Analysis

«Transfer»

[
(@] C
Mission: Show the portion of the fault ;ee ll"ls f\ag;am here ft;;lhe
tree that can result in Movement etails of un-decom post
Inaccurate Resulting Conditions
SafetyRequrements
safety

«ResultingCondition»

\ Movement In: rate Outcome requirement_3%
@ @ ! The MTEF for the
@ control surface itself
@ © shallbe 100,000

__ hours
Hydraulic Fault «BasicFault» 7

«TraceToReqn

«ResultingCondition» B B AS'C
Ooe ‘ = «TraceToReqs
o o) «—— FAULT} e
Electrical Fault AT safety requrement_390196

|\/V

Each contrdl surface shall be
able to withstand an impact
of 200N without loss of
function.

«Resultingfondition»

| @ @
(S}
«ResultingCndition» ® 9
“SafetyRe te
® g Surface Movement Inhibited sofety requrement. 380189
@ __ Each movement command for a surface shall be
© ) verified to ensure that the movement § within

the configured range of the control surface. If the
movement commandis out of range for the
control surface, the entire message (induding

Control surface «BasicFault» «BasicFault»
configuration fault

«TraceToReq»

movement commands for other contral surfaces)
shal be rejected and an error message shal be
sent to the AMS.

«TraceToReqs

SafetyRequrements
Movement command «TraceTorehiovement Command =) safety requrement 380187
error 7 checking fails
L Each control surface specfied in
SafetyRequrements amovement command shall be
safety requirement_380185 dentiied with 3 unique Surface
ID. IF 3 surface ID s invali, the
Movement commands will be

entire mes: shal be rejected
checked viaa message CRC to s re

and an error message shall be
detect coruption. Should a retumed to the AMS.
message fal ks CRC chedk, the

message shall be rejected and an

aTor message retumed to the

AMS.

Figure 138: Movement Command Error Safety Measures FTA

Lastly, for the Surface Movement Inhibited Resulting Condition we have
decided that proper maintenance should identify and repair these concerns
adequately, so no new requirements are necessary.

As a result of the fault tree analysis, we have identified a number of safety
concerns and identified a total of 22 new safety requirements which are
added to the requirements specification and allocated to the Control Air
Surfaces use case. These should be placed in the RequirementsPkg, traced
to the Control Air Surfaces use case, modeled in (new) scenarios and will
be represented in the state machine (coming up next).

7.4.5 Create the Control Air Surfaces Use Case State Machine (and
execute it too!)
The next step in the process workflow (Figure 115) is to construct the state
machine. The best way to construct such a state machine is incrementally.
Although the process flow in Figure 115 shows the state machine being
created and then in the next step being executed, actual practice has shown
that it is best to construct the state machine in a series of small steps and
use execution at each step to ensure that it is right so far before adding
more state machine elements. This is such an important idea, let’s call it out
in a side note:

The best way to construct a possibly complex state machine
is in a series of small steps — called nanocycles — wherein the
state machine correctness is verified at the end of each step.
These steps typically take between 10 and 60 minutes to
complete.

In this example, we will just show the state machine in multiple stages:
1. Command received results in movement of a set of control surfaces
2. Commanded movement is out of range
3. Movement is inaccurate or too slow
4. Faults are detected at run-time in specific surfaces

We'll start with a simple sunny day case and get that state machine running
(simulated, of course). Then, we’ll progressively add more error states,
conditions, and events. At each stage, we’ll add state behavior to model
some more requirements.

7.4.5.1 Stage 1: Sunny day control surface movement

Let’s add a state machine to the use case block Uc_ControlAirSurfaces.
Figure 139 shows the state machine. It looks trivially easy — so, it should be
asnap to getit to run.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 107



Case Study: System Requirements Definition and Analysis

o
Mission: Control Air Surface State Machine Step 1 (simple sunny day case)

Input:

evUpdate_Positions passes gp: CAS_Surface_Positions which include an array of
CAS_Surface_Position, each of which has two attributes; a surface ID (of type
CAS_SurfacelD) and a position (of type int).

Watting_For_Command evUpdate_Postions Moving_Surfaces. (é)‘
Reactonses

ganaan(param&sp};

Figure 139: Control Air Surfaces use case state machine step 1

It turns out that it’s not quite so trivially easy. The event
evUpdate_Positions passes the set of surface command positions using the
CAS_Surface_Positions data structure shown in Figure 128. So we’ll have to
add the parameter to the event and write a small number of functions to
manipulate that data in order to get the execution working.

The act of drawing the event on the state machine creates the event. To add
the parameter to the event, locate the event in the browser at
FunctionalAnalysisPkg > ControlAirSurfacePkg >
ControlAirSurfacesinterfacePkg. Double click on the evUpdate_Pos event
to open its Features dialog. On the Arguments tab, add an argument sp. Use
the type pull down list followed by the Select option to select its type
CAS_Surface_Positions.

Event: evllpdate_Positions in ControlAirSurfacesinterfacesPkg - n

General Arguments  Descripion  Relations Tags  Properties

|ev Update_Positions (CAS_Suface_Positions™ sp) |

HEX ¢ L
MName Type Value
E'[,] sp CAS_Surface_Positions
<New>
Locate oK

We need to add some actions to support getting and setting these
attributes. Because the multiplicity of the composition relation between the
CAS_Surface_Positions block and the CAS_Surface_Position block (shown
in Figure 128) is more than one and fixed, Rhapsody generates an array to
hold the values. This is suitable for our purposes (simulation).

We will define three operations to access the individual elements of the
array:

e getSurface_Position(id: CAS_SurfacelD): CAS_Surface_Postion

e setSurface_Position(id: CAS_SurfacelD, pos:int)

e setSurfacelD(id:CAS_SurfacelD): void

The next three figures provide the implementation of those operations:

Operation : getSurface_Position in CAS_Surface_Positions - n
General Description  Implementation  Argumerts Relations Tags — Propeties
CAS_SufacePosition getSurface_Position{const CAS_Surface|D id) |
00 return itsCAS_Surface Position[id]: A
]
< >
Locate oK
Operation : setSurface_Position in CAS_Surface_Positions X n
General Description Implementation  Arguments Relations Tags  Properties
void setSurface_Position{const CAS_SurfacelD id.int pos) |
00 itsCAS Surface Position[id].setCommanded position(pos): a
v
< >
Locate OK

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 108



Case Study: System Requirements Definition and Analysis

tSurfacelD in CAS_SurfacePositions - SendAction : sendaction_1 in statechart_1 - n
Ll
General Description  Implementation  Arguments Relations Tags  Properties General | Description  Relations Tags  Properies
void setSurfacelDiconst CAS_SufacelD id) Name: |sendaction_t || Label...
itsCAS SurfacePosition[id].setSurfacelID(id): a Stersotype: | V| (é| E
Preview: |evMovementCommand{&zero)to plc_CortrolAirSurfaces
Target
y Target: plc_ControlAirSurfaces in Funct ~ ||
< >
Locate oK Bvent
Event: evMovementCommand in Functi ~ || =]
Arguments:
These operations allow an element with a pointer to a Narme Type Value
CAS_Surface_Positions instance to access individual surface position values. El sp CAS Su...  Baero
Now, we will “instrument the actor” by adding state machine behavior to .
the aCAS_AMS actor block, so that it sends the event (along with values for Locate ok
the sp argument) to the use case block.

Figure 140: Adding parameters to the Send Action invoked by the evZero event

First, let’s add four value properties to the actor block, named zero, We'll repeat this for the other three events, each sending a different
positionSet1, positionSet2, positionSet3. Each of these should be of type attribute. When complete, the state machine for the actor block should look
CAS_SurfacePositions. Then create the state machine for the aCAS_AMS like Figure 141.

actor block. We will add new events that we will use to drive the simulation,
evZero, evPos1, evPos2, and evPos3. Each will cause a transition to a Send
Event that sends the evUpdate_Positions with the appropriate argument, to
the port pUc_ControlAirSurfaces. At run time, this port will be connected to
a corresponding port on the use case block, so it will receive these events
and arguments to act on.

For example, the evZero event will active the Send Action with the event
evMovement carrying the data &zero to the port pUc_ControlAirSurfaces:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 109



Case Study: System Requirements Definition and Analysis

stm [Actor Block] aCAS_AMS [statechart_5]

1

Ready

eviero

evUpdate_Positions{&zero) to pUc_ControlAirSurfaces

ExBosL evUpdate_Positions(8position_set1) to pUc_ControlAirSurfaces

evPos2

evUpdate_Positions{&position_set2) to pUc_ControlAirSurfaces

evPos3

evUpdate_Positions{&position_set3) to pUc_ControlAirSurfaces

Figure 141: aCMS_AMS State Machine step 1

Note that we use “&” before the parameter name in Figure 140 because by
default Rhapsody sends complex structures as a pointer, so we must pass
the address of the attribute to get to its values.

To complete the work on the actor block, we should assign values to the
control surface positions that we’re going to send to the use case block.
We'll do that in the setUpPositions() operation shown in Figure 141.

In the browser, right click on the aCAS_AMS actor block and select Add New
-> Operation. Name this operation Setup_Positions. On the implementation
tab of the features dialog, add the following implementation:

// set up the positions sets up to the Right Inboard Aileron (first 10
surfaces)

zero.setSurface Position(Left Ground Spoiler,
zero.setSurfaceID(Left Ground Spoiler);
zero.setSurface Position(Right Ground Spoiler,
zero.setSurfacelID(Right Ground Spoiler);
zero.setSurface Position(Left Flight Spoiler,
zero.setSurfaceID(Left Flight Spoiler);
zero.setSurface Position(Right Flight Spoiler,
zero.setSurfaceID(Right Flight Spoiler);
zero.setSurface Position (Upper Rudder, 0);
zero.setSurfacelID (Upper Rudder) ;

0);
0)s
0);

0)s

zZero.
zZero.
zero.
zero.
zero.
zZero.
zZero.
zero.
zero.
zZero.
zZero.

setSurface Position (Lower Rudder,
setSurfacelID (Lower Rudder);
setSurface Position (Lower_ Rudder,
setSurfacelID(Left Elevator);
setSurface Position(Left Elevator,
setSurfaceID(Right Elevator);
setSurface Position(Right Elevator,
setSurfacelID(Left Inboard Aileron);
setSurface Position(Left Inboard Aileron,
setSurfaceID(Right Inboard Aileron);
setSurface Position(Right Inboard Aileron,

0)7:

0) 7

0) 7

0) 7

0) 7

0);

// set up postionsSetl

position setl.
position setl.
position_setl.
position_setl.
position setl.
position setl.
position_setl.
position_setl.
position setl.
position setl.
position_setl.
position_setl.
position setl.
position setl.
position_setl.
position_setl.
position_setl.
position setl.
position setl.
position_setl.

setSurface Position(Left Ground Spoiler, 1);
setSurfaceID(Left Ground Spoiler);
setSurface Position(Right Ground Spoiler,
setSurfaceID(Right Ground Spoiler);
setSurface Position(Left Flight Spoiler, 3);
setSurfaceID(Left Flight Spoiler);
setSurface Position(Right Flight Spoiler,
setSurfaceID(Right Flight Spoiler);
setSurface Position (Upper Rudder, 5);
setSurfacelID (Upper Rudder);
setSurface Position (Lower_ Rudder,
setSurfacelID (Lower Rudder) ;
setSurfacelID(Left Elevator);
setSurface Position(Left Elevator,
setSurfaceID(Right Elevator);
setSurface Position(Right Elevator,
setSurfaceID(Left Inboard Aileron);
setSurface Position(Left Inboard Aileron,
setSurfaceID(Right Inboard Aileron);
setSurface Position(Right Inboard Aileron,

2);

4);

6);

7);

8);

9);

10) ;

// now for postionSet2

position set2.
position_set2.
position_set2.
position set2.
position set2.
position_set2.
position_set2.
position set2.
position set2.
position_set2.
position_set2.
position_set2.
position_set2.
position set2.
position set2.
position_set2.
position_set2.
position_set2.
position set2.

setSurface Position(Left Ground Spoiler, -1);
setSurfaceID(Left Ground Spoiler);

setSurface Position(Right Ground Spoiler, -2);
setSurfacelID(Right Ground Spoiler);
setSurface Position(Left Flight Spoiler,
setSurfaceID(Left Flight Spoiler);
setSurface Position(Right Flight Spoiler, -4);
setSurfacelID(Right Flight Spoiler);
setSurface Position (Upper Rudder, -5);
setSurfacelID (Upper_ Rudder) ;

setSurface Position(Lower Rudder, -6);
setSurfacelID (Lower Rudder);

setSurfacelID(Left Elevator);

setSurface Position(Left Elevator, -7);
setSurfaceID(Right Elevator);
setSurface Position(Right Elevator,
setSurfaceID(Left Inboard Aileron);
setSurface Position(Left Inboard Aileron,
setSurfaceID(Right Inboard Aileron);

-3);

-8);

-9);

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 110



position set2.

Case Study: System Requirements Definition and Analysis

setSurface Position(Right Inboard Aileron, -10);

// and some out of range values for position set3

position set3
position set3
position set3
position set3
position set3
position set3
position set3
position set3
position set3
position set3
position set3
position set3
position set3
position set3
position set3

position set3
position set3

position set3.

.setSurface_ Position(Left Ground Spoiler, 100);
.setSurfaceID(Left Ground Spoiler);

.setSurface Position(Right Ground Spoiler, 45);
.setSurfacelID(Right Ground Spoiler);

.setSurface Position(Left Flight Spoiler, -100);
.setSurfaceID(Left Flight Spoiler);

.setSurface Position(Right Flight Spoiler, -50);
.setSurfacelID(Right Flight Spoiler);
.setSurface Position (Upper Rudder, 47);
.setSurfacelID (Upper Rudder) ;

.setSurface Position(Lower Rudder, -60);
.setSurfacelD(Lower Rudder);

.setSurfacelID(Left Elevator);

.setSurface Position(Left Elevator, -33);
.setSurfaceID(Right Elevator);

position set3.
position set3.
.setSurface Position(Left Inboard Aileron, 150);
.setSurfaceID(Right Inboard Aileron);

setSurface Position(Right Elevator, -92);
setSurfaceID(Left Inboard Aileron);

setSurface Position(Right Inboard Aileron, -1500);

This implementation only sets the ids and position values for the first 10

surfaces. If you want to be more complete and set all 36, feel free to do so.

The last thing we need to create before we can run the model is to
implement the Move_To(params->sp) operation used in Figure 139.

Rhapsody uses the slightly odd params syntax to pass event
arguments. To reference a value passed as an argument in
an event, Rhapsody creates a struct called params and
makes all the pass arguments fields of that struct. See
Section Appendix: Passing Data Around in Rhapsody for
C++12 for more details on this.

To do this implementation, we will create smaller functions to assist.

Move_To () will call Set_Position() for each surface. Set_Position(), in turn,
sets a local attribute position_set (of type CAS_Surface_Positions) with the
passed values.

For debugging, we’ll also print the values out to standard

output so that we can visually see what’s going on.

1. Create the position_set attribute

In the browser, right click on the use case block Uc_ControlAirSurfaces and
select Add New -> Value Property. Name the attribute position_set and
specify its type as CAS_Surface_Positions. This attribute will hold the
positions of the surfaces.

2. Create the Move_To operation
In the browser, right click on the use case block Uc_ControlAirSurfaces and
select Add New -> Operation. Name the operation Move_To. In the
aguments tab of the operation features dialog, add an argument positions.
Double click on the argument name to open its Features dialog. In this
Features dialog, deselect the Use Existing Type checkbox and type in:
CAS_SurfacePositions* as the declaration (don’t omit the trailing “*’ which
identifies the element as a pointer to a type):

Argument : pesitions in Move_To x n

~
General Description Relations Tags ~ Properties

Name: |pos'rti0ns | Label..
Stereotype: | ~ | @E
Specify type

[ Use exdsting type

C++ Declaration: |CAS_Surfac:e_Pos'rtions' |

Default Value: | |

Direction

®n Ooat O lnOut

Locate oK

Click OK to return to the operation features dialog. In the implementation
tab of the Move_To features dialog, enter the following implementation:

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 111



Case Study: System Requirements Definition and Analysis

Operation : Move_To in Uc_ControlAirSurfaces e > |

General Deserption Implementation | Arguments  Relations Tags  Properties

[void Move_To[CAS_Surface_Postions” positions) L ]

00 update local copy (for later simulated behavior) ~

01 Set_Position(Left_Ground Spoiler, positions-> getSurface Position(Left_Ground Spoiler).getCommanded position()):

02 Set_Position (Right_Ground Spoiler, positions-rgetSurface Position (Right_Ground Spoiler) .getCommanded position()):

03 Set_Position (Left_Flight_Spoiler, positions-> getSurface Position (Left_Flight_Spoiler).getCommanded_position()):

02 Sec_Position(RighT_Flight_Spoiler, positions->getSurface Position(Right_Ground_Spoiler) .gectCommanded _position()):

05 Sec_Position(Upper Rudder, positions->getSurface Position(Upper Rudder).getCommanded position()):

06 Set_Position(Lower Rudder, positions->getSurface Position(Lower Rudder).getCommanded position()):

07 Set_Position(Left_Elevator, positions->getSurface Position(Left Elevator).getCommanded position()):

08 Set_Position(Right_Elevator, positions->getSurface Position(Right_Elevator).getCommanded position()):

09 Set_Position(Left_Inboard Aileron, positions->getSurface Position (Left_Inboard Aileron).getCommanded position()):

10 Set_Position (Right_Inboard Aileron, positions->getSurface Position (Right_Inboard Aileron).getCommanded position());

1

12 print_Line():

13 v
< >

Locate oK

Since the image is a bit small, here is the implementation a bit larger:

// update local copy (for later simulated behavior)

Set Position(Left Ground Spoiler, positions->

getSurface Position(Left Ground Spoiler).getCommanded position());
Set Position(Right Ground Spoiler, positions->

getSurface Position(Right Ground Spoiler).getCommanded position());
Set Position(Left Flight Spoiler, positions->

getSurface Position(Left Flight Spoiler).getCommanded position());
Set Position(Right Flight Spoiler, positions->

getSurface Position(Right Ground Spoiler).getCommanded position());
Set Position (Upper Rudder, positions->

getSurface Position (Upper Rudder).getCommanded position());

Set Position (Lower Rudder, positions->

getSurface Position(Lower Rudder) .getCommanded position());

Set Position(Left Elevator, positions->

getSurface Position(Left Elevator).getCommanded position());

Set Position(Right Elevator, positions->

getSurface Position(Right Elevator) .getCommanded position());

Set Position(Left Inboard Aileron, positions->

getSurface Position(Left Inboard Aileron).getCommanded position());
Set Position(Right Inboard Aileron, positions->

getSurface Position(Right Inboard Aileron) .getCommanded position());

Print Line();

This operation calls Set_Position for each (of the first 10) positions and then
finishes with a call to Print_Line() to send an extra line feed to standard
output.

3. Create Set_Position operation

This and the Print_Pos operation are here to assist in the control and

visualization of the simulation. As such, they do not represent requirements.

The HarmonySE profile contains a stereotype to mark such elements:

«nonNormative». It indicates elements that do not represent a part of a
specification per se and so do not represent requirements or design. All
such elements should be so marked.

Repeat the previous procedure for adding a new operation to the
Uc_ControlAirSurfaces block. This type, name the operation Set_Position
and give it two parameters. The first, id, is of type CAS_SurfacelD. The
second, pos (of type int) is the position value to set.

Operation : Set_Position in Uc_CentrolAirSurfaces - n
General Description Implementation Argumerts Relations Tags  Propeties
void Set_Position(const CAS_Surface|D id.int pos) |
=4=F ST
Name Type Value direction 2
Eﬂ] id CAS_SurfacelD In
Eih pos int In o
Locate oK

In the implementation tab, add the implementation:

Operation : Set_Position in Uc_ControlAirSurfaces - n

General Description Implemertation  Arguments Relations Tags  Properties

void Set_Position{const CAS_SurfacelD id int pos) |

00 Print Pos(id, pos); ~
01 position_ set.set3urface Position(id, pos):;
02
w
< >
Locate OK

4. Add the Print_Pos operation
This operation is meant to print the values for debugging. As before, add the
new operation to the use case block and give it the same parameter list as
the Set_Position() function. For implementation, just add the following:

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 112



Case Study: System Requirements Definition and Analysis

std::cout << "Surface " << id << " at position " << pos << std::endl;

I’m implementing this model with the Cygwin compiler. It requires the std::

prefix on cout and endl| applicators. If you're using another compiler, such as

older versions of Microsoft Visual C++, you might need to use the line
without the prefix:

cout << "Surface " << id << " at position " << pos << endl;

5. Add the Print_Line operation
This is a very simple function that just adds a blank line between sets of
outputs. Add the new operation as before but don’t give it any arguments.
Specify the implementation as

std::cout << std::endl;
We are now ready to run!

Running the model

If you've entered all the model correctly so far, and Rhapsody is correctly
configured to operate with your compiler, clicking on the GMR
(Generate/Make/Run) button (or Simulate) button with generate code the
model code, run the compiler and linker to generate an executable, and
then run that executable.

Run the model and click on the Go Idle on the Execution control toolbar of
Rhapsody. We'll now open three debugging windows in Rhapsody so we can
view the execution. The instance statecharts for the running instances of
the Uc_ControlAirSurfaces and aCAS_AMS blocks, and an animated
sequence diagram.

To open the instance statecharts, in the browser, navigate to those blocks.
In each you should see an Instances group under the block. Click on the ‘+
to see the instances and then right click on the instance and select Open
Instance Statechart for each. Rhapsody has a useful filter for the browser
under such circumstances. When a model is simulating, Rhapsody provides
an Animation Browser Filter to show only elements related to the
simulation.

dgmnhmﬂsunmmn_ X g_dPosltlons Schema in Functio..,

A tion Vi <
nimation Yiew Panel Diagram [Package] ControlAirSurfacesPkg [Control Air Surfaces Col

4 sHarmonySEx Entire Model View ~
- Packages
-5 ActorP
£ Requir Component View
=51 Functi 3 F
%’ (3 Pa Diagram View Zero surfaces send Start Event Add Tin|
& EJ Unit View
[5] Loaded Units View Push Push P

Use Case View
AMS Actor Block

Requirement View
I=H Overridden Properties View Command Position 1 send Enable Event Add Po
Locked and Out-of-sync View

Animation View 9 Push Push P

Custom View...

T Command Paosition 2 send Disable Event
Q aCAS_Aircraft_Hydraulics weight

aCAS_Pilot_Disj
aCAS_Air(raFt_‘I)’ula\ynrer Push Push
Etl ControlAirSurfacesinterfacesPkg
E-50 ControlAirSurfacesTypesPkg N
262 Blocks Command Position 3 Gen Sur]
CAS_SurfacePasition S
CAS_SurfacePositions Push P
CAS_Status
CAS_SurfacePositionStatus
E-50 ControlAirSurfacesSafetyPkg Set Unfiy,
Ej UpdateStatusPkg
£ startUpPkg 3

Ej DesignSynthesisPkg
52 InterfacesPkg
Ej CommonPkg

50 TypesPkg

- Profiles

E-{Z3] SysML (REF)

i3] HarmenySE (REF)
(3 Packages

(.-F51 NeanandshilitDrafile (REED

To create an animated sequence diagram, click on the Rhapsody Tools menu
and select Animated Sequence Diagram. Rhapsody will present you with a
mini-browser to select the sequence diagram to use as a basis. Select one of
the sequence diagrams we’ve created earlier.

| recommend you open an event insertion window. To do this, you can click
on the event generator button on the execution toolbar.

Now arrange the windows how you like. | prefer an arrangements such as
Figure 142,

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 113



Case Study: System Requirements Definition and Analysis

5 Cowe . Setemin e e

pisiomt Fomse

IS5y e o  costprmemrren ) | | ficotsnes /

Figure 142: Running Step 1

In the event generator dialog, select the prtAMS instance (it may be at the
bottom of the list of instances created). Select an event to run, say evPos3
and click on Generate. If the model is not now running, you can click on
either the Go or Go Idle buttons to step the model through the processing of
the event. Rhapsody will run the model and show you the current and last
states of the state machines, the messages on the sequence diagram, and
the output sent to your computer’s standard output.

ST N oA Bt bty | o

L G Taa K ==,

Figure 143: Event processing

You can explore the model execution by sending the events in different
orders to satisfy yourself that it is properly representing the requirements
you’ve modeled.

This may seem like a lot of work but most of the simulation support work is
done and we can spend more mental focus on adding the remaining

requirements.

There are more requirements to add, so we’ll do some more nanocycle
iterations:

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 114



Case Study: System Requirements Definition and Analysis

Step 1: Receive movement command and enact it in simplest case
(complete)

Step 2: Validate command ranges

Step 3: Validate resulting movement and timing

Step 4: Handling requirements about warm and cold restarts

Step 5: Manage “flyable” operational state with surface faults

Step 2: Validate command and validate resulting movement and timing

Adding the requirements around validating the commands is
straightforward but requires a number of small additions to the model.

e We'll use the CAS_Surface_Position value properties low_range,
high_range, and measured_position.

wBlocks
CAS_surface_Positions

Values

Operations
E getSurface_Position(id:CAS_SurfaceID):CAS_Surface_Position
E setSurface_Position(id:CAS_SurfacelD, pos:int):void
E setSurfacelD{id:CAS_SurfacelD):void
& setsurface_Range(id:CAS_SurfaceID, low:int, high:int) void
E isIn_Range(id:CAS_SurfacelD,postint):RhpBoalean
E setMeasured_Position({id:CAS_SurfacelD, pos:int):void
E setTime_To_aAchieve_Position(jd:CAS_SurfaceID, timeInterval: Second):void
H getFault_Status(id:CAS_SurfaceID):RhpBoolean
E snonMormatives setFault_Status(d:CAS_SurfacelD, faultvalue:RhpBoolean):void

)

NUMBER_OF_SURFACES

«Blocks
CAS_surface_Position

Valves
E surfaceID:CAS_SurfaceID
E measured_position:int
low_range:int
E high_range:int
E commanded_position:int
E time_to_achieve_position:Second
E has_fault:RhpBoolean=FALSE

e To CAS_Surface_Positions, we'll add an operation to set the surface
ranges for individual surfaces

Operation : setSurface_Range in CAS_Surface_Positions - n

General Description Implementation  Arguments Relations Tags  Properties

|void setSuface_Range(const CAS_SufacelD id int lowirt high) |

00 itsCAS_Surface Position[id].setLow_range (low); -
01 icsCAS_Surface Position[id].setHigh range (high); -
£ >
Locate oK

and we'll add an isinRange(): RhpBoolean function to see if a
commanded position is between the low and high range limit for a

particular surface

Operation : isln_Range in CAS_Surface_Positions

General Description Implementation  Arguments Relations Tags  Propeties

RhpBoclean isln_Range(const CAS_SurfacelD id,int pos)

00 return (pos >= itsCAS_Surface Position[id].getLow_range()) &&
01 (pos <= itsCAS_Surface_Position[id].getHigh range()):

Locate 0K

To the Uc_ControlAirSurfaces use case block, we’ll add an

Initialize_Surfaces operation to set the values of the surfaces. This

operation will be invoked when we start the state behavior.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 115




Case Study: System Requirements Definition and Analysis

Operation : Initialize_Surfaces in Uc_ControlAirSurfaces - n Operation : Set_Position in Uc_ContrelAirSurfaces - n
General Description  Implementation  Arguments Relations Tags  Propeties General Description  Implementation  Arguments Relations Tags  Properties
void Initizlize_Surfaces() | void Set_Posttion(const CAS_SurfacelD id int pos) |
00 // initialize the range limits first ~ 00 Print Paos(id, pos);: ~
01 // =et up the positions sets up to the Right Inboard Aileron (fim 01 if (position set.isIn Range (id, pos))
02 position set.setSurfaceRange (Left_Ground Spoiler, -40, 40); 02 position_set.szetSurface Position(id, pos):
03 position_set.setSurfaceRange (Right_Ground Spoiler, -40, 40); 03 else {
04 position set.setSurfaceRange (Left Flight Spoiler, -40, 40); 04 CUT_PORT (paChS_AMS) -»GEN (evRangeError (id, pos));
05 position_set.setSurfaceRange (Right Flight Spoiler, -40, 40); os Print Error("Range Error", id):
06 position_set.setSurfaceRange (Upper_ Rudder, -35, 35); 11 ¥z
07 position_set.setSurfaceRange (Lower Rudder, -35, 35);
08 position set.setSurfaceRange (Left Elevator, -30, 30); ~
09 position_set.setSurfaceRange (Right Elevator, -30, 30); < >
10 position_set.setSurfaceRange (Left Inboard RAileron, -30, 30):
11 position_set.setSurfaceRange (Right_Inboard Aileron, -30, 30): Locate oK
1z
13 // set up postionsSet after, since the set operation checks the
14 // rangs
15 position_set.setSurface_Position(left Ground Spoiler, 1): You’ll notice that this function calls a new operation called
16 position_set.setSurfacelD(Left_Ground Spoiler):;
17 position_set.setSurface Position(Right Ground Spoiler, 2); Print_Error in the use case block as well to send that information to
18 position_set.setSurfacelD(Right Ground Spoiler);
19 position_set.setSurface Position(Left_Flight Spoiler, 3): Standard Output
20 position_set.setSurfacelD(Left_Flight_ Spoiler):;
21 position set.setSurface Position(Right Flight Spoiler, 4); Opelaiiol\: Print_Error in Uc ControlAirSurfaces - n
22 position_set.setSurfacelD(Right Flight Spoiler);
23 pos?t?on—se‘:'Satsuxface—%ﬂtlon(UPPEI—RuddEI' S): General  Description  Implementation  Arguments  Relations Tage  Propeties
24 position_set.setSurfacelD(Upper Rudder):
25 pos:!.t,l_.on_set,.set,Su:rface_P031t,10n(Lower_Rudde:r, 6); void Print_Emor{const RhpStringd erMsg const CAS_SurfacelD id) |
26 position_set.setSurfacelD(Lower Rudder);
27 position_set.setSurfacelD(Left Elevator); fd E * ﬁ @
28 position set.setSurface Position(Left Elevator, 7): =
29 position_set.setSurfacelD(Right Elevator); Mame Type Value direction ~
30 position_set.setSurface Position(Right Elevator, B);
31 position_set.setSurfacelD(Left Inboard Aileron); Eﬂ'] errMsg RhpString In
32 position set.setSurface Position(Left Inboard Rileron, 9): Eﬂl] id CAS_SurfaceID In
33 position_set.setSurfacelD(Right_Inboard Aileron); M o
34 position set.setSurface Position(Right Inboard Rileron, 10); <New>
35 hd
< > Locate oK
Locate oK
Operation : Print_Errer in Uc_CentrolAirSurfaces - n
General Description  Implementation  Argumerts Felations Tags  Properties
) . P
e We'll also update the use case block operation setPosition to check
. . . . void Print_Emor{const RhpStringd erMsg const CAS_SurfacelD id) |
the range before assigning the value, and issue an error message if
00 =std::cout << "ERROR: " << errM=g << ~
not 01 " for surface " << id << std::endl;
W
€ >
Locate OK

e If yourecall, the actor block aCAS_AMS is already set up with zero,
position_setl, position_set2 and position_set3 surface position
sets. All but position_set3 have in-range values but position_set3

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 116



Case Study: System Requirements Definition and Analysis

has out of range values. We can now run the model and send the

events evPos2 and evPos3 to the actor to ensure that good values °

pass and bad values are detected.

And, finally, we add the event evRangeError to the interface
iUc_ControlAirSurfaces_aCAS_AMS

We must also update the state machine for the aCAS_AMS actor

block to receive the event evRangeError, which passes the surface

ID and the commanded value.

winterfaceBlodks
iUc_ControlAirsurfaces_aCAS_AMS

| Setup_Pasitions();

Ready

Operafions
E‘ﬁ“pruv evUpdate_Positions(sp:CAS_Surface_Positions)
E‘ﬁ“reqd evRangeError(jd:CAS_SurfacelD,pos:int)

evZero

evlpdate_Positions(&zero) to pUc_ControlAirSurfaces

Flow Properties

evPosl

evlpdate_Positions(&position_set1) to pUc_ControlAirSurfaces

Notice that the evUpdate_Positions event is provided while the

evRangeError event is required. This is done in a couple of steps
o First, in the Features dialog for the event, add the

evPos2

evlipdate_Positions(&position_set?) to plUc_ControlAirSurfaces Ste re0type dlreCtEdFeature to the event

Reception : evRangeError in ilc_ControlAirSurfaces_aCAS_AMS L x|

-
General Description Relstions Tags ~Propeties

evPos3

|evRangeErmor [CAS_SufacelD id, int pos) |

evUpdate_Positions{&position_set3) to pUc_ControlAirsurfaces Mame: evRangeEmor Label
Stersotype: directedFeature in PortsAndFows \/‘ @ E
Misibility: Public
Type: Reception ~
Evert: i i i “
TEorEET ve evRangeEmarin FuncionalAnalysisPkg-ControlArSufacesPkg € ~ ||

stdiicout << "AMS received Range Error with commanded position=" < < params->pos << " for Surface * << params->id << std::end|;

Next, edit the event evRangeError to add the parameters (the event

will be in the ControlAirSurfacesActorPkg package:

Event: evRangeError in ContrelAirSurfacesActorPkg - n

General Arguments  Description Felations Tags — Properties

|evF{angeErmr {CAS_SurfacelD id. int pos) |

FEX 4 E
Name Type Value
Eﬂl id CAS_SurfacelD
Eﬂll pos int -
<News
Locate oK

Locate 0K

o Next, in the features dialog for the
iUc_ControlAirSurfaces_CAS_AMS interface block
operations tab, set the direction of the event flow in the
Feature Direction field.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 117



Case Study: System Requirements Definition and Analysis

Interface Block: iUc_ControlAirSurfaces_aCAS_AMS in ControlAirSurfacesinterfacesPkg N~ | Block: Ue_C i esin G i esPlg bl |
Genersl Description  Value Properties  Flow Propetties  Operations  Full Ports  Froxy Ports  Constraints  Relstions Tags  Properties FrEme s R
General  Description  Value Fropetties ~ Flow Properties  Operations  Ports FowPots  FulPots  ProgyPots  Constraints
o -
[ Show Inherted =k [ Show Inherted HEx
Name Visibility Return Type Feature Direction - Name Visibility Return Type Feature Direction A
Ep evRangetrror Public required = & evUpdate_Positions Public provided
B B MoveTo Public void
I Ep evDisable Public
[P evEnter_Operational_State Public
Locate oK B Check_For Errors Public void
B Check_Power Public void
Bl Check_Hydrauic_Pressure Public void
B Verify_Positions_And_Timing Public void
B set_Position Public void
B Print_Line Public void
B Print_Pos Public void
B Initialize_Surfaces Public void
B Print_Error Public void v
. . . . < >
Having trouble getting your objects to communicate?
[void Set_Pastion(CAS_SufaceID irt)
Sometimes, the model compiles and runs but messages sent
Locate oK

from one object to another don’t seem to arrive. Things to
check:
e Isthe eventin the interface?
e Isthe event or call stereotyped as a directedFeature?
e Are the ports marked as behavioral?
e Isthe event direction provided where it will be
processed?
e Isthe event in the interface block provided for the

o Finally, in the actor block CAS_AMS, set the direction for
the evRangeError to be provided (remember, it is required
in the interface, and this is the conjugated end of the
connection).

unconjugated end if acted on by that instance?

Actor Block : aCAS_AMS in ControlAirSurfacesActorPkg el < |
e Isthe eventin the interface block required for the Gerers | Descipon Value Popetie | Flow Popeties Opertions | Pota  Flow Pot | Full o Prasy Prts | Relations | Tags | Propetes
conjugated end if acted on by that instance? Dston kherted HExX
e Isthere link between the ports on the different e T mer ediacial
instances? i e
e Areyou sure you're looking at the right instances? B ches e
There may be multiple instances of a block. 5 e Puc - provided
e Try going to the folder that has the generated code and | o
object files (a subdirectory of your model folder) for the .

configuration you’re using, delete all the code and

object files there and completely regenerate.

We won’t model the movement of the surface itself since requirements are

o Inthe features dialog for the Uc_ControlAirSurfaces use not about how something is achieved but rather what must be achieved.
case block, make sure the evUpdate_Positions event is For our purpose, it is enough to ensure results that are in or out of range
provided

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 118



Case Study: System Requirements Definition and Analysis

and ensure that the externally visible behavior (such as reporting errors)
meets both our needs and the requirements.

WEe’ll need to add some behavior to set up these configuration values for
the purpose of simulation support even though that behavior is actually part
of the Configure System use case. Because we are adding it just to support
simulation, we’ll label it with the «nonNormative» stereotype from the
HarmonySE profile to indicate that this isn’t a requirement here but is just
here to facilitate the simulation.

Now we can run the simulation. Let’s send evPos2 followed by evPos3 to
the actor block. The standard output window should look like this

B C\Users\Bruce Douglass\AppData\Roaming\Microsoft\Inter...

You can see that the first set of values worked fine, while the second set
resulted in errors, just as expected.

Step 3: Ensure Accuracy and Timing

Remember that we’re not really interested in moving the surfaces here. We
are focused on ensuring that the requirements are complete, consistent,
accurate, and correct (and capturing the logical interfaces). Requirements
focus on externally visible aspects of the system such as when behavior
works correctly or incorrectly that this results in proper externally visible
outcomes. For example, we have requirements about the accuracy and
timing of position movement and if these are violated, the system is
expected to notify the AMS actor of this fault. That interaction should be
captured in our requirements model even though we’re not actually
designing the movement of the surfaces.

To simulate this, we need to add structure and behavior to the use case
block to represent the measured position and the time required to

complete the movement. Those properties will need to be added to the
CAS_Surface_Position block. We'll also need to add an operation to the
CAS_Surface_Positions block to get that information from each surface.

You can see that we’ve added a measured_position value. This will simulate
the position actually achieved. The commanded_position value holds the
commanded position.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 119



Case Study: System Requirements Definition and Analysis

wBlocke
CAS_Surface_Positions

Values

Operations
E getSurface_Position(jd:CAS_SurfaceID):CAS_Surface_Position

E setSurface_Position(id: CAS_SurfacelD,pos:int)ivoid

E setSurfaceID(id:CAS_SurfacelD):void

E setSurface_Range(d:CAS_SurfaceID low:int, hightint):void

E isIn_Range(id:CAS_SurfacelD, pos:int):RhpBoolean

E setMeasured_Position(id:CAS_SurfacelD,pos:int):void

E setTime_To_Achieve_Position(id: CAS_SurfacelD, timeInterval:Second):void

E getFault_Status(id:CAS_SurfacelD):RhpBoolean

E «nonMormative setFault_Status(id:CAS_SurfacelD, faultvalue:RhpBoclean):void

+

MUMBER._OF_SURFACES

aBlocks
CAS_ Surface_Position

Values
E surfacelD:CAS_SurfacelD
E measured_position:int
low_range:int
E high_range:int
E commanded_position:int
E time_to_achieve_position:Second
E has_fault:RhpBoolean=FALSE

Note that we used the Second unit type from the SysML profile model
library. To set the value property to be of this type, in the features dialog for
the value property time_to_achieve_position, in the Type drop down list,
click on Select and navigate to Profiles > SysML > SIDDefinitions >
BaseSIUnits.

These movements may take some time, so we’ll modify the use case block
state machine to check the positions once they’re done.

[nitialize_Surfaces();

Waiting_For_Command evUpdate_Positions Moving_Surfaces (é)l

Resctionses
@ Maove_To{params->sp);

Wiating_For_Moivement_To_Complete @

Reactionses
é Check_Movement(); tm(500)

| used a timeout to drive the transition although arguably it should be driven
by the completion of the movement. However, I’'m not trying to design the
internal system functionality, but rather to provide the appearance of doing
so to the actors. The timeout is a very simple means to disconnect setting
the positions from subsequently checking the outcomes.

The normal behavior of Set_Positions sets the value commanded_position
of the surface (and really, would normally set measured_position to the
same value). The Check_Movement operation must check the acquired
position against the commanded position as well as check the timing of the
movement.

Q0 tion : Check_M

P

tin Uc_ControlAirSurfaces - n

General Description Implementation  Argumerts Relations Tags  Properties

|V0id Check_Mavement() |

00 // checks for accuracy and timing of movement ~
01 // Check Position sends out an error message

02 // for all surfaces that fail the test

03 // update local copy (for later simulated behavior)
04 Check Position(Left Ground Spoiler):;

05 Check Position(Right Ground Spoiler);

06 Check Position(Left Flight Spoiler);

07 Check Position(Right Flight Spoiler);

08 Check Position(Upper_ Rudder):

09 Check Position(Lower_ Rudder):

10 Check Position(Left_Elevator);

11 Check Position(Right_ Elevator):

12 Check Position(Left_ Inboard Aileron);

13 Check Position(Right_ Inboard Aileron):

< >

Locate oK

We also need to add the Check_Position operation to the
Uc_ControlAirSurfaces use case block. This takes a single parameter, the
surface id:

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 120



Case Study: System Requirements Definition and Analysis

Operation : Check_Position in Uc_ControlAirSurfaces N~ |

General Description Implementation Arguments Relations  Tags  Propetties

void Check_Pastion{canst CAS_SufacelD d) ]

00 // checks the position and timing for an individual surface ~
01 // only sends a message if if finds a problem

03 if (!Is_Equal(position set.getSurface Position (id).getCommandsd position(),

02 position_set.getSurface Position(id).getMeasured position(), 1)) {

05  // send error message sbout accuracy

06  OUT_PORT (paCAS_AMS) ->GEN (evPositionError(id, position_set.getSurface Position(id).getMeasured position() ));
07  Print_Error("Accuracy error", id);

set.getSurface Position(id).get _time to achieve position() > 3.0) {
r message =sbout Timing
paCAS_AMS) ->GEN (evTimingError (id, position_set.getSurface Position(id).getTime to_achieve_position()

13 Print_Error("Timing error®, id);

14 1 v
< >
Locate oK

The implementation — if too small to read — is:

// checks the position and timing for an individual surface
// only sends a message if if finds a problem

if (!Is_Equal (position_set.getSurface Position (id).getCommanded position(),
position_set.getSurface Position(id).getMeasured position(), 1)) {
// send error message about accuracy
OUT_PORT (paCAS_AMS) ->GEN (evPositionError (id,
position set.getSurface Position(id) .getMeasured position() ));
Print Error ("Accuracy error", id);

bi

if (position_set.getSurface Position(id).get_time to achieve position() > 3.0) {
// send error message about timing
OUT_PORT (paCAS_AMS) ->GEN (evTimingError (id,

position set.getSurface Position(id).getTime to achieve position()));
Print Error ("Timing error", id);

bi

To compare two values, let’s add an Is_Equal operation to the use case
block that accepts three RhpReal parameters (a, b, and tolerance), and
returns TRUE if the difference between the first two values is less than the
tolerance:

return abs (a-b) <= tolerance;
So if the tolerance is, say 1 and we have a commanded position of 18 and a
measured position of 19, the values would be said to be equal.

We must also update the aCAS_AMS actor block state machine to receive
the evPositionError and evTimingError events:

| Setup_Positions();

Ready

evZero ;

evlpdate_Positions(&zero) to pUc_ControlAirSurfaces

evPosl ;
evUpdate_Positions(&position_set1) to pUc_ControlAirSurfaces

Pos2
$ evUpdate_Positions{&position_set2) to pUc_ControlAirSurfaces

evPos3 ;

evUpdate_Fositions(&position_set3) to pUc_ControlAirSurfaces

evPositionError/
std::coiut << "AMS received Position Error with measured position = " < < params->pos < <
" for Surface " << params->id << std::endl;

1

evTimingErmor/
std::coiut << "AMS received Timing Error with measured position = " << params->interval <<
" for Surface " << params->id << std::endl;

1

T |

evRangeError/
=td::cout << "AMS received Range Error with commanded position=" << params->pos << " for Surface " << params->id << std::endl;

The Check_Movement operation will also have to check the timing. The
attribute time_to_achieve_position will be generally be set to a passing
value, but we want the ability to set it to a failing value when necessary.

The last thing we must do is set the values of measured_position and
time_to_achieve_position for the surfaces. We'll do this by modifying the
Uc_ControlAirSurfaces use case block. Nominally, we’ll just set the
measured position to be the same as the commanded position and the time
to a short value, such as 0.25s. We also want to generate position and
timing errors, so we’ll add new values in the use case block: position_error
(of type int) and timing_error (of type Second or double). We'll modify
Set_Position to add these values to measured_position and
time_to_achieve_position, respectively. When we’re running, we can

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 121



Case Study: System Requirements Definition and Analysis

change these values and thereby simulate error conditions. These
attributes are only here to support the simulation per se and not represent
requirements. Therefore they are non-normative and are stereotyped as

such.

The updated Uc_ControlAirSurfaces::Set_Position operation now looks like

this:
Operation : Set_Position in Uc_ControlAirSurfaces
General Descrption  Implementation  Aguments Relations Tags  Properties
void Set_Position(const CAS_SurfacelD id int pos) ‘
00 Print_Pos(id, pos):
01 if (position_sget.isIn Range (id, pos)) {
oz // set commanded position
03 position_set.setSurface Position(id, pos);
04 // set measured position
05 position_set.setMeasured Position(id, pos + position_error);
086 // set time required to move
o7 position_set.setTime to_achieve_position(id, 0.25 + timing error);
o8 ¥
09 else {
10 OUT_PORT (paCAS_AMS) —»GEN (evRangeError (id, pos)):
11 Print_Error("Range Error", id):
1z ¥:
< >
Locate QK

We also add setMeasured_Position and setTime_to_achieve_position
operations to the CAS_SurfacePositions block (note the argument lists):

Operation : setMeasured_Position in CAS_Surface_Positions

~ B

General Description Implementation  Arguments Relations Tags  Propeties

void setMeasured_Position{const CAS_SurfacelD id.int pos)

00 itsCAS Surface Position[id].setMeasured position(pos):

Locate oK

< >

Operation : setTime_to_achieve_position in CAS_Surface_Positions

General Description Implementation  Aguments Helations Tags  Properties

|\rmd setTime_to_schieve_postionconst CAS_SurfacelD id, Second interval) |

00 itsCAS_Surface Position[id].setTime_to_achieve position(interval); =
£ >

Locate (014

We can modify the values of attributes as we run the model, but let’s add
events to the use case block state machine to set both position and timing

errors to make the simulation a little easier:

evRemoveTimingError/
timing_error = 0;

evRemovePosError/

position_error = 0; [Initialize_Surfaces();

( Waiting_For_Command evUpdate_Positions Moving_Surfaces

Reactionses

g Move_To(params->sp);

L

enAddPosError/
position_error = 100;

Wiating_For_Moivement_To_Complete @

Readionses
evAddTimingError/ @ Check_Movement();

At tm(500)
timing_error = 4.0;

The event used above to set and remove error conditions should be
sterepotyped as nonNormative.

You must add the arguments to the events evPositionError and
evTimingError.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 122



Case Study: System Requirements Definition and Analysis

The sequence diagram for that interaction is quite long, so here is the text
send to standard output:

Event : evPositionError in ControlAirSurfacesActorPkg - ﬂ

General Arguments Description Relations Tags ~ Properties

‘EvPasmonErmr (CAS_SurfacelDid. int pos)

Marne Type Value
El'] id CAS SurfacelD
iy pos int
v

PPN

Locate 0K

Event: evTimingError in ControlAirSurfacesActorPkg - n

General Arguments Description Relations Tags ~ Properties

‘av'ﬂmingErmr (CAS_Surface|Did, Second interval)

Mame Type Value
E id CAS_SurfacelD
EUJ interval Second
v

Rl

Locate 0K

Don’t forget to add the events evPositionError and evTimingError to the
interface iUc_ControlAirSurfaces_aCAS_AMS and make them directed
features (direction: required), as we did for the evRangeError event (not all

event receptions are shown):

Interface Block: ilic_ControlAirSurfaces_aCAS_AMS in ControlAirSurfacesinterfacesPkg N = |

Genersl  Description  Valus Propertiss  Flow Propetiss  DPswHons  Full Pots  Prowy Ports  Constrints  Relations  Tags  Propertiss
[ Show Inherted HER
Name Visibility Return Type Feature Direction ~

[ evRangeError Public required

[p evPositionEmar Public required

Ef evTimingError Public required

<News
v
Locate oK

Let’s now compile and run the simulation with the following case:
e Actor block posl sent (by sending the evPos1 event to the actor
block instance)

e set position error and send actor block pos1
e Reset position error, add timing error, and send actor block pos1

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 123



B Ch\Users\Bruce Douglass\AppDatat\Roaming\Microsofth,..

oo ow
ook

UL o

= =h —h —h —h

Here's what part of the sequence diagram looks like for the case when
position errors are created, beginning with the call to Check_Movement:

Case Study: System Requirements Definition and Analysis

itsc_ContralAirSurfaces |

prAMS

| priFilot_Display |

Wiating_For_Moivement
_To_Complete

%

Check_Movement()

t

Check_Position{id = 0)

£

Is_Fqual(a = 1, b = 1, tolerance = 1)

th

evTimingError{id = 0, interval = 4.25)

Print_Error{errMsa = Timing error, id = 0)

il

Chedk_Position{id = 1)

t]

Equal(a = 2, b = 2, tolerance = 1)

evTimingError(id = 1, interval = 4.25)

Frint_Error{errMsg = Timing error, id = 1)

t

Chedk_Position{id = 2)

il

Is_Equal(a = 3, b = 3, tolerance = 1)

T

ewTimingError(id = 2, interval = 4,25)

Frint_Error{errMsg = Timing error, id = 2)

t

Check_Position(id = 3)

t

Equal(a = 2, b = 2, tolerance = 1)

evTimingError{id = 3, interval = 4.25)

Print_Error{errMsa = Timing error, id = 3)

th

Check_Position(id = 4)

t

Is_Fqual(a = 5, b = 5, tolerance = 1)

b

evTimingError(id = 4, interval = 4.25)

Print_Error{errMsg = Timing error, id = 4)

t

Chedk_Position{id = 5)

il

Equal(z =6, b =6, tolerance = 1)

'

ewTimingError(id = 5, interval = 4,25)

Frint_Error{errMsg = Timing error, id = 5)

il

Check_Position(id = &)

t]

Is_Fqualla = 7, b = 7, tolerance = 1)

il

evTimingError{id = 6, interval = 4.25)

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 124




Case Study: System Requirements Definition and Analysis

If you’ve been entering the events using the event generation tool, you can
also do with via a panel diagram. In this case, create a panel diagram and
add push buttons as shown in the diagram:

Panel Diagram [Package] ControlAirSurfacesPkg [Caontrol Air Surfaces Panel]

monitor states

AMS Actor Block Control Air Surface /
Use Case Block /
Zero Surfaces Add Position Error States
Push Push Waiting Fo&Cummand

Command Position 1 Remaove Position Error

Moving Surfaces
Push Push @

Waiting for Movement

Command Position 2 Add Timing Error to Complete
@

Push Push

Position Error

100

Command Paosition 3 Remaove Timing Error

Push Push

Timing Error
. - A
/ / Left_Ground_Spoiler Position
Ses

/ d'fy/'
modi
Insert events values

These push buttons are bound to the event receptors of the block instances.

If you want to create this diagram to assist in driving the simulation, be sure
to select the instances in the FunctionalAnalysisPkg > ControlAirSurfacesPkg
> ControlAirSurfacesExecutionScopePkg > Parts area of the model. You can
get there by double clicking on the push button and navigating to the
desired part and selecting the event reception.

PushButton : Remove Position Error >

Blement Binding  Settings

Instance Path:

| Functional Analysis Pka Control AirSufacesPkg.Control AirSufaces Execution Scope Pk

[] Display Al Types

=23 AirSurfaceControl System

=3 Functional AnalysisPlag

=1-F ContralAirSufacesPka

i Ue_ControlAirSurfaces
UC_CortrolAirSufaces_Step1
=7 Cortrol&irSurfacesExecutionScope Plg
BEE“ tsUc_CortrolAirSufaces
¢ [ evMovementCommand
: E‘F evAdd TimingEmor
- evAddPosEmor
o O
: E‘F evRemove Timing Emar
| [-HH| paCAS_AMS
- ptAMS
-7 Control&irSurfacesActorPkg
-3 Control&irSurfacesinterfacesPkg

Corcet | [

Step 4: Handling requirements about warm and cold restarts
There are some requirements about warm and cold restarts such as

The system shall not automatically perform minimum, maximum, and zero
position tests during a restart, where “restart” is defined to be starting up
within 5 minutes after being enabled, or being operational. Rationale: this is
to allow in-flight restarts safely.

and

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 125



Case Study: System Requirements Definition and Analysis

The system can be commanded into a restart mode from the OFF_STATE by
the Attitude Management System. In addition, the system may be explicitly
commanded into restart from other operational modes with an independent
command from the AMS, however, this command must be verified by
soliciting and receiving a pilot override instruction. An exception to this is if
the plane is not Weight on Wheels (WoW); in this case, the restart shall not
require an independent pilot confirmation.

In this next nanocycle, let’s add this behavior. Note that the actual
execution of the start tests is the subject of the (previously analyzed) Start
Up use case. For that reason, the tests will not be modelled here. What will
be modelled is a placeholder for them. That placeholder is an example of a
small, but important, overlap between use cases.

Here is the updated state machine for the Uc_ControlAirSurfaces use case
block:

evPilotRejection
Waiting_For_Pilot_Confirmatikon
evEnable S@ [elsel |
[Initialize_Surfaces(); > >
evPllotCanfirmation
\ [weight on_wheels]
off
evRemoveTimingError/
evDisable Failed evRemovePosE rror| timing_eror = 0;
position_error = 0;
A i
N N N =
Waiting_For_Command Maving_Surfaces 2
ewisable| | evStartup evIpdate_Positiong
Reactorses
L else) B
prew 2 Move_To(params->sp);
e evEnable [No_Faults()]
>© >

[} tm(500)
This is where POST takes

place, as per the Start Up N

use case. Wiating_For_Moivement_To_Complete (%)

Reactonses

. evEnabl 3 .
tm{NORMAL_RESTART_TIME) Cooliing % e (&% Check Movement();

¢ evDisable,

| /T\ A
enAddPosError/

evAddTimingError/
position_eror = 100; timing_error = 4.0;

We’'ll need to provide some behavior for the No_Faults and Wow
operations used in the state machine, and defined within the use case block.
We'll also define the constant NORMAL_RESTART_INTERVAL , which is

nominally 5 minutes (we’ll set it to a shorter value, such as 10s for the
purpose of simulation). In the ControlAirSurfacePkg >
ControlAirSurfacesTypesPkg, add the following type by right clicking on the
package and selecting Add New -> Blocks > DataType. Name this type
NORMAL_RESTART_INTERVAL. Then double click on it, ensure that the Kind
is Language, and its declaration to be

#define %s 10000

This will give the timeout on the state machine a 10 second interval,
suitable for simulation.

We'll define a RhpBoolen type attribute in the use case block named
weightOnWheels and give it a default value of FALSE. (We can change it
later during simulation if desired).

Attribute : weightOnWheels in Uc_ControlAirSurfaces - H
-
General Description Relations Tags  Properties
RhpBoolean weightOnWheels |
Name: |weigl‘rt0n‘."arheels | Label...
Sterectype: | w | féﬂ g, |
Vigibility: Public e
Attribute type
Iz existing type
Type: |F-!hp Boolean w | =
Multiplicity | 1 e | Ordered
[ IConstart []Reference [ static
Initial Value: | FLLSE |
Advanced W
Locate 0K

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 126



WEe'll do the same kind of thing for the No_Faults operation. Define an
attribute for the use case block named fault_count of type int and then
define the function No_Faults to return TRUE if that value is zero.

Walue Property : weight_on_wheels in Uc_ControlAirSurfaces

General  Description Relations Tags ~ Properties

|th Boolean weight_on_whesls

Visibilty: Public

Attribute type:
Use existing type

[ Constart [ Reference [ Static

Advanced
Redefines:

Locate oK Appaly J

Name: |we|ghtfon7wheels ‘ Label...

Stereotype: | - ‘ @IEI

Type: |F{hpEooIean "‘ =
Mutplcty [ v] Clomderd

Initial Value: ‘ FALSE |

Operation : No_Faults in Uc_ControlAirSurfaces

~ B

General Description  Implementation  Arguments  Relations  Tags

Properties

RhpBoolean No_Faults()

00 return fault_ count == 0:

<

Locate oK Apply J

-~

The corresponding updated aCAS_AMS state machine must be able to
generate the evStartUp, evEnable, and evDisable events.

Case Study: System Requirements Definition and Analysis

p
/ Setup_Postions();

—
Ready

vZero

evUpdate_Positions(&zero) to pUc_ControlArSurfaces

evPosl

evUpdate_Positions(&position_set1) to pUc_ControlAirSurfaces

evPos2

evUpdate_Positions(&position_set2) to pUc_ControlAirSurfaces

evPos3

y

evUpdate_Positions(&position_set3) to pUc_ControlAirSurfaces

evSendStart

1

evStartup to pUc_ControlAirSurfaces

evSendEnable

!

evEnable to pUc_ControlArSurfaces

evSendDsable

H

evDisable to pUc_ControlAirSurfaces

evPostnError/

evTimngError/

LI

evRangeError/ D

std::cout << "AMS received Postion Error wth measured postion = " << params->pos <<
" for Surface " << params->id << std::endl

std::cout << "AMS recewed Tmng Error with time required = " << params->nterval <<
" for Surface " << params->id << std::endl;

std::cout << "AMS received Range Error wih commanded postion=" << params->pos << " for Surface " << params->il << std::end}

We also need to add the ability of the aCAS_PilotDisplay to generate the

evPilotConfirmation and evPilotRejection events:

stm [Actor Block] aCAS _Pilot_Display [statechart_1]

Idle

.%.

evSendPilotConfirmation

evSendPilotRejection

evPilotConfirmation to puc_ControlAirSurfaces

evPilotRejection to pUc_ControlAirSurfaces \

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 127




Case Study: System Requirements Definition and Analysis

We will need to add the evStartUp, evEnable, and evDisable receptions to
the use case block and the interface as provided directedFeatures. We must
also add the evPilotConfirmation and evPilotRejection events to the
iUc_ControlAirSurfaces_aCAS_Pilot_Display interface block in the
ControlAirSurfacesPkg, again as a provided directedFeature. Be sure to add
the directedFeature stereotype to the event reception in the use case block

as well.
Interface Block : iUc_ControlAirSurfaces aCAS AMS in ControlAirSurfacesinterfacesPkg - n
Relations Tags Properties
General Description Value Properties Flow Properties Operations Full Ports Proxy Ports Constraints
[ Show Inheried gEx
Mame Visibility Return Type Feature Direction &
Ey} evlipdate_Positions Public provided
Ey} evlpdate_Status Public required
Ey} evlpdate_State Public required
Ef evReport_Error Public required
Ef evRangeError Public required
EF:’ evPositionError Public required
E® evTimingError Public required
EP evStartup Public provided
E evDisable Public provided
Ef evEnable Public provided
<Mew> ~
|vuid Operation_0{
Locate OK
Interface Block : iUc_CentrolAirSurfaces_aCAS_Pilot_Display in ControlAirSurfacesinterfacesPkg - n
Relations Tags Properties
General Description Value Properties Flow Properties Operations Full Ports Proxy Ports Constraints
[ Show Inherted :? =p 4
MName Visibility Return Type Feature Direction 2
£ evPilotRejection Public provided
E}} evPilotConfirmation Public provided ™

Locate oK

Finally, we’ll update the panel diagram to help use drive the simulation.

Panel Diagram [Package] ControlAirSurfacesPkg [Control Air Surfaces Panel]

AMS Actor Block Control Air Surface
Zero Surfaces Send Start Use Case Block
" States
Push Push Add Position Error
Push Waiting Fn;Command
Command Position 1 Send Enable
Push Push Remove Position Error ]
Moving Surfaces
Push @
Command Position 2 Send Disable .-
Add Timing Error Waiting for Movement to
Complete
Push Push
us us Push ]
Command Paosition 3 Remove Timing Error Position Error
Push RE=L :l

weight_on_wheels

Pilot Display Actor Block ‘ ‘ ‘ ‘

Timing Error

Pilat Confirm Pilot Reject fault_count Left_Ground_Spoiler Position

Push ‘ Push ‘ ‘ ‘ ‘ ‘

The weight_on_wheels, position_error, timing_error and fault_count value
properties are bound to the text box controls on the panel diagram.

We've added some interesting flows here, such as
1. Normal flow to get to operational mode (Waiting_For_Command
state) with no errors, then back of the off state.
2. Error flow where we go to Failed state because power on self tests
failed.
3. Warm restart within the warm restart interval
Directly running from Off with Pilot Confirmation
5. Directly running from Off with weight on wheels (aircraft on the
ground)

E

We'll look at a few of these. You are encouraged to execute remainder of
them to fully explore the requirements.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 128



Here’s the simulation run of the first flow:

Case Study: System Requirements Definition and Analysis

Want to see to see horizontal messages in your sequence

itsc_ControlairSurfaces

prtAms prtPilot_Display

priaircraft_Hydraulics

prtaircraftPower

priMaintainer

diagrams?

Initialize_Surfaces()

| |
Setup_Positions() |
| |

|

Ready Ide

|

E evStartup

StartingUp

Ready

Waiting_For_Command

Cooling

Ehl‘«m?mnnn)

(=]
Ed

|
|
|
|
|
|
|
|
|
|
|
I%EVD‘SEHED_I |
|
|
|
|
|
|
|
|
|
|
|

E evEnable

| Reaty
Mo_Faults()

You may notice that asynchronous events are displayed as angled
lines. This is because they show when the events were actually
send and received. This can make the sequence diagrams less
readable. You can fix this by saving the animated sequence
diagram (trying to close it will result in a popup asking you if you
want to save the diagram). Then reopen the diagram, right click
in the diagram and select SE-Tookit > Straighten Messages.

The second flow is when the power on self tests (POST) fail; in this case,
control should proceed to the Failed state. To execute this flow, run the
model and use the panel diagram to set the value of fault_count to a non-
zero value (such as 3). Then send the evStart event followed by the
evEnable event.

itsUc_ControlairSurfaces priaAMS priPilot_Display priircraft_Hydraulics priAircraftPower priMaintainer
Initialize_Surfaces() ‘ |
‘ Setup_Positions() |
off Ready Idle
E evStartup: ;

Want to see the states in your sequence diagrams?

Double click on the project, select the Properties tab, select View
All, then set the SequenceDiagram > Systems Modeling (tab) >

ModShowAnimStateMark checkbox.

evEnable

Ready
SmrnngUp

You can see that the 10s timeout occurred after we entered the Cooling . evDsabled)

state. So the model run as expected.

Failed ‘

‘
|
| ‘

|
|
|
|
|
|
|
|
Nn Faults() Ready |
. |
|
|
|
|
|
|

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 129



Case Study: System Requirements Definition and Analysis

The fourth flow entails trying to go directly to operational mode while on
the ground, and thus not requiring pilot confirmation. After starting the
simulation, use the panel diagram to ensure that the value of
weight_on_wheels is O (FALSE) and then send the evStart event.

Trouble setting values with the Panel Diagram?
When using text box to set values on the Panel diagram,
Rhapsody calls the mutator operation for the attribute. If code
generation for attributes uses smart generation, then these
operations are sometimes not be created. You can force them to

sd [] [Animated Animated Animated Animated Animated Animated Control Air Surface UC Scenario Run 1]

be created by double clicking on the project, going to the

Propertles ta b' Selecting VieW A”I then Setting CPP_ CG S itsUc_ControlAirSurfaces PreamMs prtPilot_Display prtaircraft_Hydraulics prtaircraft_Power
Attribute > MutatorGenerate to Always. = L_Hsho | I
Description: | ‘
rl;]wﬁilnsta;lt.nm the air, | setlipPositions() ‘
Flow 3 is generated by going through the normal start up sequence confimaton | \
(evStartUp followed by evEnable with faultCount set to 0), sending an o < e > < o >
evDisable event followed by an evEnable event in less than the | |
NORMAL_RESTART_INTERVAL. S

ation

| Ready ‘
wow ‘
itsUc_ControlairSurfaces PrtaMs prtfilot_Display prtAircraft_Hydraulics prtaircraftPower prtMaintainer ‘

WaitingForPilotConfirm | ‘
Initislize_Surfaces() ‘ ‘

|
vPiIntCnnﬁrmStart ‘

|
|
Setup_Positions() |
|

| |
Off Ready dle - |
l
| \ |
evStariup() i evDisable()
Ready Ready
|

Cooling

{ evEnable()

Ready
No_Faults()
Waiting_For_Command

[

evDisable

| Ready

Cooliing ‘

E evEnable()
L

I
Waiting_For_Command < Ready

Scenario 5 is shown below in the state machine with the last state, then last
transition path, and the currernt state hightlighed. In this case, the model is
run and the value of weight_on_wheels is set before the evEnable event is
sent. Since the value of weight_on_wheels is TRUE, the
Waiting_For_Command state is achieved.

R,

|
|
|
|
|
|
|
|
|
|
|
|
|
| tm(10000)
| ?‘j_j
|
|
|
|
|
|
|
|
|
|
|
|

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 130



Case Study: System Requirements Definition and Analysis

evPiotRejection

Waiting_For_Piot_Confirmatikon

evEnzble
JInitialize_Surfaces();

evPilotConfirmation
[weight_on_wheels]

off
evRemoveTimingError
avDisable Failed evRemow P asErTor/ Firing erior = s '
position_error = 0; - d
i Waiting_For_Command Moving_Surfaces &)
evDisable| | evstartup evUpdate_Positio
[ele] Reactionses

(& Move_To{ params->sp);
[Mo_Fauits()]

StartingUp evEnable
s

o

~. | This is where POST
takes place as perthe
Start Up use case.

(500}

Wiating_For_Moivement_To_Complete (g‘-)

Reactionses
evEnabl (& Check_Movement();
evDisable

tm(NORMAL_RESTART_TIME) )

u\evAdd TmingError/

timing_error = 4.0;

enAddPosError/
posttion_error = 100;

Step 5: Manage “flyable” operational state with surface faults
This last nanocycle step for this use case analysis adds in the requirements
for determining if the system is flyable with one or more surface faults.

As we start to analyze this, we discover that what is considered a “Flyable
set” of surfaces isn’t identified. These are missing requirements. As systems
engineers, we need to talk with the subject matter experts of the airframe
to discover those requirements. For the purpose of discussion, they
responded to our solicitation with the following three new requirements,
which we will enter into our model and then allocate to the use case:

The minimal flyable surface set (MFSS) shall be defined to be
e Either the upper or lower rudder, AND
e Either the inboard ailerons or outboard ailerons on both sides of the
plane, AND
e the elevators.

Faults in the control surfaces shall result in messages sent to the AMS and
Pilot Display.

If the system becomes unflyable, it shall transition to a FAILSAFE state,
requiring a complete system boot for recovery.

We'll need to update the Uc_ControlAirSurface use case block to be able to
identify and evaluate problems using the criteria specified and add tracea
from the use case to those new requirements.

[=i] AirSurfaceControlSystemRequirements

== el

Found 167 elements
D 1| Name
i

+ | Specication

~

(2 i FuncReq_39
[£ 1] FuncReq_40
[ 9] FuncReq_100
[2 1 FuncReq101
£ 1] FuncReq201

[& 1] FuncReg202
[6 1 FuncReg203

<

[C 7] ShutDownReq_1
[¢ ] ShutDownReq_2

[[ ]| MaintenanceRea_0 | The ACES system shall enter maintenancs mode when a command is received over the maintenance USE connection poi

The system shall be able to detect a loss of communication with a cortrol surface within 1.0 seconds and report an emor to
The system shall report an emor i the system has not achieved the commanded position +/- 0.5 degrees of a control surfac
In response to a movement command from the AMS, the system shall respond with a status message that provides the ope

AT T S S ET T TOT = ST DT T ST TC TS ST TS e ST PSS DeTeeTT

The operational status reported to the AMS for each cortrol surface shall include its curert commanded posttion, its cur

The minimal flyable suface set (MFSS) shall be defined to be
Ettherthe upper or lower rudder, AND

Either the inboard ailerans or outboard ailerans on both sides of the plane, AND

the elevators

Fautts in the control surfaces shall result in messages sent to the AMS and Pilot Display.
If the system becomes unflyable, i shall transition to @ FAILSAFE state, requiring a complete system boot for recovery.

Prior to shut down, the ASES shall transition to receive power from the aiframe battery.
Prior to shut down, all measured and command data shall be stored in non-valatile memory.

>

[Z] AirSurfaceControlSystemUseCaseReqshMatrix

L= & sl

From: UseCaze Scope: AirSurfaceControlSystem

- Configure System | Manage Data | Start Up |D Control Air Surfaces | "~
o [T UreT ey <, FONERE]_
2 [[£ 1] FuncReq_34 *., FuncReq_34
g_ [t ] FuncReg_35 ., FuncReq_35
3 [¢ 1| FuncReq_36 ., FuncReq_36
5 [¢ 1] FuncReq_37 ., FuncReq_37

[¢ 1| FuncReq_38 ., FuncReq_38
"gn [t ] FuncReg_33 “, FuncReq_39
'; [t ] FuncReg_40 ", FuncReq_40
ey [ 1] FuncReq_100 *., FuncReq_100

(T FONErHeq 10 =, FuncHeq 10T

*|[1 1] FuncReq201 “., FuncReq201

[t ] FuncReq202 “., FuncReq202

[¢ 1] FuncReq203 ., FuncReq203
& [[ISharCowReg 0

E ﬂShut DownReg_1 W

< >

To model the faults, we’ll add a fault condition to each control surface; that
is we'll add a has_fault value property (type RpyBoolean, default value
FALSE) to the CAS_Surface_Position block, and a getFault_Status operation
to the CAS_SurfacePositions block to easily get the fault status of any

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 131



Case Study: System Requirements Definition and Analysis

surface. These blocks are, as you no doubt remember, located in the
ControlAirSurfacesTypesPkg package.

«Blocks
CAS_Surface_Positions

Values

Operations
E getSurface_Position(id: CAS_SurfacelD):CAS_Surface_Position
E setSurface_Position(id:CAS_SurfacelID,pos:int):void
E setSurfacelD{id: CAS_SurfacelD):void
E setSurface_Range(id:CAS_SurfacelD low:int, high:int): void
E isIn_Range(jid:CAS_SurfaceID, pos:int):RhpBoolean
E setMeasured_Position{id:CAS_SurfacelD,pos:int) svoid
imelnterval:Second):void

Tz —PostiomiidrEAI=
getFault_Status{id: CAS_SurfaceID):RhpBoolean
#S=SurfacelD, faultvalue:RhpBoolean):void

4

SOOI TE T Set aart

MNUMBER _OF _SURFACES

«Blocks
CAS_surface_Position

Valves

E surfacelD:CAS_SurfacelD
wqualified» measured_position:int

E «qualified= low_range:int
= squalifieds high_rangezint
E aqualified= commanded_position:int
D guakfies =be=mehiewe=pagjtion: Second
E has_fault:RhpBoolean=FALSE

Operation : setFaultStatus in CAS_SurfacePositions T n

General Description Implementation  Arguments Relations Tags  Properies

void setFaultStatus(const CAS_SurfacelD id, RhpBoolean faultValue) |

itsCAS SurfacePosition[id].setHasFault (faultValue); A

Locate oK Bpply l

Operation : getFaultStatus in CAS_SurfacePositions X H

General Description Implementation  Argumerts Relations Tags  Properties

RhpBoolean getFaultStatusiconst CAS_SurfacelD id) |

return itsCAS SurfacePosition[id].getHasFaulct(): A

Locate oK Apply J

For simulation purposes, we’ll also add a non-normative function to the
CAS_SurfacePositions block to set the fault status of any surface, called
setFaultStatus. It will take two parameters, an id (of type CAS_SurfacelD)
and a faultValue (of type RpyBoolean).

Next, let’s update the actors to receive the evFault event. Note that the
after adding the event to the actors, you’ll have to edit the event in the
browser to add the is_flyable (of type RHPBoolean) argument to the event.

Idle
9

evSendPilotConfirmation

evPilotConfirmation to pUc_ControlAirSurfaces

evSendPilotRejection

\ evPilotRejection to pUc_ControlAirSurfaces
evFault/ std::cout<< "Pilot Display has received a run-time fault. is_flyable = " <<

; params->is_flyable << std::endl;

-

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 132




dy: System Requirements Definition and Analysis

evPilotRejection

1 Setup_Postions(); Waiting_For_Pilot_Confirmatikon
evEnable o, [elsel
Mnitialize_Surfaces(); >’g
s B L ]
- i % I’ N ht_on_wheel
evUpdate_Positions(&zero) to pUc_ControlAirSurfaces /\ - = N/ [weight_on_wheels]
aRemaveTimingErrar/

Ready
evDisable Falled evRemovePosError/ timing_error = 0;

- position_error = 0;
ﬁ‘ evUpdate_Positions(&position_set1) to pUc_ControlAirSurfaces > L A J s /—J/
N \ /N A o - =
etartup L e @ Moving_Surfaces )

ewDisable
eactionses evpdate_Positions
Reaction: — Reactionses

ewpilotConfirmation

4

felse]
& (2 Move_To(params->sp);

™ "
evPos2 evUpdate Pesitons(Sposition set2) to plic_ ControlAirSurfaces Sl ==tn o No_Fauhs0]l | ) evinsartFysbleFauits(nsert Fyabie_Faults;
- - - - C) () evInsertUnflyableFaults/Incert_Unfiyable Faults{);
) evRemoveFaults/Remove _Faults();
(=)
This is where POST takes

ewPos3 .
evUpdate_Positions(&position_set3) to pUc_ControlAirSurfaces S place, as per the Start Up ) N
- use case. Wiating_For_Moivement_To_Complete (%)

—— Reactionses

evEnable (2 Check_Movement(};
evDisable €

tmi{500)

tm(NORMAL_RESTART_TIME) | Cooling ‘

o
. ————
evStartup to pUc_ControlAirSurfaces ™ b 4 €
i‘ P
- evDisable evSurfaceFault

evSendEnable ~ FAILSAFE L@ . . ' j\ ) j\ 7
i‘ evEnable to pUc_ControlAirSurfaces >; Sl QoS s 2 mﬁx’:m; 5'..’:1‘;?;’;;“27.{

evSendDisable evFault(ls_Fiyable()) to paCAS_Pilot_Display P

\ % evDisable to plc_ControlAirSurfaces ) ) & (s iyabe)

evFault/ std::cout<< "AMS has received a run-time fautt. is_flyable = " <<
params->is_flyable << std::endl;

N The additions to the state machine are concentrated in the bottom left-
" for Surface " << params->id << std::endl; .
evTmingEror/ hand corner:

std:icout << "AMS received Timing Error with tme required = " << params->interval <<
" for Surface " << params->id << std::endl;

\ v, (| 74 ! A4 T A
evRangeError/ D —— evStartup \Waiting_For_Command @
std::cout << "AMS received Range Error with commanded position=" << params->pos << " for Surface " << params->id << std::end}; [else] Reactionses

StartingUp
evEnable [No_Faults()] @) evInsertFlyableFaults/Insert_Flyable_Faults();

@) evInsertUnflyableFaults/Insert_Unflyable_Faults();
@) evRemoveFaults/Remove_Faults();

Now, let’s update the state machine for Uc_ControlAirSurfaces to add the
~

behavior to manage these faults and send the evFault event. < [&
| This is where POST takes

place, as per the Start Up
use case.

evEnable

tm(NORNAL_RESTART_TIME) Cooliing
evDisable é

evDisable evsurfaceFault

FAILSAFE v i AN ] N
‘ evFault(Is_Flyable()) to paCAS_AMS > enAddposError/ evAddTiming

\|/ position_error = 100; timing_error|

‘ evFault(Is_Flyable()) to paCAS_Pilot_Display >

[else] % [Is_Flyable()]

=4

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 133



Case Study: System Requirements Definition and Analysis

So, if the system is in the Waiting_For_Command state and it receives an
internal evSurfaceFault event, it checks if the remaining surfaces are a
flyable set with a call to Is_Flyable() to see if the remaining surfaces are in
the flyable set. If the guard

[Is Flyable()]

returns FALSE, then the system proceeds to the FAILSAFE state. From there,
the system only accepts the evDisable event to enter into the Off state. If
the guard returns true, then the system transitions back to the
Waiting_For_Command state.

The implementation of the Is_Flyable operation basically checks the entire
set of surfaces to ensure that a flyable set is still operations.

Operation : Is_Flyable in Uc_ControlAirSurfaces - n

General Description Implementation  Arguments  Relations Tags — Properties

FhpBoolean |s_Fyable() |

bool elevatorsQk = ! (position set.getFault Status (Left_Elevator) ~
position set.getFault Status (Right_ Elevator)):

bool ruddersCk = ! (position set.getFault Status (Upper Rudder) £z
position set.getFault Status (Lower Rudder)):

bool aileron=0Ck = !

(position_set.getFault Status (Left_Inboard Rileron)
position set.getFault Status (Right Inboard Aileron)) &£&
(position set.getFault Status (Left Outboard RAileron)
position set.getFault Status (Right_Outboard Aileron))):

return elevatorsOk && ruddersOk &z& aileronsOk:

£ >

Locate OK

The contents of the implementation field are shown below to make them a
bit easier to read:

bool elevatorsOk =
! (position set.getFault Status(Left Elevator) ||

position set.getFault Status(Right Elevator));

bool ruddersOk = ! (position set.getFault Status (Upper Rudder)
&&
position set.getFault Status(Lower Rudder));

bool aileronsOk = ! (

(position set.getFault Status(Left Inboard Aileron) ||
position set.getFault Status(Right Inboard Aileron)) &&
(position set.getFault Status(Left Outboard Aileron) ||
position set.getFault Status(Right Outboard Aileron)))

’

return elevatorsOk && ruddersOk && aileronsOk;
Especially note the not operators (“!”) in the code.

Let’s add some internal transitions to the WaitingForCommand state to add
and remove faults:

1N WAV L

Waiting_For_Command (':C._)

Readionses
@ evinsertFlyableFaults/Insert_Flyable_Faults();
9 @ev[nsertUnﬂyabIeFauIts/[nsert_UnﬂyabIe_FauIts();
(-5':5 evRemoveFaults/Remove_Faults();

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 134



Case Study: System Requirements Definition and Analysis

The implementation of the operations Insert_Flyable_Faults,
Insert_Unflyable_Faults, and removeFaults for the Uc_ControlAirSurfaces
block is straightforward:

Operation : Insert_Flyable_Faults in Uc_ContrHAerurfaca ¥ n

General Description  Implementation Argu|ﬂ;§ns Relations Tags  Properties

void Insert_Flyable_Faults() |

position set.zsetFault Status (Lower Rudder, TRUE): -~
position set.setFault Status (Left Inboard Aileron, TRUE):

Y]
< >
Locate oK
Operation : Insert_Unflyable_Faults in Uc_ControlAirSurfaces - n
General Description Implementation  Arguments Felations Tags  Properties
void Insert_Urflysble_Fautts) |
position set.setFault Status (Left Inboard Aileron, TRUE): ~
position set.setFault Status (Left Outboard Aileron, TRUE):
v
< >
Locate (0]4
Operation : Rermowve_Faults in Uc_ControlAirsurfaces X n
General Description Implementation  Argumerts  Relations Tags  Properies
void Remove_Faults() |
position set.setFault Status (Lower Rudder, FALSE); ~

position set.setFault Status (Left Inboard Aileron, FALSE):!
position set.setFault Status (Left Outboard Aileron, FALSE):

Locate QK

Operation : setFault_Status in CAS_Surface_Positions - n

General Description Implementation  Arguments Felations Tags  Properties

void setFault_Status(const CAS_SurfacelD id, RhpBoolean faultValue) |

itsCAS_Surface Position[id].setHas_fault (faultValue): -~

Locate (0]4

The first operation, Insert_Flyable_Faults, adds a fault to the lower rudder
and the Left_Inboard_Aileron — this still leaves a flyable set. The second
operation, Insert_Unflyable_Faults, sets faults to both the inboard and
outboard aileron on the left side — an unflyable situation. The
Remove_Faults operation just sets the fault status of these surfaces to
FALSE. Finally, the setFault_Status operation of the CAS_Surface_Positions
block sets the fault in the specified control surface.

As before, don’t forget to add the evFault event to the interface blocks (and
the actor blocks) as a directedFeature required in the interface and offered
in the actor blocks. Although we’ve been adding this by manually editing the
interface block, there is another way: Create a new sequence diagram with
that sends the event evFault from the use case to the actor blocks. The
easiest way to do that is to copy one of the existing sequence diagrams in
the ControlAirSurfacesBBScenariosPkg package, remove all the messages
from it and add the events to the appropriate lifelines, thusly:

sd [Package] ControlAirSurfacesBBScenariosPkg [Control Air Surfaces Scenario 1_copy]

itslUc_ControlAirSurfaces prtaMs prifilot_Display prAircraft_Hydraulics prdircraftPower priMaintainer

| | |
evFault(is_fiyable ; |
|
|

| evFaultlis_flyable)

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 135



Case Study: System Requirements Definition and Analysis

Now, right click on white space in the diagram and select SE-Toolkit > Port
and Interfaces > Create Ports and Interfaces. This will add the event to the
interfaces.

Lastly, we can update the Panel Diagram so that we can generate the
evSurfaceFault event. As before, we recommend all the events that use the
interface should be dragged to the ControlAirSurfacelnterfacesPkg.

Panel Diagram [Package] ControlAirSurfacesPkg [Control Air Surfaces Panel]

AMS Actor Block Control Air Surface
Zero Surfaces Send Start Use Case Block
' States
Push Push Add Position Error
Push Waiting Fo;Command Surface Fault
Command Position 1 Send Enable e
Bush Push Remove Position Error )
Moving Surfaces
Push @ Flyable Faults
Command Paosition 2 Send Disable .
Add Timing Error Waiting for Movement t
o Complete
HED RIER Push @ Unfiyable Faults
Command Position 3 Remove Timing Error Position Error
Push Push :l Remove Faults
weight_on_wheels Timing Error
Pilot Display Actor Block | ‘ ‘ ‘
Pilot Confirm Pilot Reject fault_count Left_Ground_Spoiler Position

Push ‘ Push ‘ ‘ ‘ ‘ ‘

Let’s run a few scenarios for this iteration of this use case analysis model.
Run the simulation to get to the Waiting_For_Command state, then

1. Set flyable faults and generate the evSurfaceFault event

2. Set unflyable faults and generate the evSurfaceFault event

Here is the outcome:

itsUc_ControlAirSurfaces priAMS prifilot_Display priAircraft_Hydraulics prifircraftPower priMaintainer

o
E
o
v
o
o

2
a
m

5 evEnable

|ENU i
Waiting_For_Command
Insert_Flyable_Faults()
Is_Flyable()
evFault(s_flyable = 1]
Is_Flyable()

evFault(s_flyable = 1)

Is_Flyable()

|

£

rg

Waiting_For_Command Ready

| Insert_Unflyable_Faults() |

1s_Flyable() |

i

s_Flyable()

s

wwFault(s_flyable = )
s_Flyable()

m

\
\
|
evFault(s_flyable = 0] }
\
|
\
|

FAILSAFE Ready Ide

=]
E

\
\
Ready ‘
|

At this point, we’ve completed the functional analysis of the two use cases
Start Up and Control Air Surfaces. The former was analyzed using a flow-
based workflow with an activity diagram; then we derived sequence
diagrams from that and created ports and interfaces to support simulation.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 136



Case Study: System Requirements Definition and Analysis

We also did some safety analysis. Finally, we created and executed the state
machine for the use case allowing us to simulate the requirements model to
identify and correct requirements defects and omissions.

The latter use case was analyzed with a scenario-based approach. We
started with sequence diagrams, then did a data model, safety analysis and
a few iterations of state machine creation and execution.

Now we’re ready to look towards architecture. We’ll start with some
architectural analysis of alternatives.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 137



Case Study: Architectural Analysis

8 Case Study: Architectural Analysis

The purpose of architectural analysis is many-fold but in this section we
focus solely on the analysis of alternatives; that is, we will analyze different
architectural or technology choices to determine the best choice for the
needs of the specific system under development. This is also known as
trade study analysis. The workflow for architectural analysis was shown
previous in Figure 5 and Figure 6.

In this section we well apply this process to create an optimized architecture
for our system, understanding that the architecture is incomplete because
we have only considered two of the use cases in this iteration. Some of
these steps will be assisted with the SE Toolkit automation functions. It is
important to understand that there are other, even more rigorous ways to
support the evaluation of alternatives. These include the use of Rhapsody’s
parametric constraint evaluator (PCE) profile. We will be applying a slightly
simplified method that is practical and, for most purposes, rigorous enough
to meet the need.

8.1 Identify Key System Functions

As we pointed out in Section 4.2 on page 16, key system functions are
system functions that are important, architectural, and subject to
optimization. A system function that is important but neither architectural
nor subject to optimization need not be analyzed for trade offs. To be
optimizable, in this case, means the selection of a different architectural
structure or different technology can result in significant benefit. For
example, if you want to provide motive force for a robot arm, should you
use pneumatics, hydraulics, or an electrical motor? All have pros and cons,
and a trade study can select which is best for the given system given its
requirements, contraints, and usage context. However, technology choices
that only affect a single engineering domain (such as electronics design)
should be deferred and made by the relevant downstream engineering
team. It is particularly important to use trade studies when the impact of a

technical selection is manifest across multiple engineering disciplines or
across multiple subsystem teams.

This can be subtle. For example, requiring functionality be done in a certain
way in software may greatly impact the need for available memory and
computational resources, affecting the electrical architecture. The
communications media among subsystem is another source of multi-
disciplinary concerns. Internal communication bus selection is an electronics
decision but impacts software performance and throughput and well as
cable management, a mechanical concern.

How to find System Functions

System functions show as actions performed by the system on activity
and/or state diagrams or as services invoked on sequence diagrams. In the
latter case, they are usually manifested as “messages to self” on the use
case lifeline.

This use cases we examined require the following kinds of system functions:

e control of surface movement

e measurement of surface movement position

e measurement of surface movement timing

e error date storage

e checking power status

e checking hydraulic status

e checking software integrity

e communicating with the aircraft AMS, Pilot Display, Power, and
Hydraulic systems (presumably they have an already defined
interface).

In this case, we will focus on the movement of the control surface. Mostly,
this is done through the application of hydraulic force provided by the
aircraft hydraulic system. The basic schematic is shown in Figure 144. The
hydraulic pressure results in a positive movement of the control surface
mediated through the movement of a piston and a connecting element.
Negative movement is performed by changing the position of the selector
switch and applying pressure.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 138



Piston moves
Piston

Qil under
pressure

Selectorvalve

Qil reserve
Figure 144: Simplified hydraulic schematic

However several of the control surfaces have trim tabs. These are smaller
control surfaces that are used to fine tune the aerodynamic effect of the
control surface. We've called them out as independent surfaces but they
are really subcomponents of the basic control surface.

Control surface

G,

Trim tab

Figure 145: Control Surface with Trim Tab

In addition, some control surfaces extend forward and retract backwards.
While the primary motive force (hydraulics) has been determined for the
primary control surface, how the trim tab and extension/retraction
mechanism works is not yet decided. This will be the focus of our trade
study.

Case Study: Architectural Analysis

8.2 Define Candidate Solutions
In this case we will consider two different methods for moving the trim tabs
and extension of the surface:

e Hydraulic force

e Electric motor

e Self-contained electrohydaulic unit for each control surface

The first case will require additional fluid cabling and hydraulic actuators.
Schematically, that solution looks something like Figure 146 for trim tab
control and Figure 147 for exension and retraction.

Piston moves
Piston Surface

Qilunder
pressure

2d Piston
moves trim tab

Qil reserve
Figure 146: Hydraulic control of trim tab

Piston moves
surface

Qil under
pressure

2 Piston
extendsor l
retracts surface

Qil reserve

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 139




Figure 147: Hydraulic control of extension/retraction

Remember that a control surface, optionally, has either a trim tab or extend
and retract, but never both.

The second case will involve installing small electric motors near each
control surface and some small additional cabling for electric power (note
that power and communications cabling is already required to support
measurement of movement).

Piston moves
Piston

Qilunder
pressure

Selectorvalve Electric motor l

moves trim tab

Qil reserve
Figure 148: Electric motor control of trim tab

Piston moves
surface

Qilunder
pressure

Electric motor extends
and retracts control l
surface

Selectorvalve

Qil reserve
Figure 149: Electric motor control of extension/retraction

Case Study: Architectural Analysis

The third solution is to use off-the-shelf self-contained electrohydraulic
units at each control surface trim tab and extension point.

Double Acting Cylinder
= Movement

. = High pressure circuit

D = Low pressure circuit

Figure 150: Electrohydraulic Actuator

In use, it is placed much as is the motor in Figure 148 and Figure 149.

We can model these solutions are different subclasses of the generic system
functions. To do this:

@ In the DesignSynthesis::ArchitecturalAnalysisPkg package create a
new package; TrimControlTradeStudy.

@ In the new package, add a new block definition diagram named
Trim Control Alternatives.

@ On this diagram, add new blocks:

o PositionControl

TrimControl

HydraulicTrimControl

ElectricTrimControl

o
o
o
o ElectriHydraulicTrimControl

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 140



o Extensioncontrol
o HydraulicExtensionControl
o ElectricExtensioncontrol
o ElectroHydraulicExtensionControl
The PositionControl block has two operations that are aspects of

this: Add
o moveTo(x: int)
o zero()

o ValidateCommand(x: int)
Add the generalization relations, as in Figure 151

Generalization means “is a kind of”, so this relationship is important as
these different technical solutions are specific realizations of the more
generic system functions PositionControl.

=]
Mission: Ta show technical 5
alternatives for the TrimControl and -
" PositionControl
ExtensionCeontrol system functions.
Operstion
& moveTofxint)sveid
zero():void
H validateCommand({x:int):RhpBoolean
aBlockn aBlocicn
TrimControl ExtensionControl
N Vales [ «moe» Acauracy:float
Oiperations Operations
Y ~moveTa(x:int):void & ~moveTalx:int):void
H ~zerol 0:void Y ~zeroivoid
‘& ~validateCommand x:int):RhpBoclean & ~validsteCommand(x:int):RhpBoolean
“Block “Blocke “Blocice “Bloke
HydraulicTrimControl ElectricTrimControl HydraulicExtensionControl ElectricExtensionControl
Cperations Operations Operations
1 “moveTo(xint):void 1 ~moveTofxint)ivoid 1 ~moveTofxint)ivoid
H ~zero0:void id id
H ~validateCommand(x:int] 1 Avalidate ):RhpBoolean 1 Avalidate
aBlockn <Blocks
ElectrohydauicTrimControl ElectrohydraukicExtensionControl
usbins .
Operations
H ~moveTo(x:int):void
~zero{void
‘& ~validatzCommand (x:int):RhpBoalzan

Figure 151: Modeling the candidate solutions

Case Study: Architectural Analysis

Note that in Figure 151, we used the display options to show inherited
operations (indicated with the “A” symbol). This is optional, but we believe
that it adds clarity in this circumstance.

It is important to note that these proposed solutions might differ in
important qualities of service, including safety, reliability, and security. The
proposed solutions and their quantified properties should take these
aspects into account (they can even be direct assessment critieria). This
means that in real life, the solutions must subjected to dependability
analysis as a part of the analysis of alternatives.

8.3 Architectural Trade Study: Define Assessment
Criteria

The key to selecting one technical solution over another is the identification
of the assessment criteria. Good assessment criteria allow us to distinguish
between good and better solutions in how they effect important,
measureable properties of the system. In our case, there are five
assessment criteria:

e Accuracy

e Weight

e Reliability

e Parts Cost

e Maintenance Cost

Add these to the PositionControl block as attributes (of type float or
double), and then in the browser, select all attributes and Change To an
moe. moe is a new metaclass (in Rhapsody, a “New Term Stereotype”)
defined in the HarmonySE profile. It brings along a tag called weight.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 141



EIEE DesignSynthesisPkg -
B[ Packages
E':I ArchitecturalDesignPkg >» Package Architec
BT ArchitecturalAnalysisPkg
=0 Packages
E-E7 TrimControlTradeStudy
E|[:I Block Definition Diagrams
g_r_‘l Trim Control Alternatives
B Blocks
TrimControl
HydraulicTrimControl
lectricTrimControl
ExtensionControl
ydraulicExtensionControl | _
lectricExtensionControl
ositionControl
B Attributes

=

E MaintenanceCost
Bba moes Features...
E Accuracy
= Reliability Add New 3
= Weight
PartsCost Cut Ctrl+X
Operations o Ctrl+C
E:I---bD Comments Ly X
-5 InterfacesPkg Paste Ctrl+V
EJ---&I CommonPkg Delete from Model Del
=0 Profiles
: Set St 4
-5 SysML (REF) ereotype
5@ HarmonySE (REF) Change to 3 Flow Attribute
bo Comments Refactor 3 Flow Property
-0 Controlled Files Value P
-0 Packages Navigate 4 alue Property
B2 Stereotypes moe I
4« | [ Edit Attribute

Rational Rhapsody Gateway
SE-Toolkit
Design Manager

* v v ¥

Apps

Figure 152: Changing an attribute to an moe

If you've turned the display options of the attributes/value properties on in
the diagram for the PositionControl block, it should now look like this:

Case Study: Architectural Analysis

wBlocks
PositionControl

E =moes Accuracy:float

E =moe: Reliability: float

E =moes Weight:float

E =moes PartsCost: float

E =moex MaintenanceCost: float

Oparafions
E maveToloint) rwvoid
E zero()void
E validateCommand (x:int):RhpBoolean

Zlé.

Figure 153: PositionControl with moes added

8.4 Architectural Trade Study: Assign Weights to
Criteria

We will assign these MOE values that indicate the degree to which each of
the specific solutions optimizes that property. We will scale these so that
they are in the range of 1 to 10. We will assign the weights of each MOE to
identify its relative importance. The weights will be normalized so that they
sum up to 1.00.

These MOEs, like any attribute, are inherited in all the specialized subclasses
of PositionControl. That means that each subclass will have all the MOEs,
but will not inherit default values nor values of the weight tag. We will
assign the default values for each of the subclasses to provide the
information as to the degree to which that specific technical solution
optimizes that MOE. The weights won’t change in the subclass hierarchy;
however, since the values of the tags are not inherited, the SE Toolkit
provides a tool to copy these values down to the subclasses.

Let’s assign the weights first.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 142



The weighting value is an assessment of the relative importance of that
specific criterion to the overall “goodness” of the solution. The higher the
weight, the more crucial it is. Normalization (so that the sum of all weights
equals 1.00) is a common method use do ensure reasonable relative
weighting factors. In this case we’ll make the following assignments

e Accuracy: 0.30

Weight: 0.20
Reliability: 0.25

Parts Cost: 0.10
Maintenance Cost: 0.15

To assign these, double click on each MOE in the browser, go to the Tags
pane and assign the value:

moe: Accuracy in PositionCeontrol « (&

| General I Description | Relationsl Tags | Properties

|se default order HEx
=I| HarmonySE
- mae
weight 0.30
Quick Add

Name: Walue:

Locate oK

Figure 154 shows the MOE weighting factors on the diagram. To see this,
drag the MOEs from the browser, and then right click on each, select Display
Options, go to the Compartments pane and click on the Customize button.
There you can add the compartment to show the tags.

Case Study: Architectural Analysis

«mom=
PartsCost:float

«mom=
Accuracy:float
«Blocks

PositionControl Tags Tags
Q’Qlweight:thReal=D. 30 Q’Qlweight:thReahD. 1

E smoes Accuracy: float
E smoe: Reliability: float
E smoes Weight: float
smoex PartsCost:float
E «moes MaintenanceCost: float Tags Tags

Q’Qlweight:thReal=D.25 Q’Qlweight:thReahD.lS

«moss

smose
Reliability:float MaintenanceCost:float

Operstions
E moveTo(x:int):void moes
E zero():void Weight:float
E validateCommand(x:int):RhpBoolean Tags
lﬁ %Qlweight:thReal=D.2

Figure 154: Showing moe weights

To copy these down to the children, right click the PositionControl block
and select SE-Toolkit > TradeStudies > Copy MOEs to Children. In this, slightly
unusual case, you’ll have to repeat the procedure for the TrimControl and
ExtensionControl blocks, as this helper only works with the immediate
children of a block. If you now inspect those subclasses, such as
ElectricTimControl, you will see that it also has the set of MOEs with the
correct values assigned to the weights.

8.5 Architectural Trade Study: Define Utility Curve for
Each Criterion

The utility curve computes a “goodness” score based on a quantitative value
associated with the solution. The utility curve can be any shape but, by far,
those most common is the “linear utility curve.” This curve is a straight line
defined by two points. The first point for this MOE is the worst candidate
solution being considered has a utility value of 0 while the best candidate
being considered has a value to 10. Given these two points, (worst, 0) and
(best, 10), a line can be constructed going through both. This is the linear
utility curve.

The equation for a line, given two points (x1, y1) and (x2, y2) is simply

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 143



y2—yl
=——x+b
y (x2 — x1) x
We have special conditions, such (worst, 0) and (best, 10) on the line. This
simplifies the utility curve to

10
moe = ——  — CandidateValue + b

best — worst

And
10
b=—————worst
best — worst

Where

e pest is the value of the criterion for the best candidate solution
e worst is the value of the criterion for the worst candidate solution

For example, let’s consider a system where our criterion is throughput,
measured in messages per second. The worst candidate under
consideration has a throughput of 17,000 messages/second and the best
candidate has a throughput of 100,000 messages/second. Applying our last
two equations provides a solution of

_ Throughput 170/83
o= T8300 /

A third candidate solution, that has a throughput of 70,000 message per
second would then have a computed MOE score of 6.3855.

Note: There are lots of other ways to construct utility curves for trade study
analysis. Interested parties are encouraged to look up references for specific
methods.

The next step is to construct the equations for each MOE using this
approach. For the purpose of this example, assume the following sets of
values are true for the set of criteria. In actual practice, this data would

Case Study: Architectural Analysis

come from lab measurement, manufactured specs, historical data, or
estimation.

Table 1: Trade Study Criterion Values

Solution/moe Accuracy | Weight Reliability | Parts Main.
(mm) (kg) (mtbf hrs) | cost (S) | Cost (S)
Hydraulic 5 72 4000 800 2000
Electric 1 24 3200 550 2700
Electrohydraulic | 2 69 3500 760 2100

Using the method outlined above results in the following set of equations:

5 25
accuracyMOE = — > accuracy + >

5
weightMOE = —ﬁweight + 15

R reliability
reliabilityMOE = ———— —
80
partsCost
partCostMOE = T + 32
maintenanceCost 270
maintenanceCostMOE = —

70 + 7
8.6 Architectural Trade Study: Assign MOEs to
Candidate Solutions
The equations for MOEs can be captured in SysML parametric diagrams.
In the browser, right click on the TrimControlTradeStudy package

and select Add New > Diagrams > Parametric Diagram. Name this
diagram, Trim Control Trade Study Parametrics.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 144




Drag the PositionControl block onto the diagram, then drag each of
its MOEs to inside the PositionControl block on the diagram.

Add a ConstraintProperty from the toolbar onto the diagram. Name
this ConstraintProperty TrimControlMOEs. Size this box to be the
same height at the PositionControl block.

Add ConstraintParameters to the left edge of the constraint

property:
o accuracy
o weight
o reliability

o partsCost

o maintenanceCost
Add a BindingConnector between each constraint parameter and
the corresponding attribute in the PositionControl block.
Using the technique outlined above, add the equation for each
computed MOE, as constraints in the TrimControlMOEs constraint

property.
o accuracyMOE
o weightMOE
o reliabilityMOE
o partCostMOE
o maintenanceCostMOE

Now add a ConstraintParameter for each of these computed MOEs
with the same name as in the previous step

Add a new ConstraintProperty named
TrimControlObjectiveFunction and add constraint parameters that
match the ones in the previous step

Connect the matching constraint parameters between the two
ConstraintProperties with binding connectors

Add the objective function as a constraint, computing the objective
function as the weighted sum of the property times its weighting
factor (stored in the weight tag)

Note, you can make the constraints visible by right clicking on the
ConstraintProperty and selecting Display Options. Then go to the
Components pane and click Customize, and add Constraints to the list.

Case Study: Architectural Analysis

Once you're done, you shound have a diagram that looks like Figure 155.

par [Package] TrimControlTradeStudy [Trim Control Trade Study Parametrics]

«Block#

PositionControl t +CanstrsintProparty

TrimControlMOEs
Constraints
{{accuracyConstraint} acaracyMOE = -5 accuracy/2 + 25/2}
{0} {{weightConstraint} weightMOE=-5%weight/24 + 15}

accuracy | {p)
]
{0} {reliabiliyConstraint} relabiityMOE= reliability/80 - 40}
o}
o

amoze
Accuracy:float

{{partsCostConstraint} partsCostMOE= -parisCosty/25 + 32}
{{maintenanceCostConstraint} maintenanceCostMOE= -maintenanceCosty70 + 270/7}

amoze

Reliability:float reliability
wmose

Weight:float weight

amose
PartsCost:float partsCost.

emose
MaintenanceCost:float maintenanceCost

weightMOE reliabiityMOE partsCostMOE

accuracyMOE maintenanceCostMOE

accuracyMOE weightMOE reliabilityMOE partCostMOE maintenanceCostMOE
«Constrail__lock
‘WeightedObjectiveFunction
Constrants

10}4{ObjectiveFunctionConstraint} ObjectiveFunction=accuragyMOE™0.30 + weightM OE*0.20 + relizbiityMOE™0.25 + partsCosMOE*0.10 + maintenanceCostMOE*0.15}

Figure 155: Parametric diagram for trade study analysis

Rhapsody provides a Parametric Constraint Evaluator (PCE) profile that
connects to third-party mathematical computational engines to perform the
calculations for the three solutions. However, we will do a slightly simpler
approach using the facilities of the SE Toolkit. It will use Microsoft Excel as
the computational engine for evaluation of the constraints.

Build a Solution Architecture Diagram
First, let’s build a Solution Architecture Diagram. This is a block definition
diagram that shows the alternative solutions.

In the TrimControlTradeStudy package, add a new Block Definition
Diagram. Name this diagram Trim Control Solution Architecture.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 145



Add blocks representing the alternative solution architectures
o Block HydraulicTrimControlSolution
o Block ElectricTrimControlSolution
o Block ElectroHydraulicTimeControlSolution
Drag the six solution blocks onto the diagram from the browser
o HydraulicTrimControl
o HydraulicExtensionControl
o ElectricTrimControl
o ElectricExtensionControl
Make the appropriate composition relations among the blocks
o HydraulicTrimControlSolution is composed of
HydraulicTrimControl and HydraulicExtensionControl
o ElectricTrimControlSolution is composed of
ElectricTrimControl and ElectricExtensionControl
o ElectroHydraulicTrimControlSolution is composed of
ElectroHydraulicTrimControl and
ElectroHydraulicExtensionControl
Compute the MOE value by applying the MOE equations to the
values from Table 1 of the appropriate solutions
o Assigning the values for the best and worst scores is easy:
it’s either 0 or 10, because that’s how we defined the linear
utility function. To determine the scores are between the
best and worst, you’ll have to solve the equations above.
o For example, to determine the value of the MOE Accuracy
of the Electrohydraulic Trim Control solution, take the
value of the accuracy of the solution from Table 1 (2),
compute the MOE by using the accuracyMOE equation, and
assign the result (7.5) to the value of the Accuracy MOE in
the ElectrohydraulicTrimControl and
ElectroHydraulicExtensionControl blocks.

Your diagram should look something like Figure 156.

Case Study: Architectural Analysis

bdd [Package] TrimControfTradeStudy [Trim Cantrol Solution Architecture]

wBlocks «Blocke
HydraulicTrimControlSolution ElectricTrimControlSolution

Values Valves

Operations Operations

] | |

oBizcis frrs frrs =

HydraulicTrimControl HydraulicExtensionControl ElectricTrimControl ElectricExtensionControl
Values Values Values Values

= <moe Accuracy:float=10

= «moe> Reliability:float=0

= «moe» Weight:fioat=10

= <moe PartsCost:float=10

= «moe> MaintenanceCost:float=0

= <moe» Accuracy:float=10

= «moe» Reliability:float=0

[ «moes Weight:float=10

[ «moes PartsCost:float=10

= «moe» MaintenanceCost:float=0

= <moe» Accuracy:float=0

= «moe» Reliability:float=10

= «moes Weight:float=0

= <moes PartsCost:float=0

= «moe» MaintenanceCost:float=10

= <moes Accuracy:float=0

= «moe> Reliability:float=10

= «moes Weight:float=0

= <moe PartsCost:float=0

= «moe> MaintenanceCost:float=10

Operstions

«Blocke

Elect
Values
Operations
“Blocks “Bloci
ElectrohydraulicTrimControl ElectrohydraulicExtensionControl

Values Values
= <moe» Accuracy:float=7.5
= «moe> Reliability:float=3.75

= «moe» Accuracy:float=7.5
= «moe>» Reliability:float=3.75
= <moes Weight:float =0.625 = <moe» Weight:float=0.525

“moe» PartsCost:float=1.60 «moe PartsCost:float=1.60

«moe MaintenanceCostfloat=8.57 || = smoe» MaintenanceCastifloat=8.57

COperations Cperstions

Figure 156: Trim Control Solution Architecture

8.7 Architectural Trade Study: Determine Solution

Construct an Option Analysis Diagram

Next, make another block definition diagram in the same package named
Trim Control Option Analysis. Drag the three potential solution
architecture blocks on to it: HydraulicTrimControlSolution,
ElectricTrimControlSolution and ElectrohydraulicTrimControlSolution.

This diagram is very simple and provides a context for the SE-Toolkit to do
the analysis:

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 146



bdd [Package] TrimContralTradeStudy [Trim Control Option Analysis]

«Blocks wBlocks
HydraulicTrimControlSolution ElectricTrimControlSolution
Vales Vales
Opershions Operations

«Blocks=

ElectroHydraulicTrimControlSolution

Vales

Opersfions

Figure 157: Trim Control Option Analysis Diagram

Right click in this diagram and select SE-Toolkit > Trade Studies > Perform
Trade Analysis. The toolkit will create a new Controlled File named Trim
Control Option Analysis_TradeStudy.xls. Double-clicking this file will open
it in Excel and show you the trade analysis with the computation of the
objective function performed by Excel:

HydraulicTrim ElectricTrim ElectroHydraulicTrim

ControlSolution ControlSolution ControlSolution

~_weight value WV value WV value WV

PositionControl.Accuracy 0.3 0 0 10 3 7.5 2.25
PositionControl.Reliability 0.25 10 2.5 0 0 3.75 0.9375
PositionControl.Weight 0.2 0 0 10 2 0.625 0.125

PositionControl.PartsCost 0.1 0 0 10 1 1.6 0.16
PositionControl.MaintenanceCost 0.15 10 15 0 0 8.57 1.2855
4 6 4.758

Figure 158: Computation of the objective function

Case Study: Architectural Analysis

By this analysis, the electric motor solution is our best choice, since it has an
objective function value of 6., versus 4 for the purely hydraulic solution and
4.758 for the self-contained electrohydraulic units.

8.8 Merge Solutions into System Architecture

Because this is the first iteration, we don’t have an existing subsystem
architecture into which to insert the results of our trade study. When we get
to architectural design (next), we will insert the solution where it makes
sense. In some cases, the solution at this point is obvious as we’ve identified
a subsystem. However, in this case, we’ve identified a subcomponent of one
or more subsystems, so we will defer the merging the solution into the
architecture until we’ve identified where it should go.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 147



Case Study: Architectural Design

9 C(ase Study: Architectural Design

In architectural design, we will
o |dentify the subsystems
e Allocate requirements and use cases to subsystems
e Define the interfaces and flows between the subsystems
Derive subsystem requirements
Update the logical data schema
e Update the dependability analysis
e Create the system verification plan

The workflow for the Architectural Design activity is shown in Figure 10 back
on page 19. We won’t explore some of these tasks to save space, including
Develop Control Laws and Analyze Dependability. We will do at least some
of the work associated with all the other activities and tasks from Figure 10.

The first thing we’ll do is to merge in the features from the various use case
blocks

9.1 Identify Subsystems
A subsystem is a large-scale architectural element that
= Meets a common set of requirements (coherence)
= Contains elements that interact strongly (tight coupling)
= Contains elements that interact weakly with other subsystem
(independence)
= Hide internal structure and implementation detail (encapsulation)
= Provides or requires well defined sets of services (interfaces)
= Typically, developed by a single team (common developers)
= Usually contains aspects from multiple engineering disciplines
(interdisciplinary)

Good subsystems are
= Coherent (together provide a small number of purposes)

= [nternally tightly coupled

= Externally loosely coupled (with other subsystems and their
components)

= Collaborative in the architecture with via a small number of well
defined interfaces

In thinking about this system, it is clear that we need several different kinds
of structures to provide sets of coherent services. We’ll start by creating a
block definition diagram showing our basic idea for the architecture.

In the DesignSynthesisPkg > ArchitecturalDesignPkg, add a new
block definition diagram. Name this diagram ACES System
Structure.
Add a system block named ACES (if one does not already exist)
Add the following subsystems as blocks

o ACES_Management
ACES_Hydraulics
ACES_Power
ACES_ControlSurface
ACES_ControlSurfaceWithTrim
ACES_ControlSurfaceRetracting

O 0O O O O

Connect the first four to the ACES system block with composition relations
and make the last two blocks subclasses of the ACES_Control_Surface block.
See Figure 159.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 148



«Block.Subsystems
ACES_Hydraulics

Valves

[w)
Mission: Show the subsystem
architectural element types

bdd [Package] ArchitecturalDesignPka [AirSurfaceControlSystem Structure]

«Blocks

I/ MNUMBER_OF _SURFACES

+Block.Subsystem» +Block.Subsystem>
ACES_Control_Surface ACES_Management

Values Values

ACES
“Block, Subsysteme
ACES_Power
Values
Operation:
“Block. Subsystems

ACES_Control_Surface_With_Trim

Values

Operations

+Block.Subsystem>
ACES_Control_Surface_Retracting

Values

Figure 159: Subsystem composition architecture

This architecture takes advantage of the similarities between the three

kinds of control surfaces — simple control surfaces, control surfaces that also

have trim tabs, and control surfaces that retract and extend.

We now need to create packages for each of the subsystems. Fortunately,

there’s an SE Toolkit feature for that. Right click the ACES block on the

diagram and select SE-Toolkit > Architecture Tools > Create Sub Packages.

This wizard will mark the subsystems with the stereotype «Subsystem»,

moves the block to its package, and adds a tag isSubsystem with the value

TRUE (used later in the hand off workflow).

Case Study: Architectural Design

=4 =HarmonySEx AirSurfaceControlSystem
+-() Components
= Packages
i £ ActorPkg
i £ RequirementsAnalysisPkg
-5 FunctionalAnalysisPkg
=+F) DesignSynthesisPkg
=~ Packages
= Ej ArchitecturalDesignPkg
=+-() Block Definition Diagrams
%8 AirSurfaceControlSystem Structure
H bg Blocks
T Comments
+-'Q Matrix Views
=[] Packages
=-§) ACESDecompositionPkg
=] Packages
+-f7] ACES HydraulicsPkg
3-f 1 ACES_PowerPkg
1-f 71 ACES_Control_SurfacePkg
&2 EJ ACES_Control_Surface_RetractingPkg
#-f ACES_Control_Surface_With_TrimPkg
+-[7] ACES_ManagementPkg
#-§7 ArchitecturalAnalysisPkg
+-§j InterfacesPkg
i-£7 CommonPkg
Z- Profiles
65 SysML (REF)
&-{£31 HarmonySE (REF)
#-{f3] DependabilityProfile (REF)
#-(7] Settings

Figure 160: Added subsystem packages

9.1.1 Merge functional analysis

Note: before you apply the SE-Toolkit feature you’ll want to set the
properties for the SE Toolkit to Clone Events and Merge Types. To do this,
select the project in the browser, double click to open the Features dialog,
go to the Properties tab, View the SE-Toolkit properties and click the
checkboxes as shown.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 149



Case Study: Architectural Design

Sys ML : AirSurfaceControlSystem O = | a 53 ACES System Structure i
Entire Model View ¥ | ™
General | Desciption | Relations | Tags | Properties - bdd [Package] ArchitecturalDesignPkg [ACES System Structure]
=3 «HarmonySE» AirSurfaceControlSystem P
View SE Toolkit = B i#-C3 Components s
£ Packages
= = N " ©-f7 ActorPkg
Setup  General Functional Analysis  Design Syrthesis ©-[1 RequirementsAnalysisPkg
. =-f7 FunctionalAnalysisPkg
View Al £1-£71 DesignSynthesisPkg
=| SEToolkit =3 Packages
- 2 =-f7 ArchitecturalDesignPkg
=l| CreateWhiteBoxActivityView . E-E ActorBlocks
AutoMapActorPins . E-CJ Block Definition Diagrams NUMBER_OF_SURFAC
Auts A V] : 3 ACES Contebit “Bloke “Biocs “Blacke
AutoRenameActorPinsOnRemap ESB ACES System Structure ACES_Hydraulics ACES_Power ACES_ControlSurface
=l MergeFunctionalanalysis T ? Valses Values Values
CleanDependencies @ (2 Commer  Fegtures..
SEvent = i B connectc Operations Operations Operations
CloneEvents . @+ InternalE Add New >
MergeTypes ¢ B-( Packages
| B2 Parts Cut Crl+X
‘SEToolldl::Ih'gﬁHminrﬂhﬁysis::Ihngypes >~ #-£7 Architectural Copy Cti+C
e 1 InterfacesPkg Pas - Mlission: Show the
aste Ctrl+V
&£ CommonPkg system subsystem
(3 Profiles Delete from Model Del  rchitecture typss “Blodks
Locate oK @) Settings Set Stereotype N ACES_ControlSurfaceWithTrim ACES_Cc
Change to > Values
Refactor ¥
i i Edit Order of Types Cerstians
In this step, the features of the use case blocks are merged into the system -~ ,

block so they can be allocated into the appropriate subsystems. The SE Browse Hisarchy ,
Realize Base Classes...

Toolkit provides a tool to do that. Right click on the ACES block in the Make an Object

browser or on the diagram and select SE-Toolkit > Architectural Tools > Creste Unit
Merge Functional Analysis. This tool will collect up the attributes and e
services from the various use case blocks in the functional analysis package e Coce
and add them to the ACES block. e

Create TestArchitecture
Rational Rhapsody Gateway
SysML

SE-Toolkit Import Description from RTF

Design Manager Architecture Tools Create Test Bench

Allocation
Trade Studies

Add Hyperlinks
Add Dependencies

Apps Merge Functional Analysis
Create Sub Packages

Merge Block Features

Create Svstem Context

Figure 161: Merge Functional Analysis tool

The tool may report finding errors; these are usually because the tool
already added in a feature of the same name from some other use case
block. This is an indication that you should look at the merged feature to
make sure that it properly merges the features from all relevant use case
blocks.

Issues with Merging Functional Analysis
When you merge from multiple use cases there are several cases that must
be considered:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 150



Case Study: Architectural Design

1. The semantic feature is unique to one use case
2. The semantic feature occurs in exactly the same form in multiple
use case
3. The semantic feature has different names but is meant to be the
same feature
4. The feature has the same name in different use cases but intended
to be semantically distinct
5. The feature occurs in multiple use cases but is different in form
a. Same name, different properties
b. Different name, different properties but nevertheless still
describes the same feature

The term properties, in this context means things like the argument list
order, type and naming for operations and event receptions, service type
(operation, event reception, triggered operation reception), or type (if an
attribute or value property), and the value of any stereotype tags that might
indicate subrange or qualities of service.

Cases 1 and 2 are the easiest. Simply add the feature to the system block.
However, care must be given to ensure that when you think you have case 2
you do not actually have a case 4.

The other cases are more difficult and require human intervention.

Case 3. This often occurs because different use case developers are likely
specify an event, service, or datum using a different name while referring to
the same system feature. One might imagine on use case developer using
an event name Move_To(x,surfacename) while another use case that also
requires movement to use goto(surface, position) or even
commandAllPositions(p: PositionSet). Semantically, the intent of all of
these is the same even though the names and parameter lists are different.
Human intervention is required to identify this and merge them into a single
service in the system block.

Case 4. This occurs less often, but even if you have a naming guideline to
use names expressive of intent, it does occur frequently enough. An event
such as configure might refer to the setting of minimum and maximum

positions of a specific control surface or uploading a new software image.
Such errors are harder to identify and require a thorough review of the
application in the different use cases.

Case 5a. The use of the same semantic service might require different
parameters depending on its actual use. For example evError, in one
context might have to return the location of the error (for system
diagnostics and repair), or the severity of the error (for operational decision
making), or the date and time of occurrence (for maintenance purposes).
One solution is to merge all these needs together into a single service,
knowing that in some contexts not all information may be relevant. Another
solution is to create different services that carry the data they need based
on the context of their use.

Case 5b. This is a variant of Case 5a and is even more difficult to detect,
since the name and properties of the service are different. To detect this
requires a solid understanding of the relevant source use case analyses.

Beyond these general issues, there are some issues in older versions of the
toolkit. The toolkit clones types and events — assuming you set the checkbox
in the properties dialog for the SE Toolkit as mentioned before — but older
versions may not always resolve references to the cloned elements. For
example, the use case model refers to an event

evUpdatePositions(CAS_Surface_Positions* sp)

The current version of the toolkit properly clones the event and updates the
event reception but may not update the type of the parameter sp. It should
refer to the cloned type CAS_Surface_Positions in the InterfacesPkg >
MergedinterfacesPkg > UcControlAirSurfacesDataTypesPkg but instead
refers back to the original copy of the block in the FunctionalAnalysisPkg >
ControlAirSurfacesPkg > ControlAirSurfacesTypesPkg.

This limitation also applies not only to the parameters of event arguments,
but also to the types of value properties of cloned blocks and parts of

cloned blocks. For example, cloned block CAS_Status has a property called
status of type CAS_SystemOperationalState. Although the latter type was

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 151



Case Study: Architectural Design

cloned, the status value property may not be updated to refer to the cloned
copy.

Bottom line: not all references to types (including blocks) may be properly

updated to refer to the cloned version. You'll have to manually review each
one to ensure that it properly refers to a type in the InterfacesPkg and not
in the FunctionalAnalysisPkg and update where necessary. The toolkit will

get you started but there may still be some work to be done.

What to do about it

The upshot of this is to understand that the merge of information from
different use cases to the system block can never, in principle, be a
completely automated process. The SE Toolkit gets you started, but you
must still examine and analyze the result to ensure the intent from each use
case is preserved in the system block.

We recommend ongoing reviews between use case teams,
to identify and resolve such issues. These “alignment
reviews” take place periodically during the parallel
development of the multple use cases (and therefore
precedes the architectural merge). This will resolve the
simpler issues of conflict between the use case teams. Issues
like differences in parameter lists of system functions and
data structures are harder because these differences are
“out of scope” of the use cases.

The best way to do this is a review of each use case feature set, state
machine, and interfaces and how each was merged into the system block.
Ideally the system architect and a member from each use case team is
present in the review of the merged features set. It is best to complete this
review and update before moving on to the allocation of the features to the
subsystems.

Completing the Merge of Functional Analysis into the Architecture

The SE-Toolkit Merge Functional Analysis tool gets the process started. The
tool does the following things for you automatically:

e Copies the attributes/value properties and operations (of all types)
from each of the use case blocks in the FunctionalAnalysisPkg to
the identified system block

e Copies all types from the functional analysis use case nested types
packages into the InterfacesPkg > DataTypePkg into subpackages
organized by use case

e Updates the parameter lists of the copies system block functions to
refer to the copied types

We must now manually complete this merge activity. This is a matter of
walking through all the copied elements, updating the names (since they
were all name-mangled with the use case name), and merging their
semantics, as appropriate. For example, a evMovementCommand(p:
CAS_PositionSet) and evMove(surfacelD, position), perhaps this becomes a
single evMovement(p: PositionSet) operation, where we’ve merged the
functionality, and changed the names to remove the use case-specific
adornments.

Older Toolkit Version

In addition, you should look at the location of each referenced type to be
sure that it refers to a type in the InterfacesPkg and not one in the
FunctionalAnalysisPkg. For example, if you see

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 152



=57 InterfacesPkg
B-C3 Packages
£ DataTypesPkg
257 MergedinterfacesPkg
E-C3 Packages
-7 Uc_StartUpDataTypesPkg
(2 Blocks

Part : itsError_Report in Error_Log

~ B

Error_Report T
Dependencies Relations Tags Properties
B Value Properties General Description Value Properties Operations Ports Flow Ports Full Ports Praxy Forts
error
E date_time Name: [isErmor_Report | Label
surfacelD
=1 Stersotype: I ] @ E
Error_Log Main Diagram:
{2+ Dependencies
DD pare Concureney
[ itsError_Report Type: Ermor_Report in FunctionalAnaiysisPka- Start UpPka: StartUp TypesPkg ~|[BE
=
Teet Log Mutiplicity: [ ~|
Power_Status] Intiaization: | |
Hydraulic_Status]
B+ Data Types Relation ta whole
< ERROR_TYPE
- Knows Eiror_Lo
< DATETIME_TVPE [ knows Eror Log 2 .
< POWERSOURCE_TYPE
© TEST_TVPE Locate oK
< NORMAL_RESTART_TIME
£7 Uc_StartUpEventsPkg ‘ |
You should change it to
£ InterfacesPkg °
£ Packages
£ DataTypesPkg
=-£7 MergedinterfacesPkg
E-( Packages
2§70 Uc_StartUpDataTypesPkg
& Blocks Part : itsError_Report in Error_Log B |
Error_Report =
G& Dependencies Relations Tags Propeties
(&= Value Properties General  Description  Value Propeies  Operstions  Ports FlowPots  Ful Pois  Proxy Ports
error
date_time Name: [isErmor_Report [ Lebel...
= surfacelD
Serctpe: | ] )%
Emor_Log Min Diagram:
{2 Dependencies r
@ paree Concurertzy
[ itsEmor_Report Type: Eror_Report in InterfacesPka: MergedintefacesPka-Lic_StartUpData TypesPkg ~| (B
Test_Outcome Wotiic 5 7]
Test_Log uttiplicity
Power_Status? Initializatiof \ ‘
Hydlraulic_Status1
2 Data Types Relation to whole
< ERROR_TYPE
- Knows Eiror_Log as:
& DATETIME TVYPE [ finors Eror_Log s .
-4 POWERSOURCE_TYPE

< TEST_TYPE

4 NORMAL RESTART TIME!

Locate oK

F11- StantlInFuentcbln

Similarly, for this:

Study: Architectural Design

£ InterfacesPkg ’T
(1 Packages
£ DataTypesPkg B
=-f7 MergedinterfacesPkg e = AirSurf -
=+ Packages
1 Uc_StartUpDataTypesPkg General  Arguments  Desaiplion  Relations | Tags
% EE’?MUFM"(SP@ DataTypesPi [evUpdate_Fositons (CAS_Surface_Postions™ sp) ]
I3 Uc_ControlAirSurfacesEventePkg HER GO
EEZ Events =
E evUpdate_Positions(CAS_Surface_Positions sp) Name Type Value
¥ evEnter_Operational State( 8 i A5 Surface Positions
¥ evRemovePosError() Hewr
¥ evRemoveTimingError()
¥ enAddPosEror()
¥ evAddTimingErrar( =z @x
¥ evEnable))
¥ ewPilotConfimation() Argument : sp in eillpdate_Positions (N - |
P ePilotRejection() =
¥ evStartup() General Descrplion  Relafions  Tags  Propefiies
¥ evSurfaceFault()
¥ evinsertFlyableFauts) Name: [ || Label
P ensertUnflyableFaults) Stereotype: o
P evRemoveFaults() o ‘ | 7|
i Tags Specy bype
£ CommenPkg Use exdsting type
(3 Profiles
£ sysML (REF) Type: [cas_sutace_Postions n g g ~]
3 HarmonySE (REF) .
E-(& Comments -
{700 VersionNo (RO) Locate oK
(0 SPDeccrintianTemnlate (RO)
Change it to this:
£ InterfacesPkg T
O Packages. ‘ ‘
£ DataTypesPkg B
=-£3 MergedinterfacesPkg == A A -
00 Packages
£ Uc_StartUpDataTypesPkg General Arguments Description Relations  Tags
E ﬂii‘:rﬁf‘:iﬁs"‘fiﬁwatﬂwespkg [evUpdate_Postions [CAS_Surface _Postions" sp) ]
gy a [Bf=} FTE
=2 Events
-1 evlipdate Positions(CAS_Surface Positions sp) lame Type Value
T _euDisable()
T cvEnter_Operational_State( & ipN N CAS.Surface Positions
¥ evRemovePosError() ew
¥ evRemoveTimingError()
- enAddPosError()
¥ evAddTimingError() Locate oK
¥ evEnable()
¥ euPilotConfirmation() Argument : sp in evUpdate_Positions N - |
¥ evPilotRejection() .
¥ evStartup() General Description  Relations Tags ~ Properties
¥ evSurfaceFault)
P evinsenFlyableFaults) Name [so | [ Label
¥ evinsertUnflyableFaults() Stersotype: -
¥ evRemoveFaults) o ‘ ‘@E
(5 Tags Speciy type
£ CommaonPkg Use existing type.
3 Profiles
3 SysML (REF) Type [cas_suface_Positons n g g:Uc_C DataTypesPkg ~ B
HarmonySE (REF)
= Comments v
O VersionNo (RO} Locate oK Apply
) SNNecrrintinnTemniate @O

Change this:

£3 InterfacesPkg
[ Packages
£ DataTypesPkg
=47 MergedinterfacesPkg
1[0 Packages
£ Ue_startUpDataTypesPkg
£ Ue_StartUpEventsPkg
£ Uc_ControlAirSurfacesDataTypesPkg
(2 Blocks
CAS_Surface Position
CAS_Surface_Positions
(22 Dependencies

—

O
&-¢2 Parts
["8 itsCAS_Surface_Position

T CAS Status
“*2 Dependencies
Parts
B3 Value Properties
H status
CAS Surface Position_Status
1= €A% Frenr Rennrt

Part : itsCAS Surface_Position in CAS_Surface_Positions

el |

General Description Value Properties  Operations  Ports

-
Ful Pots  Proxy Ports  Relations Tags ~ Properties

Name: [tsCAS_Suace_Postion

|| Label.

Stereotype: |

| ]

Wain Diagram:

[

Type CAS_Surface_Postion in

) TypesPka M=

Nuitipicy: {

Initalization [

Locate oK

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 153




to this:

251 InterfacesPkg
=-C3 Packages
£ DataTypesPkg
260 MergedinterfacesPkg

£1-CJ Packages
#-63 Uc_StartUpDataTypesPhg Part : itsCAS_Surface_Position in CAS_Surface_Positions el - |
5] Uc_StartUpEventsPkg ~
5 25 Uc_ControlAiiSurfacesDataTypesPkg Generd  Description Value Propetties Operations Poris  Flow Ports  Ful Poris  Proxy Pots  Relafions  Tags  Propeties
I B
?Ekzs Surtace Postion Name: [sCAS_Suface_Posiion || abel..
£ CAS_Surface Positions Stersciype: |
cas ‘ | @)
(= Operations iain Diagram:
=65 Parts Concurency:
(R Type: CAS_Suface_Postion n IntefacesPhg: g:Uc_C DataTypesPkg BlE
#-(s Dependencies Mutplicty [NUMBER_OF_SURFACES ~|
£ pans ntislzation [ ]
=2 Value Properties v
5 status Locate oK
CAS_Surface Position_Status
171 CAR Ferer Rannrt T
5§30 InterfacesPkg
=+ Packages
~E7 DataTypesPkg
=50 MergedinterfacesPkg
20 Packages o <Block, Subsystam>
97 Uc StertUpDataTypesPkg Mission: Show the subsystem ACES_Control_Surface_With
#-£3 Uc_StartUpEventsPkg
=143 Uc_ControlAirSurfacesDataTypesPkg Value Property : status in CAS _Status - H
- (2 Blocks )
a3 CAS_Surface Position General Description Relations Tags Propetties
53 CAS_Surface_Positions
. D - O)
- Dependencies [crs sy status J
=& Operations Name s | (bt
= Parts
[ itsCAS_Surface_Position Stereatype [ -] &l
=-C CAS Status Visibilty: Public =
B (S Parts
£ (2 Value Properties Atrbute type
= status 4 Use existing type
{5 CASSuTtaTe-FUStoN-StaTD —
CAS_Error Report Tipe CAS _SystemO) n ysisPhg g Types | [E
2-¢ Data Types .
- <> CAS_TimeDateType
- & CAS_SystemOperationalState Locate oK
F. & CAS Surfarell
551 InterfacesPkg
= Packages
[ DataTypesPkg
£ MergedinterfacesPkg o
=1+ Packages [ —
@£ Uc_StertUpDataTypesPkg Mission: Show the subsystem ACES_Control_Surface_With
i-57 Uc_StartUpEventsPkg
£ Ue_ControlhirSurfacesDataTypesPkg Value Property : status in CAS Status il -
5-(E Blocks A
&) CAS_Surface_Position General  Description  Relations  Tags  Propeties
-7 CAS_Surface_Positions
Y - 0
(s Dependencies [cas_sym stalus ]
(5 Operations Name: [ =
B Parts
© [ itsCAS Surface Position Stereotype: | -] &%
=7 CAS Status Visbiy: s »
fil- (24 Dependencies
T Parts
B2 Value Properties Attibute type
o status [4 Use existindType
7 UAS Surface_Position_Status —
CAS Error Report Type: [cas_systemoy in InterfacesPkg: kg: Uc_C: DataTypes| v| |2
E-(2 Data Types .
i CAS TimeDateType
i< CAS_SystemOperationalState Locate oK
i< CAS SurfacelD

Case Study: Architectural Design

Repeat for all references to types in the cloned operations, event
receptions, blocks, and types in the InterfacesPkg and nested packages.

Merging Similar Features

There are other things to merge as well. For example, the two use cases
refer to the type of Surface_ID differently. The Start Up use case used an int
while the Control Air Surfaces use case used an enumerated type named
CAS_SurfacelD. So any reference to a surface id in an operation, reception,
block or type in the InterfacesPkg > MergedinterfacesPkg > Uc_StartUpxxx
packages should be changed from an int to the CAS_SurfacelD.

It also makes sense to remove the CAS_ prefix used for the use case
features since now we’re in the merged architecture. For example,
CAS_SurfacelD should become SurfacelD. If you change the type name
Rhapsody will update all the references that use it for you.

The two use cases also define a date-time type (DATETIME_TYPE and
CAS_TimeDateType), two error types (ERROR_TYPE and CAS_ERROR_TYPE)
and the restart time intervals (NORMAL_RESTART_TIME and
NORMAL_RESTART_INTERVAL). Each should be resolved to a single type
used by all relevant cloned elements, and the unused one should be deleted
from the InterfacesPkg. Since the tookit adds a dependency, drag the
dependency from the type to-be-deleted to the type-to-be-retained. In this
case, | used the CAS_ versions of all the types. That is, | copied all the
dependencies; | changed all the references to the DATETIME_TYPE to the
CAS_TimeDateType; | copied all the enumeration literals from the
ERROR_TYPE to the CAS_ERROR_TYPE; | removed
NORMAL_RESTART_TIME but kept NORMAL_RESTART_INTERVAL. | then
went through the blocks and types in the InterfacesPkg nested packages
and removed all the CAS_ prefixes.

| also made a pass to identify any merged features of the ACES block and
events in the DesignSynthesisPkg that were there to support simulation,
such as the insertion or removal of error conditions. To all these, | added the
stereotype «nonNormative». If desired, you can remove any merged
features stereotyped «nonNormative», since they were just used to

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 154



y: Architectural Design

facilitate simulation. If you think they will continue to be helpful, however, O A entions
feel free to keep them. B Restrt

il Enter_WARM_State()
- (=] ENABLE_Command()
= Enter_Operating_State()

With the two use cases defined, the merge results in the following "l Zers Ereor Coui
attributes and operation copied from the use cases to the ACES block: | St Pt Surtocel) e Positiond

- Verify_Position_And_Timeliness()
il Command_To_Maxirmum_Pasitian()
-l Zero_Control Surface()

[ Select_Mext_Control_Surface()
= Request_Power_Status()

& Check_Power_Status()
o= Request_Hydraulic_Status()

- Check_Hydraulic_Pressure()
-l Check_SW_Integrity()
-l Store Error()

= Augment_Error_Count()
= Report_Error()

& Enter_FAILED_State()

-Ef reqENABLE_Command()
& hereza_Power_Status{Power_Status1 ps)
& hereza_Hydraulic_Pressure(Hydraulic_Status1 hs)
-l Move_To(Surface_Positions*™ paositions)
|l Check_For_Errors()
il Check_Power()
- Check_Hydrauic_Pressure()
o= Verify_Positions_And_Timing()
-[=] Set_Pesition(SurfacelD id,int pos)

& snonMarmatives Print_Line()

-kl «=nonMormatives Print_Pos(SurfacelD id,int pos)

& Initialize_Surfaces()

il «=nonMormatives Print_Error(RhpString errMsg, SurfacelD id)
- Check_Movement()

il Check_Position(SurfacelD id)

o= Is_Equal(int a,int b,int tolerance)

& No_Faults
- 1s_FlyableQ)

& «nonMormatives Insert_Flyable_Faults()
il «=nonMormatives Insert_Unflyable_Faults()
& «nonMormatives Remove_Faults()

& evUpdate_Positiens(Surface_Positions sp)
g evDisable()

&P evEnter_Operational_State()

& «nonMormatives evRemovePosError()

EfF «nonMormatives evRemoveTimingError()
-Ef «nonNormatives enAddPosErrar()

& «nonMormatives evAddTimingError()
&P evEnable()
&P evPilotConfirmation()
EP evPilotRejection()
e evStartup()

EP «nonMormatives evSurfaceFault()

&P «nonNormatives evinsertFlyableFaults()
& «nonMormatives evinsertUnflyzbleFaults()
&P «nonMormatives evRemoveFaults()

= lzg Parts

['g itsACES_Hydraulics

~ (g itsACES_Power
5 itsACES_Centrol_Surface
-] itsACES_Management
9-&5 Value Properties
position_set
«nonMormatives timing_error
«nonMormatives position_error
weight_on_wheels
E fault_count

£ 3

Figure 162: Result of Merge Functional Analysis

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 155



Case Study: Architectural Design

| then moved all the blocks and types from the packages nested within the Figure 163: Merged Types and Events
InterfacesPkg to the InterfacesPkg > DataTypesPkg package. This results in
the following structure and set of types and events:

B — 9.1.2 Allocate merged features to subsystem architecture
5[ Components So all these attributes/value properties and operations/event receptions

Mgfﬁsﬁpkg identified in the functional analysis are merged into the ACES system block.
% Ejg:tiifznm;;t::;;'ﬁ;% What should you do with them next?

+1-[7 DesignSynthesisPkg

Ej':“;f:f:;::‘g These features must be allocated to the subsystems. Many of these features

% ’;‘:gd'"te:;‘espkg can be directly allocated to a single subsystem but others must be
T B ypesrkg

5-(2 Blocks decomposed into subparts which are then allocated. The SE toolkit
- Error_Report

03 Error Log Allocation Wizard can help out with this task.
-[CJ Test_Outcome
59 Test Log L . . .
#-() Power_Status1 Right click on the ACES block and select SE-Toolkit > Allocation > Allocation
t1-[_J Hydraulic_Status1 . .
.- O3 SurfacePosition Wizard (Figure 164).
-[CJ Surface_Positions
() Status T
-[CJ Surface_Position_Status E]
tl-(7) Surface_Configuration_Type
(= Data Types

T <> POWERSOURCE TYPE Allocate From ~ Allocate To:
- <> TEST_TYPE
0 TimeDateType Block: ACES | ACES_Management J
-<» SystemOperationalState
X SurfacelD position_set
---Ta ERROR_T\"PE timing_error
= T)rges position_error
. @~ NORMAL_RESTART_INTERVAL | | weight_on_wheels
—<> ValueTypes fault_count

<0 NUMBER_OF_SURFACES |

< STATIONKEEPING_INTERVAL L Allocate > J
8 mﬁimﬁiﬂf ﬁ'\JTERVAL ' | Allocate but Leave in Pool = |
G SURFACE_POSITTON_JI'I'I'ER_TOLERANCE |

| Options

= E‘:] SubsysteminterfacesPkg l s J

+-F Events

=2 Interface Blocks

+ = iACES_Power_Aircraft_Power

7 IACES_Management_AMS
+Q IACES_ Management_ACES_Power
+ Q IACES_Management ACES_Control_Surface
+Q iACES_Hydraulics_Aircraft_Hydraulics
=

IACES_Management ACES Hydraulics —l Value Properties l Operations l Events J

IACES_Control_Surface ACES_Hydraulics . . .
+-H iACES_Control_SurFace_ACES_Pgwer Figure 164: Allocation Wizard
(2 Tags
+-57 CommonPkg
+- Profiles
+-[ Settings

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 156



Case Study: Architectural Design

This wizard allows you to allocate attributes, operations and events to | =
different subsystems. The different block features are available as tabs at | Options

. . . . Allocate From Allocate To:
the bottom of the dialog. The various subsystems are available in a drop ' ) —
down list at the top. By the time you’re done, all attributes and event Blockc ACES —_—— J
receptions should be allocated and most operations. Some operations may | [4ming smor position. set
result in a set of operations scattered across multiple subsystems and so it position_error weight_on_wheels
may be inappropriate to directly allocate them. For such operations, the . e
Harmony SE profile provides the stereotype «DecomposedOperation». For | position_error
such operations, add the stereotype by right clicking the operation in the L Allocate = '
browser and selecting Set Stereotype > DecomposedOperation. The , | Allocate but Leave in Pool > |

allocation wizard will ignore these — meaning that you will have to do the
decomposition yourself. Note that some elements may be allocated to
more than one subsystem.

l DeAllocate <

The next few figures show the allocations to the ACES_Management
subsystem. Naturally, elements are allocated to the other subsytems as
well. Note that in Figure 166 that some operations remain unallocated. In
this case, these are «nonNormative» operations that are there only to
support simulation and execution of the functional use case model. Later
versions of the SE Toolkit may opt to not even put such elements so in the
allocation list.

—l Value Properties l Operations l Events J

Figure 165: Allocation of attributes to ACES_Management subsystem

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 157



(&
Options

Allocate From Allocate To:

Block: ACES |ACESJ~Wanagemem

Select_Battery_As_Source
Request_Hydraulic_Status
Check_Hydraulic_Pressure
Check_SW_Integrity
Report_Error

Check_Power
Check_Hydrauic_Pressure
Verify_Positions_And_Timing

Determine_Time_Since_L ast_Restart
Enter_WARNM_State
ENABLE_Command
Enter_Operating_State
Zero_Error_Count
Select_First_Surface
Command_To_Minimum_Position
Verify_Position_And_Timeliness

Set_Position Command_To_Maximum_Position
Print_Line Zero_Control_Surface

Print_Pos Allocate = ‘ Select_Mext_Control_Surface
Print_Errar Request_Power_Status
Insert_Flyable_Faults l Allocate butLeave in Paol > ‘ Check_Power_Status

Insert_Unflyable_Faults
Remave_Faults

Store_Error
Augment_Error_Count

=
2 ST ‘ Enter_FAILED_State

Waove_To
Initialize_Surfaces
Is_Equal

Is_Flyable
MNo_Faults
Check_SW_Integrity
Check_WMovement
Check_Position
Check_For_Errars

{\Ialue Properties J_ Operations l Events J

Figure 166: Allocation of oper.ations. to ACES_Management subsystem

&
Options
Allocate From _ Allocate To:
Block: ACES | ACES_Management J
evRemovePosError

evRemoveTimingError

enAddPosError

evAddTimingErraor Allocate = |
evinserFlyableFaults

evinsertUnflyableFaults Allocate but Leave in Pool = |

evRemoveFaults

DeAllocate < |

regENABLE_Command
hereza_Power_Status
hereza_Hydraulic_Pressure
evipdate_Paositions
evEnter_Operational_State
evEnable

evStartup

evDisable
evPilotConfirmation
evPilotRejection
evBurfaceFault

[ value Properties | operations | Events |

Figure 167: Allocation of events to ACES_Management subsystem

Case Study: Architectural Design

Remember that these aren’t all the features that will be allocated to the
subsystems; these are only the ones carried over from the use case analysis.
As we detail the allocations, we will add additional features to the
subsystems by creating white box sequence diagrams.

9.2 Allocate Requirements to Subsystems

Use cases each represent a coherent but limited set of requirements,
whereas the system must, in principle, represent all such requirements (at
least the ones represented in the current iteration). Requirements must be
allocated down into the subsystems that implement them. Some
requirements may indeed, be directly allocated to a specific subsystem.
Many requirements really specify collective subsystem behavior and so
must be decomposed into derived requirements that can be allocated to a
given subsystem. Requirements diagrams are a good place to show both
the decomposition into derived requirements and their allocation.

9.2.1 Creating Derived Requirements

Since we will be creating derived requirements for the purpose of allocating
to subsystems, let’s provide a place to put them. Create a
SubsystemReqsPkg package nested inside RequirementsAnalysisPkg >
RequirementsPkg (see Figure 168). This package will hold the requirements
diagrams for the derivation of the subsystem requirements as well as those
requirements themselves.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 158



= ﬁa «Harmony5Es» AirSurfaceControlSystemn

-0 Components

- Packages
-5 ActorPkg
—b RequirementsAnalysisPkg
- Matrix Views
=+ Packages
=-f7 RequirementsPkg
=[] Packages
+E’ SubsystemRequirementsPkg
-5 InterfaceReqs
-5 FunctionalReqs
1-57 ShutDownRegs
-5 MaintenanceReqs
-5 StatesModesReqs
-5 ErrorRegs
1-E7 ConfigurationReqs
-5 OtherRegs
1-57 StartUpRegs
+-[. 7] SafetyRegs
#-32 Tags
+-F7 UseCaseDiagramsPkg
+-(Z RequirementsTables
+-f7] FunctionalAnalysisPkg
+1-£7 DesignSynthesisPkg
-5 InterfacesPkg
+-F7 CommonPkg
+- [ Profiles
+-[] Settings

Figure 168: Package for Subsystem Requirements

We'll take this in a couple of phases. First, let’s determine which
requirements cannot be allocated and must be decomposed into derived
requirements. We can represent those derived requirements on diagrams
or in a table we construct for that purpose.

Case Study: Architectural Design

Derivation or Derive Requirement?

Both Derivation and Derive Requirements appear on the Rhapsody
Requirements Diagram. The first is provided by Rhapsody as pre-
defined stereotype and the latter is defined as a part of the SysML
standard. Which should you use? The short answer is “It really
doesn’t matter but you should be consistent in your model.” Both
are New Terms (metaclasses) of Dependency and are used for the
same purpose.

We will use Derivation relation (which shows as «derive» on the
diagrams) in this Deskbook.

The easiest way to create the derived requirements is on requirements
diagrams®®. The next several figures show system level requirements and
the requirements derived from them.

16 Unless your requirements are being held in a DOORS NG respository; in that case,
you’ll have to do the derivation work in the DOORS NG tool.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 159



wzitmptemiege
ACES_S5_requirement_32

E———
AM_requirement_35

B —
ACES_SS_requirement_33

Any subsytem running
software shall - both at start
up and upon command - run
an integrity check of the
installed software object code
verified by 8 method at least

The ACES_Management
subsystem shall request 3
builtin test run by every
subzystem that contains

Any subsytem running software
that contains configuration data
shall - both at start up and upon
command - run an integrity check
of the installedconfiguration
werified by a method at least as
robust as 32-hit CRC check as
well as reasonable range checks.

software. as robust as 32-bit CRC check
s =derivel
sderives | S
N 3 =derive>
o iV 1%
PErE—
StartUpReq_4

[ ————
DerStartUpReq_1

Case Study: Architectural Design

*Rmquinemants
ConfigReq_0

While in Maintenance Mode,
the Maintainer shall be able to
independently configure each
control surface by setting
actuator movement
acceleration rates and ranges
within the limits of the physical
devices.

wmitmyst=m ey
DerConfigReq_1

«Rmquinemants
ConfigReq_2

The Maintain shall be able to
download the set of
configuration values to the
maintenance device.

<iderive»

PR ——
DerConfigReq_2

Following successful achievement of zera position,
the system shall perform a Built In Test (BIT) to
chedk the integrity of the loaded software, that

Each control surface unit shall o0 Each control surface unit shall be

Each control surface unit shall

B The ACES Management system
shall maintain system state

L “derives

PE———
DerStartupReq_2

E———
ACES_SS5_requirement_34

Each control surface unit shall
support periodic BIT {PBIT) run
at least every 30 seconds; this
test suite shall only run tests
which do not interfere with
surface control operation.

All subsystems other than the
ACES_Management subsystem
shall report error status and BIT
results upon query or upan
completion of tests.

Figure 169: Derived Requirements

wmisyslemAegs
DerStartupReg_3

All BIT and PBIT results from the
Contral Surface subsystem shall
be reported to the ACES
Management System,

Figure 170: Derived Requirements

«Requirement=
FuncReq_36

The predsion of the commanded
wvalues shall be +f- 0.1 degrees of
angle or +/- .1 cm of distance. The
range of accuracy of commanded and
measured positions achieved shall be
+/- 0.5 degrees or angle of 0.5 cm of
distance,

o

ﬂderive:‘»

support a Built In Test (BIT) SPag > the motive electro-mechanical aspects wark within |7 . support configuration to set min

that is only available while not aderives - specification, and that the internal communication ., aderives and max positions, hydraulic and provide the abilty to respond to
operational, for checking bus functions without unrecoverable error. If any t P E——— power inputs and error limits, requests for current

movement ranges, accuracy, of these tests fail, the system shall enter DerStartupReq_4 and zero position. configuration settings.

and timing. FAIL_STATE. K

smlmysiemAsge
DerFunReqg_1

Once a each control surface has acheived its
commanded position, it shall maintain station
keeping adjustments to keep it within 0.1
degrees of angle or 0. 1cm of extension, as
appropriate, at least 10 times per second.

Figure 171: Derived Requirements

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 160




Case Study: Architectural Design

«Fmguiramets
FuncReq_37

«Regquirement> «Regquirement>
FuncReq_0 FuncReq_36
The maximum time from a
transition of any control
surface for a single movement

(induding from minimum Sl
position to maximum position FEETLTT L e

or from maximum pasition to

The precision of the commanded
values shall be +/- 0.1 degrees of
angle or +- .1 cm of distance. The

Each system shall control the angular position of the
following control surfaces: upper and lower rudder,

upper and lower rudder trim tabs, left and right

elevator, left and right elevator trim tabs, left and
right inboard aileron, left and right inboard aileron
trim tabs, left and right outboard aileron, left and
right outboard aileron tiim tabs, left and right
inboard wing fiaps, left and right inboard wing flap
trim tabs, left and right outboard wing flaps, leftand

right outboard wing flaps, left and right ground
spoiler, |eft and right flight spailer, and the leftand

right leading edge flap.

range of accuracy of commanded

and measured positions achieved
shall be +/- 0.5 degrees or angle of
0.5 cm of distance.

sulmyslamiegs L
ACSCUNT _requirement_16 _ - “derives

T b =
- kderiver g «derives
T i by
AM_requirement_9 g ssubsymemRege
g ACSCUNT_requirement_11
«ferives
i Each control surface shall

The setting precision of the
ACES_Management '
subsystem for control surface §
position shall be +- 0.1 :

: an

[ IS S AP

measure achieved control
position with an accuracy of
+/- 0.05 degrees o +/- 0.05

minimum position) shall be 3.0

T Each control surface

The ACES_Management
subsystem shall chedk that
each commaned movement
takes place within
3.0seconds,

seconds, The maximum time
for a transition of a contral
surface of less than 10
degrees shall be 1.0 seconds.

aderives

subsystem shall report
movement completion to the
ACES_Management
subsystem with acquired
measured position and time
reguired for the movement.

«terives

«subsystemReg=
AM_requirement_1

osubsystemReg>
ACSCUNT_requirement_7

The ACES_Management systen
shall command each control
aurface position either asa
response o a received
command or tuming builtin

wsubsystemRags
ACSCUNT_ -3

Each control surface shall acoept
a mmmand to move it to the
desired position and shall begin
movement based on that
command within 0.1 secands.

All control surfaces shall
accept commands from

the ACES_Management
subsystem to set

rotational position.

«Requirements
FuncReq_40

The system shall report an error if
the system has not achieved the
commanded position +/- 0.5
degrees ofa control surface within
3.0 seconds and shall enter
FAISAFF STATF.

«subsystemReg»
ACSCUNT_requirement_10

The accuracy of movemert of
the control surface shall be
+/- 0.5 degrees angle of +/-
0.5 cm distance.

wslmyslemAngs
ACSCUNT _reguirement_17

The ACES_Management
subsystem shall check that
each angular movement of
less than 10 degrees is
performed in less than 1.0
seconds.

< Rmguiramets
FuncReq_39

The system shall be able to
detect a loss of
communication with a control
surface within 1.0 seconds
and report an error to both
the Pilot Display and the
Attitude Management System
in that case.

B
ACSCUNT_requirement_19

The ACES_Management
subsystem shall listen for life
ticks from each surface
control subsystem interface,

derives

Re=g
ACSCUNT_requirement_20

R
ACSCUNT _requirement_21

expecting them to arrive at

“derives
least every 0.5s.

&derives

Each control surface input

er—
ACSCUNT_requirement_13
shall issue a life tick message

If the ACES_Management
subsystem does not receive a
life tick within 0. 55 of the to the ACES_Management

initiating life tick, its shall subsystem at least ever
report an error to both the U,Ss.y ¥
Pilot Display and Attitude
Management systems,

wsubeystemRiegs
ACSCUNT _requirement_12

Each control surface shall accepta
command for it's position and will
respond with both current
commanded position and aurrent
measured position.

Fachieved position of any control
surface unit is out of specification
or takes longer than 3.0s, the
control surface unit shall inform
ACES_Management of the error

Figure 172: Derived Requirements
Figure 173: Derived Requirements

Harmony aMBSE Deskbook 161

© Bruce Powel Douglass 2017. All Rights Reserved



P —
InterfaceReq_2

At least every second, the
ACES operational state and

pEr—

InterfaceReq_4

[ r—

InterfaceReq_5

The ACES shall interface

The ACES shall monitor

Case Study: Architectural Design

«Requirement»

InterfaceReq_1

«subsystemRags
DerIntReq_6
At least every second, the measured
with the electrical power provided current and position of each control surface shall «Requirement»
hydraulic pressure shal be systemvia the aircraft voltage from its selected be reported to the Attitude Int r? Req 0
reported to the pibot alternator, the aircraft power source and Management System. nterfacereq_ Retracting control surface
display (see States and APU, and the aircraft autometically transition if 9 ystem. | subsystem type shall providean
; 4 DesmT I, e | g
derives @eriveo stlerives more than 10% for more Each control surface shall be surface mezsured extension.
- e = = = - than S:E SEEDﬂr;ESF. or by independently controlled by
DerIntReq_8 DerIntReq_9 DerIntReg_15 7 . T 4 %Ta";:mj:nftrggtletﬁ Attitude
H i «derive»
The ACES M ¢ ; :' e
The control surfaces e anagemen " K H g o «subsystemReq»
subsysters shall provide an system shall provide the 5T|T;|:| Q.;Eisf;ﬁ;f}ff?gm B ! E;"T;ma??. «subsystemReq» Der;:ltReq qﬁ
interface to request their status of power and the aircraft to the ACES «derives | s DerlntReq_7 i —
hydraulic and power status. hydraulics to the pilot internal subsystems. J : ' X
d\SthABtJ‘EIEEt every i : H Retracting control surface
cornnT e nnnTERTY The ACES Power N subsystem type shall provide an
; subsystem shall monitor Every second the ACES Management i interface to set and get the
D""’ e | incoming current and subsystem will query all the control ; commanded extension of the
erTntReq_18 H b i
1 voltage and inform the surface measures positions and relay i control surface.
: ;‘;ﬁ“};"’ z | ACES Management system them to the Attitude Management System ; P
nterfaceReq : if the current or vofage «derive» peives «derive»
The ACES Management | exceeds nominal values by & 4 %
systermn will monitor the o more than 10% for more s ; R
Any detected error or power fromthe ACES ederive; than 30 seconds, or by 3
failure condition shall be Power subsystem and ! more than 30% for more i
reported to both the automaticaly switch if it | _ E i i iy
Attitude Management receives a power fault.. |
System and the Pilot |
Display within 0.5 second : «subsystemReq> «subsystemReq» «subsystemReg> «subsystemReg>
nfdntntinm el ! DerIntReq_1 DerIntReq_2 DerIntReq_3 DerIntReq_4
R ™ ebmystemitens
R . | DerlntReq_16
If "\ N wderives ¥ The Control Surface subsytem The Control Surface subsytem The Control Surface With Trim
B B . types shall provide an interface types shall provide an interface The Control Surface With Tim subsytem type shall provide an
! E;erlnme RB;..O The ACES Power to setand get the commanded to get the measured control subsystem type shall provide an interface to get the measured trim
B B +2 subsystemn shall provide an control surface position. surface position. interface to setand get the tab control surface position.
.‘I ‘: ) B interface to select input : commanded trim tab control surface
i | " saurca. position.
! ! | Each control surface T .
L subsystem shall detect "
: : | faults and report themto
; x —| the ACES Management

Figure 175: Derived Requirements
deriver  <derver |, | SUDSYTEM "

| aderiver -

Repirmerts [rp— e [Emr—
DerlntReq_11 DerIntReq_12 DerReglnt_13 DerlntReq_14

Each control surface

Each control surface

subsystemshal detect
power faults and report
them to the ACES
Management subsystem.

subsystemshall detect

them to the ACES
Management subsystem.

hydraulic faults and report

Each control surface
subsystem shall detect
movement faults and
report themto the ACES
Management subsystem.

Each control surface
subsystem shall detect
timing faults and report
themto the ACES
Management subsystem.

Figure 174: Derived Requirements

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 162



«Requirement =

ErrorReq_36

P —

ErrorReq_37

The system shall detect and

report the error condition:
The system shall detect and Electrical fault

Internal
report the error condition: electrical system fault
Power fault Internal
or source power fault

! T :
sHlerives oo ederiver vdl:leri\re»
[ — “derives

AM_requirement_29

wpiitmytemAags
AM_requirement_30

The ACES_Management
subsystem shall issue an
error message to the Attitude

Management subsystem.if The ACES_Management
incoming or internal power for subsysben_w shall issue an error
fluctuations of more than 5% to the ""'tt_'b-'_de CU”_U'_D|

in voltage. System within 0.5z if it

detects a sudden power loss,

« Remquinament > «Rmquirements
ErrorReq_35 ErrorReq_34
The system shall detect and The system shall dEh‘:—fC_t and
report the error condition: report the error condition:
Hydraulic over pressure Hydraul!c under pressure
Hydraulic pressure too high Hydravlic pressure too low
A =
sderives “,,,e-"’
; L. ederives
«:Lmy!tsnllup ‘\\ v
AM_requirement_27 eaﬂ‘qrive» °<|1:|EFIVED

The ACES_Management
subsystem shall issue an error
message to the Attitude - -
!\"Iana_gement sysheme if both m_rjemr:;mjﬁ
incoming and outgaing

hydraulic pressures not are
within +(1 1000 kPa of the
default pressure of 35000 kPa The ACES_Management
and if this is not true. subsystem shall check
hydraiulic pressure at least
once every 2.0 seconds.

Figure 176: Derived Requirements

Case Study: Architectural Design

Showing the Derived Requirements
The derivations are best created diagrammatically, but they are perhaps
best viewed in tabular format. To do this | first create a table layout

providing the information | want, and then create a table view from that
layout.

Creating the Table Layout

The table view we want includes the name of the derived requirement, the
text of its specification, and the name of the requirement from which it is
derived. To do this we’ll create a new table layout using context patterns.

e Right click on the CommonPkg in the browser and select Add New >
View and Layouts > TableLayout.

e Name this table layout Derive Reqs Relations Table Layout.

e Click on the Columns pane of the Features dialog

e Click on the Advanced Options button

e Add the following context pattern

Advanced Table Options *

Appearance:
[ Collapse 15t column

When pushing "Enter” move selection to: Diawn w

Align column header menu bo: Riight i

Contest table:
Context pattern:

{pkglPackage reqtR equirement. {derved}Derivation:

Column name format:
$(Property] in $[Context]

Cancel

e Add the following column definitions on the Columns pane

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 163



Table Layout : Derive Regs Relations Table Layout in CommonPlg - n
~
General Description  Columns  Relations Tags ~ Properties
Advanced Options... By
Type Property Column name Context Column width
General Attribute Name Name in req req
Requirement Attri... Specification Specification req
General Attribute Name Derived From derived
v
Locate oK
e Clickon OK.

Creating the Table View
Creating a table view from this layout is easy.
e Right click on the table layout just created
e Select Create View
e Name this view Derive Requirements Relations
e The scope can be the entire model or limited to the
RequirementsAnalysisPkg.

That table is shown below in Table 2.

Case Study: Architectural Design

Found 52 elements

Mame in req vT| Specification A | Derived From -t

|0 J|ACES_55_requirement_32 | Any subsytem running software shall - both at start up and upon command - |1, )| StartUpReq_4
run an integrity check of the installed softwars object code verfied by a
method at least as robust as 32-bit CRC check

|0 J|ACES_55_requirement_33 | Any subsytem running softwars that contains configuration data shall -both at |1, )| StartUpReq_4
start up and upon command - run an integrity check of the
installedconfiguration verfied by a method at least as robust as 32+bit CRC
check as well as reasonable range checks.

|0 JJACES_55_requirement_34 | All subsystems other than the ACES_Management subsystem shall report emor |1, 1| StartUpReq_4
status and BIT results upon query or upon completion of tests.

|0 JJACSCUNT _requirement_10  The accuracy of movement of the control suface shall be +/- 0.5 degrees | /| FuncReq_36
angle of +/~ 0.5 cm distance.

|0 JJACSCUNT _requirement_11  Each control suface shall measure achieved control position with an accuracy |1 || FuncReq_36
of +/- 0.05 degrees or +/- 0.05 cm

|6 )| ACSCUNT _requirement_12 | K achieved posttion of any control surface unit is out of specification ortakes  ||[ J|FuncReq_40
longer than 3.0s. the control suface unit shall inform ACES_Management of
the emor

|0 JJACSCUNT _requirement_13  Each control suface shall accept a command for it's position and will respond |1, )| FuncReq_40
with both cument commanded position and cument measured position.

|0 JJACSCUNT _requirement_16  The ACES_Management subsystem shall check that each commaned |t )| FuncReq_37
movement takes place within 3.0seconds.

|0 JJACSCUNT _requirement_17  The ACES_Management subsystem shall check that each angular movement  |I, || FuncReq_37
of less than 10 degrees is performed in less than 1.0 seconds.

|0 JJACSCUNT _requirement_18 Each control suface subsystem shall report movement completion to the |t )| FuncReq_37
ACES_Management subsystem with acquired measured posttion and time
required forthe movement.

|0 JJACSCUNT _requirement_19  The ACES_Management subsystem shall listen for life ticks from each suface  |[ 1| FuncReq_39
control subsystem interface, expecting them to amive at least eveny 0.5s.

|0 JJACSCUNT _requirement_20 I the ACES_Management subsystem does not receive a Iife tick within 0.5s of | || FuncReq_33
the initiating life tick, its shall report an emor to both the Pilot Display and
Attitude Management systems.

|0 | ACSCUNT _requirement_21 | Each control surface input shall issue a Iife tick message to the |0 )| FuncReq_39
ACES_Management subsystem at least every 0.5s.

|0 JJACSCUNT _requirement_24 | Each control surface unit instance shall have a unique identifier which shall be || )| IntefaceReq_0
used to in messages to the ACES_Management subsystem.

|0 J|ACSCUNT _requirement_25%  Each control suface unit shall have, as persistent corfiguration data, low and  |[, || FuncReq_0
high movement limits, required measurement accuracy, and movement time

|0 JJACSCUNT _requirement_26  Each surface contral urit instance shall report an emorto the |t J|FuncReq_36
ACES_Management subsystem i the result of 3 commanded movemert is out
of specification etther in accuracy ortiming.

|0 JJACSCUNT _requirement_3  All cortrol surfaces shall accept commands from the ACES_Management | J|FuncReq_0
subsystem to set rotational position.
|0 JJACSCUNT _requirement_7  Each control suface shall accept a command to move it to the desired | J|FuncReq_0

Table 2: Derived Requirements Table (partial)

The complete table, formatted in Word, is shown in Section 13.1.

This table provides a useful view because it shows the derived
requirements,their specifications, and from whence they came.

The basic rule of requirements traceability to the subsystem is that each
requirement that traces to a use case must be allocated to a subsystem
UNLESS it is decomposed into derived requirements. That means we need a
way to easily identify those system requirements that are decomposed. For

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 164



this reason, the Harmony SE Profile contains the
«DecomposedRequirement» stereotype. This stereotype applies only to
requirements and has the tag hasDerivedRequirements (which defaults to
TRUE) to mark such requirements.

Now go through all the requirements in the right hand column of Table 2
and apply the «DecomposedRequirement» stereotype.

9.2.2 Performing the allocation of requirements

All system requirements traced to use cases must either be directly
allocated to the subsystems or have the requirements derived from it so
allocated. It is also recommended, as previously mentioned, to trace to
system features modeling the use cases and architecture — including event
receptions, operations (system functions), value properties, types, states,
transitions, actions (also system functions), subsystems and their features,
and relations. In this step, we will perform the allocation to the subsystems.

Similar to the creation of the derived requirements, the allocation of
requirements to subsystems can be done diagrammatically or in matrices.

To do the allocation diagrammatically, for each use case, create at least one
requirements diagram in the DesignSynthesisPkg > ArchitecturalDesignPkg
package. There may be more than one if you have many requirements for
the use case. Next, on each such diagram, drag the requirements allocated
to this use case onto this diagram. Finally, drag the set of subsystem blocks
onto the diagram and start adding the Allocate relations from the
subsystem to the appropriate requirements. At the end, there should be no
requirement traced to a use case that is not also allocated to a subsystem
unless it is decomposed into derived subsystem level requirements. Figure
177 shows an example.

Case Study: Architectural Design

req [Package] ArchitecturalDesignPkg [Power Subsystem Reguirements Allocation]

«mufmyaem egs
DerIntReq_15

. --7| The ACES Power
B system shall
distribute power
from the aircraft to
o® the ACES internal
e wallocates subsystems,

B
ACES_Power

wxulmyslemfege
DerIntReq_16

Values
sallocates > The ACES Power
subsystem shall
: provide an
COperstions interface to select
input source,

. «zufmy=iemfegs
sallocate®. DerIntReq_17

=y

The ACES Power subsystem shall
manitor incoming current and
voltage and inform the ACES
Management system if the current
or voltage exceeds nominal values
by more than 1036 for mare than 30
seconds, or by more than 3056 for
more than 2 seconds.

Figure 177: Allocation of Requirements to Power Subsystem

Using the Block-Requirement Allocation Matrix

In the DesignSynthesisPkg > ArchitecturalDesignPkg package add a Matrix
View and name it Subsystem Requirements Allocation Matrix. Open its
Features dialog and set its layout to the Subsystem Requirements
Allocation Matrix Layout provided by the Harmony SE Profile. Set the From
Scope to the ArchitecturalDesignPkg and the To Scope to the
RequirementsPkg.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 165



Matrix View : Subsystem Requiremetns Allocation Matrix in ArchitecturalDesignPkg - n
~
General Description Relations Tags  Properties
Name: |Subsystem Requiremetns Allocation Matrix | Label...
Stereotype:| v| 3| e
Layout: Subsystem Requirements Allocation Matrix Layout in HammonySE::Layouts v B
Jrom” | prchitecturalDesignPkg in DesignSyrthesisPk v
Scope: ecturalDesignPkg in DesignSynthesisPlg
Include Descendants ("From" Scope)
"To” RequirementsPlg in RequirementsAnalysisPlg -
Scope:
Include Descendants ("To" Scope)
W
Locate oK

Click on Ok. Now you can double click on the matrix view in the browser
and open it up. | recommend you click on Switch Rows and Columns in the
Matrix toolbar because there are many more requirements than there are
subsystems.

A portion of this matrix (with rows and columns switched) is shown below:

From: Biock _Scope: 9
ES_Power | () ACES ConimoiSuface | () Us. RolateConirolSuface [ aaRCS_ACES_Managament | () aaRCS_Power [ aaRCs_Hycuics | () AGES._GontolSurfaceRelracting | () ACES_Cortrlsd)
2 | [JAM roquiremert 28
A requrement_23
<| AW requiremert_30
5 ACES S5 requiremert_32 +J ACES_SS_requirement_32 J ACES S5 _requrement_32 / ACES S5 requr
2 [[17]ACES_SS_requirement_33 ) ACES_SS_requiremert_33 o/ ACES_SS _requiremert_33 o/ ACES_SS_requi
e |[[/ACES_SS_requiremert_34 ./ ACES_SS_requirement_3¢ o/ ACES_SS_requirement_34 +/ ACES_SS_requi
| | JAM. roguirement_35 «/ AM_requiremert_35 « AM_requirement_|
# |[]DerntRea_1 / DerktReq_t  DerrtReq_t / DerlntRea_1
2| [0 DerlntReq_2 ./ DerintReq_2 o/ DerintReq_2 +/ DerintReq_2
[ | [1]DerintFea 3 +/ DerlntReq_3
& |[1]DeriReat J DerintReq_t
& | [ DerintReq 5
% |[[]DerintReq_6
& | [ DeritRea_7
1] DerlntReq_8 ./ DerintReq_8 o/ DerintReq_8 o/ DerintReq_8
({3 DerintReq_9
([ DerintFeq_10. ./ DerktReq_10 ) DerlntReq_10 / DerintReq_10
[[]DerintReq_11 / DerkriReq_11 o/ DerlntRea_11 o/ DerlntRea_T1
[13]DerlntReq_12 \/ DerintReq_12 +/ DerintReq_12 +/ DerintReq_12
[[]DerReaint_13. / DerReqint_13 / Derfeqt_13 J Derfeqit_13
3] DerintReq_14- o/ DerintReq_14 o/ DerlntReq_14 o/ DerintReq_14
[[]DerintReq_15. erntReq_15
[{]DerhntReq_16 erintReq_16
[[]DerintRe_17 errtReq_t7
[[]DerintReq_18.
([ DerFunReq_1 / Derfunfiea_1 / Derfunfiea_1 +/ Derfunfea_1
([ DerConfigReq_i +/ DerCorfigReq_1 / DerCorfigheq_i / DerCarfigheq_i
|3 DerConfigReq_2 +/ DerCorfigReq_2 o/ DerConfigReq_2 +/ DerConfigReq_2
1] DerStartUpRea_1 +/ DerStatUpReq_1 +/ DerStatUpReq_1 +/ DerStatUpReq_
([ DerStartupRea 2 / DerStatupReq_2 / DerStatupReq 2 / DerStatupReq 2
3] DerStartupReq_3 +/ DerStartupReq_3 +/ DerStatupReq_3 o/ DerStatupReq_:
([ Derdtartupea_4

Figure 178: Portion of the Subsystem Requirements Allocation Matrix

Case Study: Architectural Design

Now you can work in this matrix view to set the allocation relations by

selecting one or more cells, right click and select Add New > Allocation to
populate the cell.

Review the allocation matrix

Once this is done, walk through the matrix to look at all the rows (assuming
you switched rows and columns n the view, otherwise look for empty
columns). Each row corresponds to a requirement; is that requirement
marked with the «DecomposedRequirement» stereotype? If not, be sure to
allocate it (or decompose it into derived requirements)?’.

To show the allocations here, we’ll build up a subsystem-requirements
allocation table.

The Subsystem Requirements Table Layout uses the following context
pattern and columns:

7 Tip: This can also be done by exporting the matrix to a CSV file (using the export
tool on the drawing toolbar), loading it in Microsoft Excel, and using the COUNTA
function to count the non-empty cells in the columns.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 166



Mame in pkg

| Nemein bk

Case Study: Architectural Design

| Namein alloc

Callapze 13t columin
When pushing “"Enter' move selection ta:

Align column header menu to:

Contest table:
Contest pattern:
{pkotPackage®, thik)Block, {alloc}allocation:

Calumn name format:
$[Property) in ${Context)

0K

][ Cancel ]

h

Table Layout : Subsystem Req Alloc Table Layout in CommonPkg
| General | Description | Columns |Relation5 | Tags I Properties
Pdvanced Options... B4 g
Type Property Column name Context
General Attribute MName Mame in pkg pkg
General Attribute Mame Marme in blk blk
General Attribute Mame Mame in alloc alloc
Locate oK
7 5
Advanced Table Opticns [ﬁj
Appearance:

Figure 179: Subsystem Requirement Allocation Table Layout options

A portion of this table is shown below:

[£3 ACES DecompositionPkg
[ ACES_Control_SurfacePkg
[ ACES_Control_Surface_RetractingPlg
[0 ACES_Conttrol_Suface_With_TrimPkg

BI [ ACES_HydraulicsPkg

B [ ACES_ManagementPkg

(CIACES_Hydraulics
ACES_Hydraulics
ACES_Hydraulics
ACES_Hydraulics
ACES_Hydraulics
ACES_Hydraulics
ACES_Hydraulics
ACES_Hydraulics
[CIACES_Hydraulics

(SJACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Managsment
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Management
ACES_Managsment
ACES_Management
ACES_Management
ACES_Management
ACES_Management
([CHACES_Management

11 SafetyReq_DO1
[11] SafetyReq_D0Z

[ 1] SafetyReq_D04

0] SafetyReq_DO5

11 SafetyReq_330157
[11] Safety_Req_330138
[£ ] Safety_Req_390200
[£1 Safety_Req_390201
[11] Safety_Req_330203

0] ACES_SS_requirement_32
11 ACES_S55_requirement_33
£ 1] ACES_S5_requiremert_34
|} ACSCUNT _requirement _12
[£ 1 ACSCUNT requirsment_13
17 ACSCUNT requiement_16
| )| ACSCUNT _requirement _17
[£ ] ACSCUNT _requiremant_18
[1 1 ACSCUNT requiement_15
£ i ACSCUNT _requirement_20
|} ACSCUNT _requirement_21
1 1 ACSCUNT requirsment_24
17 ACSCUNT requiement_26
| )| ACSCUNT _requirement_3
£ AM _requirsment_1

[ 1 AM_requirement_27

£ 1] AM_requirement_28

|1} )| AM_requirement_29

[0 1 AM_requirsment_30

1 AM_requirement_35

|1 )] AM_requirement_4

£ AM_requirement_6

[0 1 AM_requirement_S

1] CorfigReq_1

|1, )| CorfigReq_3

11| DerirtReq_11
17 DerlrtReq_12
|} )| DerirtReq_14
0] DerirtReq_16
11 DerlrtReq_17
£ DerintReq_18
|} DerintReq_7

11| DerirtR=q_3

17 DerReqint_13

| )| DerStartupReq_4
[0 ErorReq_0

11 ErrorReq_1

¢ EmorReq_10
[0 ErrorReq_11
1] EmrorReq_12
1] EorReq_13

| )| EmorReq_14
1] EmorReq_15
(11| ErrorReq_16

Table 3: Subsystem Requirement Allocation Table (partial)

See the entire table, formatted in Word, in Section 13.2.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 167



Case Study: Architectural Design

9.3 Allocate Use Cases to Subsystems

For subsystems with few requirements, it is not necessary to create
subsystem level use cases. However, most subsystem have a large number
of requirements, and the same benefits that use cases provide for
organizing and managing system requirements also apply at the subsystem
level.

It is important to note that system use cases are almost never allocated to a
single subsystem. They must always be decomposed into smaller
“subsystem-level” use cases that can be so allocated.

There are two different approaches to allocating use cases to subsystems
(Figure 11, page 20). The “top-down” approach works at the use case level,
using the «include» relation as a kind of logical containment of subsystem
level use cases. These subsystem level use cases are then either allocated
directly to subsystems or further decomposed until they can be. The
“bottom up” approach allocates actions (system functions) from the use
case white box activity diagram or sequence diagrams to subsystems that
represent the subsystems. These derived diagrams are called white-box
diagrams because they expose the subsystem architecture as either swim
lanes in activity diagrams or lifelines in sequence diagrams.

In general, larger systems are more easily developed with the top down
approach while smaller systems are more easily developed with the bottom
up approach. Nevertheless, both workflows are effective, and which
approach you take is, to some degree, a matter of personal preference.

In our pedagogical approach in this Deskbook, we’ll taken two approaches
to analyze use cases. The first used the activity-based approach. That
approach lends itself well to the bottom up approach. We will use the
bottom-up approach for the analysis of the Start Up use case and the top-
down approach for the Control Air Surfaces use case.

Again, if you only allocated a few requirements to a subsystem (say, less
than 20), it may not make any sense to define subsystem level use cases.

9.3.1 Bottom-Up Approach: Start Up Use Case

This is an approach favored by many systems engineers. In this case, we will
create white box sequence diagrams (sequence diagrams that include
subsystems as lifelines) to perform the allocations rather than create white
box activity diagrams.

9.3.1.1 But what about White Box Activity Diagrams?

The use of white box activity diagrams to show and aid in the allocation of
system properties was a prominent feature of “Harmony Classic.” While it
has some positive aspects (notably, it’s highly visual), it has some serious
drawbacks, which is why we no longer recommend it. Specifically:

e In Harmony Classic, the state machine is the “source of truth”.
The activity diagram shows the primary flows not not all the detail.
Rarely are all requirements (especially edge cases and exception
handling) are represented in the activity diagram. To use white box
activity diagrams for allocation, you would have to add these
missing functions and flows to the activity diagram so that all use
case requirements are represented.

e You don’t verify the activity diagram.
You verify the state machine so the state machine is the “source of
truth”. There is both additional work and a possibility of introducing
errors by manually backfilling the activity diagram as you discover
requirements issues during the development and verification of the
state machine.
The reason to build the state machine is to create a precise and
verifiable statement of the requirements for the use case. If you
prefer to work only with the activity diagram (a reasonable thing,
after all), then you would be better served using the full “Flow
Based Approach” using full, executable activity diagrams as shown
on the left side of Figure 4.

e You have potentially conflicting “sources of truth”.
If both the activity diagram and state machine are treated as
equivalent sources of truth, if they are in conflict, which is deemed
to be correct?

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 168



Having said that, the discussion below shows you what it would look like, if
you to proceed in this fashion.

The allocation of these actions is done by duplicating the use case activity
diagram, adding swim lanes representing the subsystems, and dragging the
actions to the appropriate swim lane. The SE Toolkit will help us along the
way automating aspects of different steps.

Right click on the activity diagram FunctionalAnalysisPkg >
StartUpPkg > Use Cases > StartUp > Activity Views > Start
UpBlackBoxView and select SE-Toolkit > Create White Box Activity
View. This action create a copy of the black box activity diagram
with which we can work.

Add a swimlane from to the newly created Start UpWhiteBoxView >
activity_0, Start UpWhiteBoxView > RangeSurfaceTest, and Start
UpWhiteBoxView > PerformBIT activity diagrams.

o Inthe main activity diagram (activity_0), leave the two call
activities (RangeSurfaceTest and PerformBIT) outside the
swimlane frame, since their allocations will be shown on
their respective diagrams.

Each of these diagrams with have different swim lanes because they use
different subsystems.

Activity_0 activity diagram is the overall behavior
To this diagram add 2 swim lanes, one for the ACES_Management
subsystem and the other for the ACES_Power subsystem. To
associate the swim lane with the subsystem, you can drag the
subsystem block to the top of the swimlane or you can go through
the Features dialog:

o Double click on the swim lane to get the Features dialog.

o Inthe Represents drop down list, use select to navigate the
the appropriate subsystem, noting that the previous toolkit
action moved the subsystem blocks into their own nested
packages:

Case Study: Architectural Design

wimlane : swimlane_52 in activity 0 * + B
Generel | Description | Relations | Tags | Properies Rangesurf
Name: swimlane_52 Label
Stersotype: - @ M |
Represerts: - a |
| I ——
(g Select Model Element ==
©-50 FunctionalAnalysisPkg -
=5 DesignSynthesisPkg
E1C3 Packages
=-E7 ArchitecturalDesignPkg
(2 ActorBlocks
- Block Definition Diagrams
(2 Blocks
Locate oK ¢ Comments
-5 connect tors
J @-(3) Intemal Block Diagrams
®1 Enter OPERATING s =L Packages
aSU_AMS =57 ACESDecompositienPkg
£-C3 Packages
L w51 ACES_HydraulicsPkg
| 5 £ ACES PowerPkg
| i Blocks
P | ACES Power]
| #-£3 ACES_ControlSurfacePkg
| #-571 ACES_CentrolSurfaceRetractingPkg
1 ACES_ControlSurfaceWithTrimPkg
| 4 557 ACES_ManagementPkg
| -2 Parts
. 1 £ ArchitecturalAnalysisPkg
57 InterfacesPkg -

Figure 180: Associating swim lanes with subsystems

Move the Select_Battery_As_Source action to the ACES_Power

swimlane and all the other actions in the frame to the
ACES_Management swimlane.

The resulting diagram should look like Figure 181.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 169



ad: [Activity View] Start UpWhieB oxView [actvity_0] act [Activity View] Start Up WhiteBoxView [RangeSurfaceTest]
ACES Management ACES ControlSurface
ACES_Management ACES_Power Select First_surface
I
aSU_Aircraft_Power
i Command_To_Minimum_Position | . Goto_Minimum_Position
Determine_Time_since_last_restart =] Select_Battery_As_Source r — — =
<=1 | T
‘ : Verify_Positi onia\;z:ﬁ meliness L Get_Position_and_Movement_Tiime
J e R
[else] zeroEmorCount RangeSurfaceTest | \‘/
_— Y — —— | Compare_Position_and_Timeliness
rh |
| | I
[tmeSicel astRestart < NORMAL RESTART TIME] | | N
| | | TerrorFound]
[noErrors] T [ store Error | [ augmeniErrorCount
PerformBIT | ‘ |
[ s e A S l | s
l | |
[ Y ReportEmor
‘ | [ebel I ***** 3 asu_Aus
N
asu AMSE Enter_WARM_state Enter FAILED state I 7
- | Command_to_Maximum_Position | — — — — — — ={ Goto_Maxumum_Position
| I
[ I
v ‘ asquMS : Get_Position, ar?(‘i/ Movement_Tiime
=} | Verify_Position_and_Timeliness. = e =
aSU AMS ENABLE_Command | 1 B S S
¥ | |
| | N
I } | _femorroung] | Store_Error | avgmenterrorcount
| |
‘ | ‘ [else] }
=] Enter OPERATING.state ‘ ! | |
aSU_AMS | : 77777 Reportemor .
} | [® asu_Ams
| |
| Vd
! T | Zero_Control_Surface | .[cotw0zero Postion
| [ L
e = T e
| )
H H HY H 1 H | Select_next_control_surface
Figure 181: White Box Activity Diagram for Start Up Use Case (main diagram) | —rereenek
I I
. . .. . !
We must repeat this allocation for the activity diagrams referenced by the [ e
o
P o . [else]
call activities in Figure 181.

Case Study: Architectural Design

Figure 182: White Box Activity Diagram for Range Surface Test

For the Range Surface Test activity, you can see that we derived the need
for some additional actions during the allocation process. This is includes
actions such as Goto_Minimum_Position,
Get_Position_and_Movement_Time, and
Compare_Position_and_Timeliness.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 170



Case Study: Architectural Design

— — — 9.3.1.2 Derivation of White Box Sequence Diagrams

The above section shows how you can use white box activity diagrams to do
allocations. Nevertheless because of the concerns discussed in the previous
AT B section, we will perform this task using white box sequence diagrams
instead.

Check_Power_Staus

The method to create and use white box scenarios is straight-forward.
pereen Create a package in DesignSynthesisPkg > ArchitecturalDesignPkg
named WBScenariosPkg. Inside this package, add a package for
‘ R Sy every use case (to hold the white box versions of those scenarios),
N N il named <use case>WBScenariosPkg, such as
e T StartUpWBScenariosPkg and ControlAirSurfacesWBScenariosPkg.
s e, g For each use case in the included in the iteration:
e poma Fussie a. For each sequence diagram in the use case:
i. Copy (not move) the sequence diagram to its
appropriate package in the DesignSynthesisPkg >
. — ArchitecturalDesignPkg > WBScenariosPkg.
R Dragging with the control key pressed is an easy
way to do this.
ii. Remove (not delete from model!) the comment
describing the scenario from the diagram and
replace it with a brand new one describing the
white box version

vmubcEra]
L ! [ st _gmor augmentEmrCount

N Gel_SW_Inte griy
Check_SW_niegrity LBW_inte grty

| Get_SW_ntegrty

Validate_SW_ntegrty

| ppmenEoGHt iii. Retarget each local use case actor block lifeline with
- ErT= the actual system actor (for example
‘ B s aSU_Aircraft_Power would be replaced with the

Aircraft_Power actor). To do this, double click on
the lifeline and in the Realization drop down list,
select the appropriate actor (usually at the top of

Figure 183: White Box Activity Diagram for Perform BIT

From here, you can proceed to use the SE Toolkit to create sequence the list) and press OK.

diagrams, ports and interfaces, as discussed in the next section. iv. Add the set of subsystems to the new sequence
diagram (this can be done by right clicking on the

As you can see, this approach is straightforward. In Rhapsody 8.2 and later, sequence diagram and selecting SE Toolkit > Add

placement of an action in a swim lane that represents a block creates an Subsystems).

inferred allocation relationship. v. For messages from the actors to the use case block:
change target of messages to the appropriate
subsystem

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 171



vi. From messages from the use case block to the
actor: change the source of outgoing messages to
one of the subsystems

vii. Elaborate the collaboration by adding messages
among the subsystems, generally starting with the
subsystem receiving the incoming actor message
and terminating with subsystem sending the
outgoing message to the actor

viii. Verify, via review, that the messages align with the
allocations you made in Section 9.1.2.

ix. Once complete, then realize the messages on the
sequence diagram by right clicking on the diagram
and selecting Auto Realize All Elements.

By realizing the messages on the sequence diagrams, those messages will
create operations or event receptions on those subsystems. These will
serve as the basis for defining the ports and interfaces among the
subsystems in the next step.

Let’s do this for the sequence diagrams in the Start Up use case.
Creating the package for the white box sequence diagrams ends up with a

structure that looks like this (note that | manually appended “ WB” to the
name of each copied sequence diagram):

Case Study: Architectural Design

=HarmonySE= AirSurfaceControlSystem
+-[J Components
=0 Packages
+EI ActorPkg
+tl RequirementsAnalysisPkg
=57 FunctionalAnalysisPkg
=0 Packages
+E':I ControlAirsurfacesPkg
+E':I UpdateStatusPkg
=-§7 StartUpPkg
+bE| Blocks
+-(=F Events
43 Internal Block Diagrams
[ Packages
-5 StartUpBBScenariosPkg
b StartUpExecutionScopePkg
-7 StartUpTypesPkg
-5 StartUplnterfacesPkg
-57] StartUpActorPkg
. B-5T StartUpSafetyPkg
+-(2 Use Cases
-B DesignSynthesisPkg
=0 Packages
—E':I ArchitecturalDesignPkg
+bE| ActorBlocks
[ Block Definition Diagrams
bE' Blocks
(22 Comments
b—l‘ connectors
-~ Internal Block Diagrams
Q Matrix Views
[ Packages
+-f] ACESDecompositionPkg
—EI WB5cenariosPkg
=~ Packages
—E:I StartUpWBScenariosPkg
(< Comments
=I-(J Sequence Diagrams
+|]:I] Cold start all tests pass WB
+|]:I] Warm Restart WB
+|]:I] Cold Start Min pos test failed WB
+|]:|] Cold start Max pos and SW error WB
-0 Cold start Hydraulic Errar WB

A e e W W e

+[5 Parts

#-57 ArchitecturalAnalysisPkg
+E:I InterfacesPkg

+tl CommeonPkg

P TypesPleg

+- 0 Profiles

+- 1 Settings

Figure 184: Start Up Use Case White Box Scenarios

As we move messages, the left or right arrow keys are useful for moving
selected messages to the left or right lifelines.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 172



A couple of guidelines for message refactoring in the white box sequence
diagrams.

e  “Messages to Self” can be either operation calls (synchronous) or
events (asynchronous)

e Messages between subsystem should be events (asynchronous)

e It's ok to refine the messages so they make more sense in the
context of defining services provided by subsystems. For example
Command_To_Minimum_Position(sID) from the black box
sequence diagram operation call might translate to a set of
messages such as Req_Minimum_Position(sID) followed by
Command_To_Position(sID, pos) and Updated_Position(sID, pos,
timing) sent from the control surface back to the
ACES_Management subsystem.

e Itisimportant to remember that a life line on a sequence diagram
corresponds to a singular instance at run-time. This is particularly
relevant to our situation since we have 36 control surfaces. If you
wanted to show the complete sequence for all surfaces, you'd have
to show 36 different life lines for the control surface instances. We’'ll
address that issue by only including a single lifeline in our scenarios
generally.

e Once all messages are moved to the subsystems, then the now-
unused use case life line may be removed.

e Update the (copied) diagram comment to reflect the white box
content of the sequence diagram

In this section, we will create white box versions of all the non-animated
sequence diagrams shown in Figure 184.

The first black box sequence diagram to be so transformed is Figure 63,
“Generated Sequence diagram for warm restart”. Note that the messages
are moved to the subsystems. The subsystem lifelines are colored for ease
of identification.

Case Study: Architectural Design

sd [Package] StartUpWBScenariosPkg [Warm Restart WE]

:Aircraft Power

=)
Use Case: Start Up

“AMS :ACES_Management :ACES_Control_Surface “ACES_Power :ACES_Hydravlics

Select_Battery_As_Source()

Seelct_Power_Source(BATTERY_SOURCE)

Scenario: Warm restart
WHITE BOX

Description:
System is restarted in less
that NORMAL_START_TIME

Preconditions:
Warm  start condition.

Puost-conditions:
System enters operational
state.

Invariants:

Aircraft power is supplied.
Aircraft hydraulic pressure is
supplied.

Determine_Time_Since_Last Restart()

Time_Since_Last_Reset < NORMAL
_START_INTERVAL

Enter_WARM_State()

evEnter_WARM_State()

ENABLE_Command()

regEMABLE_Command() ;

Enter_Operating_State()

evEnter_Operating_State()

Figure 185: Start Up Use Case Scenario 1

The next figure is the white box version of Figure 65 “Cold Start All Tests

Pass”.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 173




Case Study: Architectural Design

Aircraft_Hydraulics Aircraft Pawer

AMS :ACES_Management | | :ACES_Control_Surface :ACES_Power
Select_Battery_As_Sourcel)
evSdlect Battery As_Source()

[en}
Use Case: Start Up

Scenario: Cold start, all
tests pass WHITE BOX

Description:
Good cold start

Preconditions: loop
Cold start condition.

Post-conditions:
System enters operational
state.

In thiscase, wer'e onl
Invariants:
Aircraft power is supplied.
Aircraft hydraulic pressure
is supplied.

36 mist be checked.

Determine_Time_Since_Last_Restart()

Zero_Error_Count()

Select_First_Surface()

[for all control surfaces]
Req_config_parameter(sID)

herezaConfiguration(<ID), control_surface_config)

cDmmand,Tu,Puswnun(le. control_surface_config.minimum_pos)

ly gaing to

show gnly control surfacé; but all

Update!

Mave_To(pas)

sition(sID, pes, timing)

uanﬁjsmn,mdjme\msso

CDmmand_TD_PUstn[s_ED. control_surface_config. m3ximum_pos)

Move To(pas)

Update, Pasition(sID, pos, timing)

uerijflyjnsmnn,mdjme\hass()

Command_To_Position [séD. 0

Update| Position(sID, pos, timing)

POST tests ONLY pass W8

Enter WARM_State()

evEnf:_er_\"iARM_State 0
reQENABLE Command(

ENABLE_Command()

Enter_Operating_StateQ

EVErrt% Operating_State

:ACES_Hydraulics

:hircraft_Hydraulics

:Aircraft Power 1AMS

“ACES_Management

:ACES_Control_Surface “ACES_Power

MNow do POST tests
First check power

[}

This interaction fragment
only shows the POST
tests (not the surface
position tests) and they all
pass. Is intended as an
inclusion for other WB
scenarios

RE?uest_PowEr_SﬁamsO

Chedk_Power() ~

evRequest_Power_Status(source)

hereza_Power_Stafuis(power_status)

Update_Power Status{power_status)
Chedk_Power_Status()

Check hydraulics

Request_Hydraulic_Status()

Check_Hydraullics()

Hydraulic_Status()

hereza_Hydraulic_Pressure(hydraulic_status)

Update_Hydraulic_Status(hydraulic_status)

Chedk_Hydraulic_Pressure()

o=}

heck SW Integrity

Of course, all 36 control
surfaces must be checked
individually

Check_SW_Integrity()

Request_SW_Integri eck(
Request_SW_Integrity_Check()

Request_SW_Integrity_Check()

SW_staty ?(sm, SW_Status_Msg)

SV _Status(sID, SW_Status_Msg)
SW_Status(sID, SW_Status_Msg)

Figure 186: Start Up Use Case White Box Scenario 2

The referenced interaction fragment in Figure 186 is shown in Figure 187.

Figure 187: POST tests ONLY pass WB Interaction Fragment

Figure 188 shows a single error in the minimum position test. It is the white
box equivalent of Figure 66.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 174

“ACES_Hydraulics




Case Study: Architectural Design

irraf Hydraukes | | shirraft Power e e e B e The next figure (last in this sequence) shows multiple errors, including an

T error achieving the maximum position of a control surface and an error in
Scec Foner Souf e BATIERY. SR the software component of the power system. Since we’re using interaction

o e T operators to show multiple paths, it is very similar to the previous figure but

o)
Use Case: Start Up

Scenario: Cold start,

il

minimum position test fails ero_Error_CountQ . . "
WHITE 8% b refences a different interaction fragment.
Description: Select_First_Surface()

t]

Cold start, but system fails

minimum position test;
passes all others. opt, [for all control surfaces]

Preconditions: Req_config_parameter| leg
Cold start condition. herezaconfauration(D, control_surface corr)

Post-conditions: Command To_Positon(sID,control_surface._confi.miinum pos)
System enters failed state. In this case, were gnly going to Move To(

show only control’surface, but all
Invariants: 36 must be checked.

Aircraft power is supplied. Update_Positon(siD, pos, tining)
Aircraft hydraulic pressure is

supplied. Varia_Pnsiﬁnn_And_Tlme\\HESSO

opt, [if error found]
Store_Error()

Augment_Error_Count{)

Report_Error()

evRequt,Errur (error_repart)
Command_Ta Pusmun[le_;cuntruLsurfa:e,cunﬁg.maxumumjos)

Move_to(pos)

Updde_Postion(sID, pas, timing)

VEriﬁjnsiﬁnn)mdj’lmehnsss{)

opt [if error found]
Store_Error()

Auﬁmantﬁmr;nunt{)

Report_Error()

evRepngt,Ermr (error_report)

Command_To_Position(sID, 0)

Move_to(pos)
Update_Pastion(sID, pos, timing)

Select_Next_Control_Surface()

POST tests ONLY pass WB

Enter FAILED_State()

evsgter,FAlLEDjtateo
Figure 188: Start Up Use Case Scenario 3

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 175



Arcraft_Hydraviics

o
Use Case: Start Up

Scenario- Cold start,
minimum position test
fails WHITE BOX

Description:

Cold start. but system
fails maximum position
test and SW Integrity

test: passes all others.
Preconditions:

Cold start condition.

Post-conditions:
System enters failed
state.

Invariants:

Aircraft power is
supplied.

Aircraft hydraulic
pressure is supplied

:Aircraft Power AMS

opt,

“ACES_Management “ACES_Control_surface {ACES_Power

Select Battery_As_Source()
Select_Power_Soufce(BATTERY_SOURCE)

Determine_Time_Since_Last Restart()

t

Zero_Error_Count()

t

Select_First_Surface()

t]

[for al control surfaces]

Reg_config_parameter| SI%)
herezaConfiuraton(e, contol_urface_conf)

Command To_Position(SIDy gonirol_surface_config.maimum_pos)

I this case, were anly going to Move.To0

show only control’surface, but all
36 must be checked.

Update. Positan(EID, gos, aming)

uenﬁjnamn,mdjmelmasso

opt [if error found]
Store_Error()

Au?mant_Ermr_CnuntO
naﬁnﬁmro

evrzepnétjrmr(ermr,repurt)
Command To_Position(sIDy control_surface_config.maximam_pos)

Move_ta(pos)

Updde: PostionfsID, pos, iming)

uenﬁjnamn,mdjmelmesso

opt, [if error found]

Store_Error()

.

AuﬁmEnLErrur,Cuunt()
Rﬁortjmr@

evP.epoét,Error (error_repart)

Command_To_Position(sID, 0}

Move_to(pos)
Update_Postion(sID, pos, tming)

Select_Next_Control_Surface()

SW POST FAILS WB

Enter FAILED State()

EvEgher_FA]LED_StatE 0

:ACES_Hydraulics

Figure 189: Start Up Use Case Scenario 4

The referenced interaction fragment shows the SW Integrity test for the

Power Subsystem fail (Figure 190).

Case Study: Architectural Design

TArcratt_Hydradics JArCraft Pawer AV {ACES Management | | :ACES_Control Surface {ACES Pawer “ACES_Hydradlics
Now do POST tests
First check power RE?uEstjnwErjtams()
=]
. Check_Power
Interaction fragment: SW POST 2 1]
Test Fails evRequest Power
hereza_Power status)
Pre-conditions: I
POST is about to be done Update_Poner status)
Check_Power_Status()
Post-conditions:
POST Completes
SW Test is found to fail
Check hydraulics Request_Hydrauiic_Status()
Check_Hydraulics()
evRequest_Hydrauic_Status()
hereza_Hydraulic Jic_statis)

Update_Hydraulic ic_status)

Check Hydraulic_Pressure()

Of course, all 36 control —
surfaces must be checked
individually

Check SW ntegrty Check SW_Integrity(

Request Swi_Integrity gedio
=} Request_SW_Integrity_Chedk()
Power subsystem
SW Integrity test

fails [T . SW_Status(sID, SW_Status_Msg)
—~ b
—

4
SW_Status(sID, SW_Status Msg)

Request SW_Integrity_Check()

Store_Error()

A fmant_Ermr_Caunt{]
REﬁrt_Erva

evReDUr%rmr ferror_repart)

SW_Status(sID, SW_Status Msg)

Figure 190: SW Integrity Test Fails Interaction Fragment

Once you have created all the diagrams, be sure to right click in each
diagram and select Auto Realize all elements.

9.3.1.3 Define Subsystem Ports and Interfaces
The next step is to use the defined messages between the sbsystems and
actors in the white box sequence diagrams to specify the interfaces.

In the brower, right click on the WBScenariosPkg
Select SE-Tookit > Ports and Interfaces > Create Ports and Interfaces
Recursive

This step creates ports between communicating elements (subsystems and
actors), creates interface blocks (if you're using the agile form of the tool,

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 176



otherwise it will create interfaces) and populates them with the events sent
between them, as shown in Figure 189.

What the toolkit doesn’t do is to copy in parameters into the messages, or
at least for the most part. So editing the event receptions to ensure they
have the proper parameters is a task that you must perform manually.
Remove all knonNormative» events (unless, for some reason, you
decide to keep them in the specification to the subsystem)
Walk through the events in the InterfacesPkg to be sure all the
events have the proper parameters

The clones of the events from the functional analysis that had parameters
with also have parameters; however, the events we added between the
subsystems will not. Looking though the event list, | see the following events
that must be updated to include parameter lists:

—E‘J InterfacesPkg
=2 Events
+‘F" reqENABLE_Command()

-1 hereza_Power_Status(Power_Status1 ps)

- hereza_Hydraulic_Pressure{Hydraulic_Status1 hs)
- evlpdate_Positions{Surface_Positions sp)

-7 evDisable()

- evEnter_Operational_State()

- evEnable()

-1 evPilotConfirmation()

-7 evPilotRejection()

- T evStartup()

- evSurfaceFault()

----- P Select_Battery_As Source()

----- i evRequest_Power_Status(POWERSOURCE_TYPE source)
----- P evSelect_Battery_As Source()

----- P Req_config_parameter()

----- T herezaConfiguration() sh——
----- T Command_To_Position(] e——
----- T Update_Position(] —

----- ™ Select_Power_Source()

----- i evRequest_Hydraulic_Status()

----- T Update Power_Status(] e
----- P Check_Hydraullics()

----- T Update_Hydraulic_Status() s
----- ™ Request_SW_Integrity_Check()

----- T SW_Status() s

----- ™ evEnter_WARM_State()

----- s evEnter_Operating_State()

----- P evReport_Error(Error_Report * err)

----- g evEnter FAILED State()

Adding the parameters should result in an event list like this:

Case Study: Architectural Design

InterfacesPkg

-

O O e O O O O e O O B

—- =% Events

- reqENABLE_Comrand()

-7 hereza_Power_Status{Power_Status1 ps)

- hereza_Hydraulic_Pressure{Hydraulic_Status1 hs)

- evlpdate_Positions(Surface_Positions sp)

- evDisable()

- evEnter_Operational_State()

-7 evEnable()

- evPilotConfirmation()

-7 evPilotRejection()

- evitartup()

- evSurfaceFault()

- P Select_Battery_As_Source()

-7 evRequest_Power_Status(POWERSOURCE_TYPE source)
- evielect_Battery_As_Source()

-7 Req_config_parameter()

-7 herezaConfiguration(SurfacelD id, Surface_Configuration_Type config)
-7 Command_To_Position(SurfacelD id, int pos)

- Update_Position(SurfacelD id,int pos,Second meovement_duration)
- Select_ Power_Source(POWERSOURCE_TYPE source)
T evRequest_Hydraulic_Status()

-7 Update_Power_Status(Power_Status1 p_status)

-7 Check_Hydraullics()

- Update_Hydraulic_Status(Hydraulic_Status1 h_status)
- P Request_SW_Integrity_Check()

T SW Status(SurfacelD id,SW_Status sw_status_msg)

- P evEnter WARM_State()

- P evEnter_Operating_State()

-7 evReport_Error(Error_Report * err)

- P evEnter FAILED State()

Another thing you may face (I always seem to) is to find misspellings of the
event names | want to send. What is evConfiguration in one sequence
diagram might become evConfiguriation in another. Such misspellings or
errors will need to be manually identified and repaired as well. At this
point, you should
walk thorough the operations in the interface blocks, looking for

mistakes such as these:

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 177




Case Study: Architectural Design

B2- E:I InterfacesPlg

«HarmonySEs AirSurfaceControlSystem

™ [0 Compenents

7= Ewvents =~ Packages

EI bE' Interface Blocks 263 A(torPkg
& iACES_Power_Aircraft_Power i %%ftximﬂ Power Auto Realize added
H iaCES_Management_aMS AMS

&

operations
& Aszociation Ends

Operations /
E?:* evEnter_Operating_State()

(B evEnter_WARM_State()

P evEnter_FAILED_State()

E?" evReport_Error(Error_Report * err)
. = Proxy Ports

Aircraft_Hydraulics

Pilot_Display

i Maintainer

Q IACES_Management_ACES_Power

2 Q IACES_Management ACES_Control_Surface

B- @ Operations

; E!‘" =directedFeatures Req_cenfig_parameter()

E}:\' =directedFeature= herezaConfiguration()

E’ft* edirectedFeature» Command_To_Position

Eﬂ" =directedFeatures Update_Position() "/

-2 Table Views
E}:w =directedFeatures Update_Postion() — +f1 RequirementsAnalysisPkg
Ep wdirectedFeatures Request_SW_Integrity_Check() ;E E“;g':;;;é::;’:ﬁ::g
E!"' =directedFeatures SW_Status() £ Packages
EJ---Q IACES_Hydraulics_Aircraft_Hydraulics K Ej...gcgﬁif[”;;?i'ﬁifﬁ't“‘,m
I:I-"Q IACES Management ACES_Hydraulics -2 Blocks 9
-2 Comments
-2 Matrix Views
£1-C3 Packages
% ACESDecompositionPkg
. . . E-F WBScenariosPk
Lastly, if you drew any Messages between lifelines on your sequence é---DE:a’ckages ?
. B StartUpWBScenariosPk
diagram that are not Event Messages, then the Create Ports and Interfaces & Comments

. . . (58] Sequence Diagrams
tool will ignore those and not add them to the interface blocks. 0] Warm Restart WB
ﬂ:ﬂ Cold start all tests pass WE
U:D Cold start Min Pos test fail: WB
U:D Cold start Max Pos test and S\W test fails WB
[ POST tests ONLY pass WB
H ez [l:ﬂ SW POST FAILS WB
e} Ej ControlAirSurfacesWB5cenariosPkg
B SubsystemUseCasesPkg
-0 Requirements Diagrams
571 ArchitecturalAnalysisPkg
=57 InterfacesPkg
&? Events
Ebg Interface Blocks
- Q IACES_Power_Aircraft_Power
=) Q iACES_Management_AMS
H -2 Operations
[P wdirectedFeatures evEnter WARM_State()
[P adirectedFeatures reqENABLE_Command()
P «directedFestures evEnter_Operating_State()
P «directedFestures evReport_Error(Error_Report * err)
Ep'v «directedFeatures evEnter FAILED State()
. Q iACES_Management_ACES_Power

iACES_Management_ACES_Control_Surface
I H iaces _Hydraulics_Aircraft_Hydraulics
- IACES ,_Management_ACES_Hydraulics

- Packages

B2 Tags Create Ports and Interfaces
%=1 includelnSharedModel=true

= [ CommonPkg created interface blocks &

_ b3 DatalypesPhy messages

-0 Settings

Figure 191: Create Ports and Interfaces Recursive outcome

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 178



9.3.1.4 Group Services Together into Use cases

By this point, we have:
e Identified subsytems
e Allocated operations and value properties to subsystems
e Allocated requirements to subsytems, including created subsystem-
level derived requirements
e Drawn white box sequences
e Created ports and interfaces

The next step is to define — where appropriate — subsystem-level use cases.

It would be quite unusual for two different approaches to be both taken to
allocating features to subsystems. In this Deskbook, we are doing so for
pedagogical reasons. The Start Up use case is being done bottom-up and
the (yet to come) Control Air Surfaces allocation will be done top-down.
Usually, only one of these approaches would be taken for a given system.

Nevertheless, we’ll try to show how this would work for the bottom-up
approach and later for the top-down approach.

For the bottom-up approach, let’s review what we’ve done so for in terms
of allocations. First, we took our merged functional analysis and used the
allocation wizard to allocate the features (attributes, operations, and
events) to various subsystems. Then we created white box sequence
diagrams to show how the allocated subsystems collaborate together to
realize the system level use case scenarios.

At this point, we’ve allocated quite a number of elements to the
subsystems. For example, the Figure 192 shows the model features
allocated to the ACES_Management subsystem.

Case Study: Architectural Design

—[EE" Blocks
_'... ACES

] s Allecations
=) = Operations
+- i Select Battery As Source()
- Deterrnine_Time_Since_Last_Restart()
- = Enter WARM_State()
- ENABLE_Command()
= Enter_Operating_State()
- Zero_Error_Count()
- Select_First_Surface()
- Command_To_Minimurm_Pasition()
k= Verify_Position_And_Timeliness(}
= Command_To_Maximum_Position()
- Zero_Control_Surface()
- Select Mext_Control_Surface()
-l Request_Power Status()
- Check_Power_Status()
&= Request_Hydraulic_Status()
i Check_Hydraulic_Pressure()
i Check_SW_Integrity()
- Store_Error()
=l Augment_Errer_Count()
- Report_Error{)
- = Enter_FAILED_State()
~Ep reqENABLE_Command()
- hereza_Power_Status(Power_Statusl ps)
-l hereza_Hydraulic_Pressure(Hydraulic_Status1 hs)
- Move_TolSurface_Positions™ positions)
- Check_For_Errors()
- = Check_Power()
- Check_Hydrauic_Pressure()
| Verify_Positions_And_Timing()
-l Set_Position(SurfacelD id,int pos)
- Initialize_Surfaces()
- Check_Movernent()
- Check_Position(SurfacelD id)
I Is_Equal(int a,int b,int tolerance]
- Mo_Faults()
i Is_Flyable()
~E evUpdate_Positions(Surface_Positions sp)
- evDisable()
- evEnter_Operational_State()
~Ef evEnable()
~Ep evPiletConfirmation()
- evPilotRejection()
+-Ep evStartup()
3] Lg Parts
== Value Properties
- = position_set
+ -~ xqualifieds position_error
+- = weight_on_wheels
+- = fault_count

OO OO OO OO OO e O O O O s O e O O O O O g O oy O O O O O O e O e O O O Oy O O o O O O OO O O O O O s O o O

Figure 192: Model features allocated to the ACES_Management subsystem

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 179




Note that we haven’t done the white box allocation for the Control Air
Surfaces use case yet, nor added features from the other (as yet
unanalyzed) use cases. You can see that it is already getting a bit complex.
Grouping these features up into use cases makes sense from an
organization point of view. On the other hand, very little is allocated to the
hydraulic system, so we may not even need to create subsystem level use
cases for that subsystem.

It's time to create some subsystem-level use cases to organize the
requirements and features allocated to the ACES_Management subsystem.
In the browser right-click on the DesignSynthesisPkg >
ArchitecturalDesignPkg > ACESDeompositionPkg >
ACES_ManagementPkg and select Add New > General Element >
Package.
Name this package UseCasePkg.
Right click on UseCasePkg and select Add New > Diagrams > Use
Case Diagram.
Name this diagram ACES_Management Use Cases.

Now we must think about what use cases the subsystem must fulfill in order
to satisfy the allocated requirements (see Table 3) and features. Remember
all features and requirements allocated to the subsystem must (if we’re
defining subsystem use cases here) be further allocated to its use cases.

Now create the use case diagram for the subsystem as shown in Figure 193.
A few things to note about the diagram.
e The AMS actor is the original actor located in the project-level
ActorPkg package.
o The other actors are the peer subsystems
o aMS_Power® represents the ACES_Power subsystem
o aMS_Hydraulics represents the ACES_Hydraulics subsystem
o aMS_Control_Surface represents ACES_ControlSurface
subsystem

18 The name of the subsystem is prefaces with “a” to indicate that it is being
considered as an actor in this context.

Case Study: Architectural Design

e These actors are stereotyped as «internal» to clearly differentiate
them from the system actors®.

e The use cases are stereotyped as «Subsystem» to indicate their
scope of concern.

«internals
L
Mission: Show the use cases
for the ACES_Management

subsystem
«Subsystems» /
Coordinate Start Up
aMS_Power
/ «internals
«Subsystems
Management System
T State

aMs_Hydraulics

«internal

Coordinate Surface
Movement

\

aMS_Control_Surface

Figure 193: ACES_Management Subsystem use cases

9.3.1.5 Allocation Requirements to the Subsystem Use Cases
The next step is to allocate the requirements allocated to the subsystem to
the use cases own by that subsystem. The easiest way to do that is to create

¥ This is a stereotype | added to the CommonPkg package and it applies only to
Actors.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 180



a matrix that shows all the requirements allocated to the subsystem but
also shows the use cases. Then walk through those requirements, one by
one, and decide which subsystem use case it should be allocated to.

Such as matrix is a simple extension of the subsystem-requirements
allocation matrix. The first difference in the layout definition is that the
From element includes Block, Class and Use Case, rather than just Block and
Class. The second difference is that in the Cell Element Types both Allocation
and Trace are selected. The requirements are allocated to the susbsystem
but will be traced to the use case, although note that in both cases the
relation comes from the block or use case and ends on the requirement.
This matrix layout definition should be placed in the CommonPkg.

The view, placed in the package created to hold the ACES_Management
subsystem specification, uses the subsystem package as the From scope and
the RequirementsAnalysisPkg and the To scope.

Matrix View : ACES_Management_UC_Regs_Matrix in ACES_ManagementPkg ¥ n
~
General Description Relations Tags  Propeties
Namlﬁ\¥ ‘ACES_Managamem_UC_Raqs_Matnx | Label...
Steredtipe: ‘ V| E M
Layout: 55_1UC_Req Matrix Layout in CommonPlkg ~ E
SE:';L ACES_ManagementPkg in DesignSyrthesisPka :ArchitecturalDesignPkg::ACESDecompositionPkg =~~~
Include Descendants {"From" Scope)
Te” Requirements Analysis Pkg i
Scope
Include Descendants {"To" Scope)
v
Locate oK

The matrix view showing the allocation to the ACES_Management
subsystem and the trace to its use cases is shown below. Note the different
icons for the allocation and trace relation in the matrix. Also be aware that
the rows and columns are switched for the matrix.

Case Study: Architectural Design

ACES_Management

|© Coordinate Start Up

|© Managemert System State |© Coordinate Suface Mavemert |

[ UAM_requ\remam_T

[ uACSCUNTﬁrequ\rementj

[t ‘,-_iAMjequ\remerﬂj

[L1]AM_requiremert_6

[ 1] ACSCUNT _requirement_7

[ ‘,-_iAMjequ\remerﬂj

|(J] ACSCUNT _requirement_10

[t UACSCUNT_requ\rement 11

[LJ| ACSCUNT _requiremert_12

[ UACSCUNT_requ\rement 16

[ uACSCUNTﬁrequ\rement 17

[ UACSCUNT_requ\erem_H
[t ‘,-_iACSCUNTJEqu\rementh

[LJ] ACSCUNT requiremert_19

[ UACSCUNT_requ\eremJD

[ UACSCUNT_requ\rement_ﬂ

[ uACSCUNTﬁrequ\rementjd

[ ‘,-_iACSCUNTJequ\rementh

[ UACSCUNT_requ\rement 26

[ UAM_requ\remem_ZT

[ ‘,-_iAMjequ\remerﬂjS

[t ‘,-_iAMjequ\remaij

[£] AN _requirement_30

[ HACES_SS_requ\remerﬂ_SZ

[ UACES_SS_requ\remerﬂ_?B

[ uACESfSSJequ\remerLM

[t ‘,-_iAMjequ\remamj.‘)

[ DerintReq_1

[l DerintRegq_2

[(]|DerlntReq_3

[l DerintReq_4

il DerintReq_5

%] DerintReq_6

[l DerintReq_7

[l DerintRegq_8

] DerlntReg_%

[l DerintReq_10

] DerlntReq_11

] DerintRegq_12

[1| DerRegint_13

|¢ )] DerlniReq_14

[l DerintReq_15

] DerintReg_16

] DerintReg_17

| %] DerintReq_18

|(j] DerFunReq_1

[l DerConfigReq_1

] DerConfigReq_2

%] DerStartUpReqg_1

il DerStatupReq_2

|(| DerStatupReq_3

] DerStatupReq_4

] InterfaceReq_0

| %] InterfaceReq_1

[ InterfaceReq_2

] InterfaceReg_3

[l InterfaceReq_4

] InterfaceReq_5

| %] InterfaceReq_6

[ InterfaceReq_7

] InterfaceReq_8

/ AM_requirement_1
) ACSCUNT _requirement_3
J AM_requiremert_4
» AM_requiremert_6

"

\/ AM_requiremert_3

o« ACSCUNT _requirement_12
o/ ACSCUNT _requirement_12
o/ ACSCUNT requirement_16
' ACSCUNT _requirement_17
./ ACSCUNT requirement_18
' ACSCUNT _requirement_1%
o/ ACSCUNT _requirement_20
o/ ACSCUNT _requirement_21
' ACSCUNT _requirement_24

o/ ACSCUNT requirement_26
o/ AM_requirement_27
) AM_requiremert_28
./ AM_requirement._29
o« AM_requirement_30
o/ ACES_S5_requirement_32
o/ ACES_S5_requirement_33
« ACES_SS_requirement_34
J AM_requirement_35

! DerlntReq_7

[

! DerlntReq_9

[

) DerintReq_11
! DerlntReq_12
DerReglnt_13
DerlrtReq_14

r_r_|v_|r

! DerlntReq_16
/ DerlntReq_17
./ DerrtReq_12

[

"

! DerStartupReq_d4
InterfaceReq_0
InterfaceReq_1
InterfaceReq_2
InterfaceReq_3
IntefaceReq_4
InterffaceReq_5
InterfaceReq_6
InterfaceReq_7
o/ InterfaceReq_8

r_w_|r_x_®m_®m_w_®_|K

*, ACES_SS_requirement_32
*, ACES_SS_requirement_33

., AM_requirement_35

*, ACSCUNT _requirement_20
*, ACSCUNT _requirement_21

., AM_requirement_28
., AM_equirement_29
., AM_requirement_30
*, ACES_SS_requirement_32

., AM_requiremert_35

*, DerlntReq_9

~, DerlntReq_10
., DerlrtReq_11
“., DerlntFAeq_12
*., DerReqint_13
*., DerlmtReq_14
~, DerlmtReq_15
~, DerlntReq_16&
., DerlntAeq_17
., DerlntFeq_18

*, DerStartupReq_4

*., InterfaceReq_2
*, IntefaceReq_3
~, IntefaceReq_4
., InterfaceReq_5
., InterfaceReq_6
", InterfaceReq_7
*, IntefaceReq_8

*, AM_requirement_1
., ACSCUNT _requiremert_3
., AM_requirement_4
., AM_requirement_6

“, AM_requirement_9

., ACSCUNT _requiremert_12
*, ACSCUNT_requiremert_13
*, ACSCUNT _requiremert_16

“., ACSCUNT _requiremert_17
., ACSCUNT_requirement_18

., ACSCUNT _requiremert_24

*o, ACSCUNT _requiremert_26
*., AM_requirement_27

*, DerlntReq_7

., IntefaceReq_0
., InterfaceReq_1

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 181



ACES_Management

O Coondinate Start Up

> Management System State [ Coordinate Suface Movement

Case Study: Architectural Design

¥ Hlmedaceﬂeqj

[{1|InterfaceReq_10

Ejlmeda‘:eReq_ﬂ

Ejlmeda:eﬂequ

Eﬂlmeﬂaceﬂeqji&

|{ | InterfaceReq_14

Ealmeda:eﬂeq_ﬁ

EjlmedaceR&qu

[{]|InterfaceReq_17

Ejlmeda‘:eﬁaq_w

Ejlmeda:eﬂeqj&

Eﬂlmeﬂaceﬂeq}ﬂ

|{ | InterfaceReq_21

Ealmeda:eﬂeq_ZZ

EjlmedaceR&q}B

[{]|InterfaceReq_24

Ealmeda:eﬂeq_ZS

Ejlmeda:eﬂeq}ﬁ

Eﬂlmeﬂaceﬂeq}?

Ejlrﬁer{aceﬂeq_ﬂ

EBIr'vterlat:eF{Er.l_ZEI

E jFuncFlqu

[{j]FuncReq_1

E BFuncF{eq_Z

E jFuncF{eqj

[{3]FuncReq_4

E BFuncHBu_E

E BFuncF{eq_G

E jFuncFleqj

[{j]FuncReq_8

E BFuncF{eq_E'

E jFuncF{quﬂ

[{J]FuncReq_11

E BFuncHBuJZ

E BFuncF{eq_H

E jFuncRauJS

[{j]FuncReq_16

E BFuncF{qu L

E jFuncF{qu&

[{1]FuncReq_13

E BFuncHBu_Zﬂ

E BFuncF{eq_ZW

E jFunn:F\acLZZ

[{j]FuncRieq_23

E BFuncF{eq_Z-i

E jFuncFlecLZS

[{.1|FuncReq_26

E BFuncHBu_ZT

E jFuncF{eqj&

E jFuncF\aufZ&

[{ ] Funchieq_30

E BFuncF{eq_EH

E jFuncFlequ

[{1]FuncReq_33

E BFuncHBu_M

E jFuncF{equ

E jFuncF\aujﬁ

[{j]Funchieq_37

E BFuncF{eq_EkS

E jFuncFleqf&Ei'

/ IniefaceReq_9
/ InterfaceReq_10
/ InterfaceReq_11
/ InterfaceReq_12
 IniefaceReq_13
/ InterfaceReq_14
o/ InterfaceReq_15
o/ InterfaceReq_16
/ InterfaceReq_17
/ InterfaceReq_18
o/ InterfaceReq_19
 IniefaceReq_20
/ InterfaceReq_21
o/ InterfaceReq_22
o/ InterfaceReq_23
/ InterfaceReq_24
o/ InterfaceReq_25
o/ InterfaceReq_26
 IniefaceReq_27
o/ InterfaceReq_28
o/ InterfaceReq_29
+/ FuncReq_0

/ FuncReq_1

./ FuncReq_2

./ FuncReq_3

/ FuncReq_4

./ FuncReq_5

./ FuncReq_&

+/ FuncReq_7

./ FuncReq_8

./ FuncReq_9

/ FuncReq_10
 FuncReg_11

/ FuncReq_12

o/ FuncReq_13

o/ FuncReq_15
 FuncReq_16

/ FuncReq_17

/ FuncReq_18

/ FuncReg_19

/ FuncReq_20

/ FuncReq_21
 FuncReq_22
 FuncReq_23

/ FuncReq 24

) FuncReq_25
 FuncReq_26

/ FuncReq_27

/ FuncReq_28

. FuncReq_23
 FuncReq_30

/ FuncReq_31

+/ FuncReq_32
 FuncReg_33

/ FuncReq_34

/ FuncReq_35
 FuncReq_36
 FuncReq_37

/ FuncReq_38

+/ FuncReq_3%

., InterfaceReq_9
, InterfaceReg_10
*, InterfaceReq_11
., InterffaceReq_12
“, InterfaceFeq_13
., InterfaceReq_14
*, InterfaceReq_15
“, InterfaceFeq_16
, InterfaceReg_17
*, InterfaceReq_18
., InterffaceReq_1%
“, InterfaceFeq_20
-, InterfaceReq_21
., InterfaceReq_22
., InterfaceReq_23
*, InterfaceReg_24
*, InterfaceReq_25
., InterffaceReq_26

*, InterfaceRegq_29
-, FuncReq_0
o FuncReg_1
., FuncReq_2
., FuncReg_3
, FuncReg_4
*, FuncReg_5
*, FuncReq_6&
“, FuncReq_7
*., FuncReg_8
*, FuncReq_9
., FuncRea_10
, FuncReg_11
*, FuncReq_12
*, FuncReq_13
., FuncReq_15
- FuncReg_16
., FuncReg_17
, FuncReg_18
*, FuncReg_13
*, FuncReq_20
*, FuncReq_21
“, FuncReq_22
*., FuncReq_23
*, FuncReq_24
., FuncReq_25
«y FuncReg_26
*, FuncReq_27
., FuncReg_28
., FuncReq_28
-, FuncReg_30
*, FuncReq_31
“, FuncReq_32
*., FuncReg_33
*, FuncReq_34
., FuncReq_35
., FuncReq_36
.y FuncReq_37
*, FuncReq_38
., FuncReq_38

ACES_Managemert

| Coordinate Start Up

© Wanagement System State | Coordinate Surface Movement |

[[1]FuncReq_40

E B FuncReq_100

[ij]FuncReg101

E B FuncReq201

E B FuncReq202

E B FuncReg203

|1 Shut DownReq_0

E BShul DownReq_1

E BShul DownReq_2

|[ | MaintenznceReq_0

E B MaintenanceReq_1

E B MaintenanceReq_2

E BStale ModesReg_0

E BState ModesReq_1

[£ j] StateModesReq_2

E BStale ModesReg_3

E BState ModesReq_4

[ j] StateModesReq_5

E BStale ModesReg_6

[{ | EmorReq_0

EBErrorRqu

EBErrorReqj

[{ | EmorReq_3

EBErereq_-l

EBEereqj

|{ | EmorReq_6

EBErereq_?

EBEereqj}

[{ | EmorReq_8

[[ 1] Enoriea_10

[[ 1| EnorRea_11

[{}| EmorFleq_12

[[ 1] Emorea_13

[[ 1| EmorRea_14

[{ | EorFleq_15

[[ 1] Emoriea_16

[[ 1| EmorRea_17

[{}| EmorFleq_18

[[ 1] Enoriea_19

EBErerequ

1| EnorRen_21

EBErrorReq_ZZ

EBErmrFlequ

[[1|EnorRea_24

EBErrorRequ

EBErmrFleqjﬁ

[[1)EnorRea_27

[[ 1| Enorea_28

[ j] EmorReq_29

EBErrurReq_?ﬂ

[[ 1| EorRiea_31

(] EmorReq_32

EBEHWREQ_SS

EBErrorReqj-l

(] EmorReq_35

EBErrurReq_?ﬁ

[[ 1| Eoriea_37

[{j|ConfigReq_0

[[ 1| ConfigRea_

|{}|CorfigReq_2

[i ] ConfigReq_3

./ FuncReq_40

/ EmorReq_0
./ EmorReq_1

' EmorReq_2

«' EmorReg_3
./ EmorReq_4
./ EmorReq_5
./ EmorReq_6
./ EmorReq_7

«/ EmorReq_10
+/ EmorReq_11
./ EmorReq_12
o/ EmorReq_12
o/ EmorReq_14
«' EmorReq_15
«/ EmorReq_16
o/ EmorReq_17
«' EmorReq_18
./ EmorReq_13
./ EmorReq_20
./ EmorReq_21
./ EmorReq_22
. ErorReq_23
./ EmorReq_24
./ EmorReq_25
. ErorReq_26
«/ EmorReq_27
./ EmorReq_28
./ EmorReq_29
./ EmorReq_30
+/ EmorReq_31
./ EmorReq_32
./ EmorReq_33
o/ EmorReq_34
./ EmorReq_35
./ EmorReq_36
./ EmorReq_37

+/ CorfigReq_1

/ CorfigReq_3

*., FuncReg_40

*, StateModesReq_0
~, StateModesReq_1
., StateModesReq_2
*, StateModesReq_3
., StateModesReq_4
., StateModesReq_5

*., EmorReg_0
~, EmorReq_1
*., EmorReq_2
", EmorReq_3
~, EmorReq_4
., EmorReq_5
*., EmorReq_6
~, EmorReq_7
., EmorReq_8
", EmorReq_9
~, EmorReq_10

., ErrorReq_14
*., EmorReq_15
~, EmorReq_16

EmorReq_17
*., EmorReq_18
~, EmorReq_19
., EmorAeq_20
+, EmorReq_21
~, EmorReq_22
., EmorAeq_23
", EmorReq_24
~, EmorReq_25
., EmorAeq_26
*, EmorReq_27
~, EmorReq_28
EmorReg_29
*, EmorReq_30
., EmorReq_31
*., EmorReq_32
~, EmorReq_33
., EmorReq_34
*., EmorReq_35
*, EmorReq_36
*., EmorReq_37

., CorfigReq_1
*., CorfigReq_2
~, CorfigReq_3

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 182



ACES_Management

> Coordinate Start Up

2 Management System State | Coordinste Surface Movement

[ UOtherF!eq_D

[ UOtherFlqu

Ll StartUpReq_0

] StatlUpReg_1

1] StatUpReq_2

1] StatUpReg_3

1] StartlpReq_4

1] StatlUpReg_5

1] StartUpReq_6&

[ 1| SefetyReq_390197

[ 1| Sefety_Req_390198

[ 1| Safety_Req_39019%

[[ [ Safety_Req_390200

[[ | Safety_Req_390201

[[ ]| Safety_Rieq_330202

[[ | Safety_Req_390203

{1 Safety_Req_3%0204

[ | Sefety_Req_390205

[ 1| Sefety_Req_330206

[ 1| Sefety_Req_3%0207

[{ 1| Safety_Req_390208

[{ 1| Safety_Req_390209

[{ 1| Safety_Req_390210

[ ]| Safety_Req_390211

[{ 1| Safety_Req_390212

[[ ]| Safety_Req_390213

[[ ]| Safety_Req_390214

[[ ]| Safety_Req_330215

[{ ]| Safety_Req_390216

[ 1| Sefety_Req 330217

[£ ]| Safety_Req_390218

[[ ] SafetyReq_D01

[[ ]| SafetyFieq_D02

[£ ]| SafetyFieq_003

[ uSa{e‘wHequl}d

1| SefetyReq_D05

[ uSa{e‘wReqj}Dﬁ

o/ CtherReq 0
o/ CtherReq 1

o/ StatlpReg_1

o/ StatlpReg_2

o/ StatlpReq_3

o/ StatlpReq_4

/ StatlpReq_5

/ StatlpReq_6

o/ SafetyReq_390197

o/ Safety_Req_330158
o/ Safety_Req_350159%
o/ Safety_Req_350200
o/ Safety_Req_330201

\/ Safety_Req_390206
o/ Safety_Req_330207
o/ Safety_Req_350208
o/ Safety_Req_35020%
o/ Safety_Req_330210

o/ Safety_Req_330212
«/ Safety_Req 330213
«/ Safety_Req 330214
«/ Safety_Req_390215
\/ Safety_Req_390216

./ SafetyReq_001
\/ SafetyReq_002
\/ SafetyReq_003
o/ SafetyReq_D04
o/ SafetyReq_005

*, OtherReg_0
*, CtherReg_1

., OtherReg_0 “., OtherReg_0
*, CtherReg_1 *, CtherReg_1

., StartUpReq_1

“, StaitUpReg_2

~, StatUpReg_3

*., StatUpReq_4

", StatUpReq_5

", StatUpReq_6

., SefetyReq_390137

., Safety_Req_390198
., Safety_Req_330199
., Safety_Req_350200
*, Safety_Req_350201

., Safety_Req_390206
., Safety_Req_390207
., Safety_Req_390208
., Safety_Req_390209
., Safely_Feq_390210

“., Safety_Req_390212

*, Safety_Req_350213
*, Safety_Req_350214
*, Safety_Req_ 380215
", Safety_Req_390216

*, SafetyReq_001
~, SafetyReq_002
., SafetyReq_003
*., SafetyReq_004
., SafetyReq_005

Figure 194: ACES_Management Use Cases Requirements Trace

9.3.2 Top-Down Approach: Control Air Surfaces Use Case

The top-down approach works by directly creating the subsystem-level use
cases directly from the system level use case. The «include» relation is used
for this. The subsystem level use cases represent coherent sets of
requirements and behaviors that apply to a single subsystem. Once
identified, the subsystem use cases are allocated to the subsystems and
they are then elaborated in the same fashion as the system use cases.

We recommend that there is one (or possibly more) diagram for each
system level use case’s decomposition to subsystem use cases. If the
diagram is not too complex, then the allocations to the subsystems may be
included on this diagram as well. Otherwise, simply create another view

Case Study: Architectural Design

(diagram or table) for the allocation. These diagrams and use cases need
some place to live so in the DesignSynthesisPkg > ArchitecturalDesignPkg
create a new package named SubsystemUseCasesPkg. The use case
diagrams that show the relations of the system and subsystem use cases will
live here but later the subsystem use cases themselves will be moved into
the packages that specify their owning subsystems. This package will also
hold the internal actors (representing the peer subsystems.

9.3.2.1 Decompose Use Cases

The Control Air Surfaces use case decomposition is shown in Figure 195.
There are a few noteworthy aspects to the diagram. First, the actors include
both the system actors (AMS and Pilot_Display) but also the internal actors,
which are stand-ins for the peer subsystems.

«nternal»

Mission: Show the subsystem use case
derived from the Control Air Surfaces <nternal»
system use case

aMandgement_Subsystem
Control Air Surfaces o Y

\ N S

aHydraulics_Subsystem

«internal»

«indude» «nclude»

‘ws“bsymm»,, «Subsystem, Abstract»

Coordinate Surface
Movement

Move Control Surface

Pilot_Display

A | aPower_Subsystem
«internale / /

«Subsystem» «Subsystem>» «Subsystem»

Rotate Control Surface Rotate Trim Tab Extend Control Surface

«nternaby

aControl_Surface_With_Trim

«internal»  /

aControl_Surface

aControl_Surface_Retracting

Figure 195: Decomposition of the Control Air Surface Use Case

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 183



Case Study: Architectural Design

Next, note that there are two directly included subsystem level use cases
derived from the Control Air Surfaces use case. The first is Coordinate
Surface Movement. The other is Move Control Surface. This latter use case
is stereotyped both «Subsystem» and «Abstract». This latter stereotype is
meant to indicate that the use case is really just a place holder and contains
no requirements or specification itself; rather it is there only to help
organize the use cases derived from it%.

These use cases, Rotate Control Surface, Rotate Trim Tab, and Extend
Control Surface are specializations of Move Control Surface. Why use this
intermediary use case when it doesn’t contain any actual requirements? The
reason is that each of these specialized use cases associates with three
internal actors: aManagementSubsystem, aHydraulics, and aPower.
Because of the way specialization works, each of the specialized subsystem
use cases inherits the relations to these actors, so that we don’t have to
draw these relations to each of the more specialize use cases. Esssentially, it
is being used as a “notational convenience.”

Each of these subsystem use cases is allocatable to a single subsystem. This
allocation is shown in the next diagram, Figure 196.

20 This stereptype applies to use cases only and is also put into the CommonPkg.

o) «internal»

Mission: Show the allocation of the

subsystem use cases derived from

the Control Air Surfaces use case.

«internal»
«internal» \ ACES_Management
AMS aMandgement_Subsystem
\ " aHydraulics_Subsystem
\ /
«internal»
«allocate»
aControl_Surface_With_Trim
«internal» ) «Subsystem» «Subsystem,Abstract>,
" Coordinate Surface Move Control Surface —
Movement P
aPower_Subsystem
«nternal»
aControl_Surface_Retracting
«Subsystem» «Subsystem» «Subsystem»
Rotate Control Surface Rotate Trim Tab Extend Control Surface
aControl_Surface
wliocten «allocate» «allocate»
ACES_Control_Surface ACES_Control_Surface_With_Trim ACES_Control_Surface_Retracting

Figure 196: Allocation of subsystem use cases

Once these use cases are allocated to subsystems, they should be moved to
the packages holding the subsystem blocks. This allows each of these
packages to hold the specification of that subsystem. This organization will
be important later when we hand off these specifications to the subsystem
teams for further design and implementation. Be aware that the Move
Control Surfaces use case, being abstract, is not allocated and so can remain
in the SubsystemUseCasesPkg.

Now, for each subsystem, we draw one (or more) use case diagram to show
the set of use cases allocated to the subsystem, similar to Figure 193. Since
we’ve only done a little of the work, this diagram for the
ACES_ControlSurface will be a bit sparse. As we repeat this procedure with
other system level use cases, we’ll add other subsystem level use cases
here, such as Configure Movement, Perform Self Test, and so on which we

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 184



anticipate will be detailed later. This is shown in Figure 197. Some yet-to-be
identified use cases are shown, just to give you a hint of what might be
identified in further iterations. At this point, these other use case are
notional. Also note that the relations between Rotate Control Surface use

Case Study: Architectural Design

identifying the different relations (allocation to the subsystem and trace to
the use case).

[7] ACES_Control_Surface_UC_Regs_Matrix

From: Block, Class, UseCase _ Scope: ACES_Control SurfacePkg

ACES_Cortrol_Suface | Rotate Control Suface | Configure Movement | Perform Sef Test | Check Power | Check Hydrauiics

case and the actors are inherited because it is a specialization of Move

Control Surface use case.

O
Mission: Show the use cases
allocated to the
ACS_Control_Surface subsystem

«internal» T

«Subsystem»

Rotate Control Surface

\\
NG
N 7
aManagement_Subsystem «Subsystem>»
; 2 " Perform Self Test
«internal»
///‘
/'/
,~//
«include» «include»
™~ ~_ «Subsystem»

Check Power

aPower_Subsystem

L «Subsystem»

Configure Movement

o ©
To be defined in
later iteration

«Subsystem»

Check Hydraulics

«internal»

aHydraulics_Subsystem

Figure 197: ACES_ControlSurface Subsystem Use Cases

9.3.2.2 Allocate Requirements to the Subsystem Use Cases

Using the same matrix layout as in Section 9.3.1.5, we create a matrix view

of the requirements relevant to the ACES_ControlSurface subsystem.
The matrix view below shows the requirements allocated to the

ACES_ControlSurface subsystem and traced to its use cases (with Toggle

Empty Rows toggled off). Note the different iconic symbol in the cells

o
2 | [ACSCUNT requiremert,

J ACSCUNT _requireme

[ JACSCUNT _requirement_7

+/ ACSCUNT requireme

[E.|[{ ] ACSCUNT _requirement_10,

+/ ACSCUNT requireme.

+/ ACSCUNT requireme:

i J|ACSCUNT_requirement_12

o/ ACSCUNT requireme

[1]ACSCUNT requirement_13

/ ACSCUNT requireme.

1 JACSCUNT_requrement_T1
[ ACSCUNT requireme_1&

‘adoog

o ACSCUNT requireme.

1 JACSCUNT _requirement_15

+/ ACSCUNT requireme

1 JACSCUNT_requiremert_21

+/ ACSCUNT requireme.

2 |[LJACSCUNT requirement_24

+/ ACSCUNT requireme:

[ | ACSCUNT_requirement_25

o/ ACSCUNT requireme

[1]ACSCUNT requiremen_26

J ACSCUNT _requireme

(i DeriniRea_10

+/ DerlntReq_10

[ 7] DeriRea 11

o/ DerlntReq_11

[ DerintReq_i2

+/ DerlntReq_12

[ DerReaint_13.

+/ DerReqint_13

[ DerlrtReq_14

+/ DerlntRea_14

[17]DerfunReq 1

o/ DerFunReq_1

[i| DerCortigRea_T

+/ DeConfigReq_1

(i DerCortigRea_2

/ DeConfigReq_2

[ DerStartUpRea_1

+/ DerStatUpReq_1

[ DerStarupRea_2

+/ DerStattupReq_2

[i | DerStariupReq_3

/ DerStatupReq_3

[11]FuncRiea 25

/ FuncReg_25

[i|FuncRea_27

/ FuncReg_27

[ ] Funchiea 28

o/ FuncReq_28

17| FuncRea_29

+/ FuncReq_29

[ FuncRea_30

+/ FuncReq_30

[ ]FuncRea_36

o/ FuncReq_36

[11]FuncRiea_37

\/ FuncReq_37

[i]FuncRea_40

/ FuncReq_40

(1| Safety_Req_390202

+/ Safety_Req_390202

;] Safety_Req_390207

+/ Safety_Req_390207

(1| Safety_Req_390209

o/ Safety_Req_390209

(1| Safety_Req_350210

»/ Sefety_Req_390210

[17]Safety_Req 390211

o/ Safety_Req_390211

(i |Sety_Rea 380212

+/ Safety_Req_390212

[ ]Safety_Rea 390213

o/ Safety_Req_390213

(11| Safety_Req_390214

+/ Safety_Req 330214

(1| Safety_Req_390215

o/ Safety_Req_390215

(1| Safety_Req_350217

»/ Sefety_Req_390217

[17]Safety_Req 390218

\/ Safety_Req_390218

[13|SF=lyReq_006

\/ SafetyReq_006

. ACSCUNT_requireme.
. ACSCUNT _requireme...
. ACSCUNT _requireme...
. ACSCUNT _requreme.
. ACSCUNT Tequreme.
. ACSCUNT_requireme.
., ACSCUNT_requireme.
. ACSCUNT _requireme...
. ACSCUNT _requireme...
. ACSCUNT _requreme.
. ACSCUNT Tequreme.
., ACSCUNT_requreme.

., DerintReq_10

., DerfunReq_1

., FuncReq_25
., FuncReq_27
*, FuncReq_28
. FuncReq_29
. FuncReq_30
. FuncRea_36
., FuncReq_37
., FuncReq_40

., Safety_Req_330202
., Safety_Req_390207
., Safety_Rea_330203
., Sefety_Req_330210
., Safety_Req_330211
., Safety_Req_330212
., Safety_Req_330213
. Safety_Req_390214
., Safety_Req_330215
., Sefety_Req_330217
., Sefety_Req_330218
., SefetyReq_D06

. ACSCUNT_requre

., DerConfigReq_1
., DerConfigReq_2

*, Safety_Req_330202

., Safety_Req_330211
., Safety_Req_330212
., Safety_Req_330213

(1| ACES_S5_requirement_32 ES_SS_requiremen.. ", ACES_SS_requireme. “, ACES_SS_requi.
_55_requiemert_33 ) ACES_SS_requiremen... ., ACES_SS_requireme... . ACES_S5_requi
[111ACES_SS,_requirement_34 ) ACES_SS_requiemen... ., ACES_SS_requireme... . ACES_SS_requi

. DerlntReq_10
., DerlntReq_11
. DerlntReq_12

, DerStartUpReq_1
., DerStartupReq_2
., DerStartupReq_3

., DerlntReq_10

“ DerlntReq_12

|2 |[]DerntReq T +/ DerlrtReq_1 . DerlrtReq_1
[1]DerkntReq_2 +/ DerlntReq_2 ., DerintReq_2
[15]DerlntReq_8 +/ DerlntReq_8 " DeritReq_8 ™, DerintReq_8

“., DerhitReq_10
., DerhiReq_11

1] ErorRieq_3 o/ EnorReq_3 *., EmorReq_3

13| EmorRiea_26 / ErorReq_26 . EmorRea_26

[ ] EmorReq_27 +/ EmorReq_27 s EmorReq_27

[1§]ErorReq_28 +/ EmorReq_28 ., EmorReq_28

[1]ErorReq_23 +/ ErorRsq_29 ~, EmorReq 29

[£3] EmorReq_34 o/ EmorReq_34 ., EmorReq_34

17 EmorReq_35 o/ ErorReq_35 *., EmorReq_35

[1 3| Emorfiea_36 / ErorReq_36 . EmorRea_3

[ 3] EmorReq_37 +/ EmorReq_37 s EmorReq_37

[1§|ConfigReq_1 +/ CorfigReq_1 ~., ConfigReq_1

[15|CorfigReq_3 +/ CorfigReq_3 ., CorfigRsq_3

¢ 1] OtherfReq_0 o/ OtherReq_0 ., OtherReq_0 ., OtherReq_0 ., OtherReq_0 ., OtherReq_0 ", OtherReq_0
¢ 7] OtherReq_1 o/ OtherReq_1 *., OtherReq_1 *., OtherReq_1 *., OtherReq_1 ., OtherReq_1 ™, OtherReg_1

Figure 198: Requirements traces to ACES_ControlSurface use cases

You should also note that a number of control surface requirements —
specifically those related to trim tabs and extension/retraction — are not
represented here because they are allocated to the

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 185




ACES_ControlSurfaceWithTrim and ACES_ControlSurfaceRetracting
subsystems, respectively.

9.3.2.3 Define Subsystem Use Case Analysis Context

Let’s continue our focus on the ACES_ControlSurfaces subsystem use case
Rotate Control Surface. Here we will define some scenarios for the use
case.

Before we do that, we’ll need to create a place to hold the functional
analysis of the subsystem use cases that require it.

In the DesignSynthesisPkg > ArchitecturalDesignPkg >
ACESDecompositionPkg > ACES_ControlSurfacePkg create new
nested package, named FAPkg (for Functional Analysis Package).
Inside of the new FAPKkg, create a nested package for the analysis of
this specific use case, named RotateSurfacesPkg. It is in this
package that we will analysis this use case.

Case Study: Architectural Design

SRR ] -HarmonySE- AirSurface ControlSystem]
#-[J Components
=0 Packages
+tl ActorPkg
+E:I RequirementsAnalysisPkg
+E:I FunctionalAnalysisPkg
=-[ ] DesignSynthesisPkg
= Packages
—E:l ArchitecturalDesignPkg
- Block Definition Diagrams
Ex bE' Blocks
(22 Comments
(= Matrix Views
=[] Packages
=-f ACESDecompositionPkg
=I-ZJ Packages
-5 ACES_HydraulicsPkg
-5 ACES_PowerPkg
=1-f] ACES_Control_SurfacePkg
+bE| Blocks
(2 Comments
wl-(E Matrix Views
=~ Packages
_E':l FAPkg
=) Packages
+-57] RotateSurfacesPkg
+<bn Tags
[ Use Case Diagrams
=5 Use Cases
J;r---(:) «5ubsysterns Rotate Control Surface
';'"'C) «5ubsysterns Configure Movement
#- «Subsystern» Perform Self Test
= «5ubsystem= Check Power
+-2 «Subsystem= Check Hydraulics
+E:I ACES_Control_Surface_RetractingPlg
+] tl ACES_Control_Surface_With_TrimPlg
+§:| ACES_ManagementPkg
+t| WEBScenariosPkg
+E| SubsystemUseCasesPkg
+-[ Requirements Diagrams
+-£7 ArchitecturalAnalysisPkg
—EI InterfacesPkg
T--b" Events
+bE' Interface Blocks
+-] Packages
(33 Tags .
+tl CommonPkg ThIS hO|dS
e DataTypesPkg """
= Eﬁ.es YRt types used

-0 Settings

Figure 199: Package for analyzing the subsystem use case

Now we must add the use case context block diagram to this package, just
as we did for the system use cases. Although in this case, we'll need to do it
manually as the toolkit won’t help us here. Be sure that when you specify
the ports that you check the Behavior (all) and the Conjugated (actor blocks)
check boxes on the proxy port features dialogs. Since the Ports and
Interfaces wizard will create some of these ports later, you can defer adding
the ports and connectors until after you’ve run the wizard, if you prefer.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 186



Case Study: Architectural Design

In the DesignSynthesisPkg > ArchitecturalDesignPkg >
ACESDecompositionPkg > ACES_ControlSurfacePkg > FAPkg >

ibd [Package] RotateSurfacesPkg [Rotate Control Surface Use Case Execution Context]

pUc_Rotate_Control_Surface:iUc_Rotate_Control_Surface_aaRCS_ACES_Management

Use Case Block

«proxy» <Blodk»
pPower:iRotate_Power ~ Uc_Rotate_Control_Surface
pHydraulics:iRotate_Hydraulics

oo Actor Blocks o RotateControlSurfacesPkg package add a new component. Name
i - PRm“'R"mj:::“““ this component RCS_Component
aaRCS_Power 3aRCS_ACES_Management aaRCS_Hydraulics In the RCS_Component, add the packages to support the execution,
including the InterfacesPkg > DataTypesPkg package (we’ll need
p— this later)

=3 HarmonySEx AirSurfaceControlSystem
-] Components
=~ Packages
@£ ActorPkg
@£ RequirementsAnalysisPkg
#-f0 FunctionalAnalysisPlkg

o

Waiting |

T i . s
proxy L] DesignSynthesisPkg Component : RCS_Component in RotateSurfacesPkg @
£+ Packages
=57 ArchitecturalDesignPkg S
T \_‘E Block Definition Diagrams Genersl Scope  Varation Points  Description  Relations Tags  Properties
paaRCS_ACES_Management:~iUc_Rotate_Control_Surface_aaRCS_ACES_Management g Ef::‘mts Language: |C++ ~ | Fitter: |:|M
(2 Matrix Views O Al Bemerts
Interfaces Blocks 503 Packsges ® Selecied Bements
ey ME:::;:‘Q':P"‘“““P"Q & C] DesignSynthesisPkg ~
2-0 r . .
[ ArchitecturalAnalysisPi
<«interfaceBlocks «interfaceBlock> <interfaceBlock» -5 ACES_ HydraulicsPkg . Dmhnind:m;:‘;ﬁ'kgﬂ
iRotate_Power iRotate_Hydraulics iRotate_Manager G0 ACES PowerPkg . [1ACES
=5 ACES_Control_SurfacePkg .. [] ACESDecompostionPk
-2 Blocks > a
Values Values Values o N - (] ACES_Cortrol_Suface_RetractingPkg
ez Comments fl- (] ACES_Conttrol _Surface _With_TrmPkg
(] Matrix Views
- - £ [ ACES_Cortrol_SurfacePkg
Operations Operalions Operations - Packages ] ACES_Control_Suface
=63 FAPP'“! 5 (] Check Hydrauics
=T pieeges [ Check Power
=E1 RotateSurfacesFkg - [ Corfigure Movement
Instances LE Con =g
[ Components - ] RolateSurfacesPky i
1 itsAaRCS_ACES. :aaRCS_ACES, e samponent £ Perfor Self Tost
= - 2 = = 2 2 % connectors [ Rotate Control Suface
& Internal Block Diagrams & ACES. FydrmuicsPha
5[] Packages fi- [ ACES_ManagementPkg
&2 Parts
ma T, - [] ACES_PowerPkg
= Tags ) [] SubsystemlJseCasesPkg
- Use Case Diagrams i ] WaScenaiosPhg
b5 Use Cases "
pUc_Rotate_Control_Surface:iUc_Rotate_Control_Surface_aaRCS_ACES_Management Sproxys £ ACES_Control_Surface RetractingPkg S EEZ:‘:E:EEEWSF@
£ ACES_Control_Surface_With_TrimPkg d
il DetaTypesPkg S
£ ACES_ManagementPkg
i [ MergednterfacesPka
- +§0 WeScenariosPkg - [] SubsystemlnierfacesPkg
paaRC5_ACES_Management:~iUc_Rotate_Control_Surface_aaRCS_ACES_Management «proxy» &§7 SubsystemUseCasesPkg
i (] Requirements AnalysisPkg
= -C Requirements Diagrams v
1 itslic_Rotate_Control_Surface:Uc_Rotate_Control_Surface £ ArchitecturalanalysisPkg
pPower:iRotate_Power =-£7 InterfacesPkg L o
£ Packages w=B
#1-57 MergedinterfacesPkg cvMove_Tof
«proxy» =-57 DataTypesPkg proposed_pasition = params:
=2 Blocks ok = Check_Cmd_Range{prog
-2 Data Ty
«proxy» pHydraulics:iRotate_Hydraulics 5 g-r:;s pe State_Completon_1
“proxye pRotate:~iRotate_Power (= Types = -
- #-> ValueTypes
1 itsAaRCS_Power:aaRCS_Power ’ £3 SubsysteminterfacesPkg
«proxys pRotate:~iRotate_Hydraulics (2 Tags
1 itsAaRCS_Hydraulics:aaRCS_Hydraulics - EP:‘ FC‘”"""D"WQ
) Profiles
L Settings

Rename the component configuration Animate.
Set the Settings of the Animate configuration of the component to
support animation (use your own selected compiler though):

Figure 200: Rotate Control Surface Use Case Execution Context

We also need to add an execution component to support the simulation of
this use case.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 187



Compiler Switches: | $includeDirectaries $D efinedSymbols

$INST_FLAGS) $INCLUDE_PATH)

< >

Link Switches |$DML\nkEummand5&l $LinkerFlags ‘

[ Include Requitements as Comments in Code

Locate oK

Configuration : Animate in RCS_Componnt - B
~
Relations Tags Properties
General Description Intialization Settings Checks
Directory F:tw/ork_DocumentstHamor| | | B4 Uss Default
Libraries: [,
pddtiondl Soces [
StandardHeaderss | ||
Include Path, l:' /
Instrumertation
Instiumentation Mode: Arimation | | Advanced .
webify
Web Enabling Advanced
Time Madst ® Real O Simulated
Statechart Implementation: () Reusable @) Flat /
Enviranment Settings
Environment Coguin «| T Detaut
Buid Set Debug =

The structure of the current structure of the ACES_ControlSurface

subsystem packages looks like this:

Case Study: Architectural Design

=[5 Packages

[ DesignSynthesisPkg

BEj ArchitecturalDesignPkg

(2 Block Definition Diagrams
bg Blocks

[’DO Comments

Q Matrix Views

- Packages

=-FJ ACESDecompositionPkg
=1 Packages

-5 ACES_HydraulicsPkg
7157 ACES_PowerPkg
4] ACES_Control_SurfacePkg
=] lg Blocks

=Subsystem» ACES_Control_Surface
- Comments
-% Matrix Views use case block
=0 Packages

=-F3 FAPkg
=10 Packages
=] E‘J RotateSurfacesPkg

(2 Blocks
- Uc_Rotate_Control_Surface
-0 Components

Elﬁj RC5_Component
=0 Conflguratlons\
component

-5 Animate
&‘L connectors
=~ Internal Block Diagrams
(35 Rotate Control Surface Use Case Execution Context
-0 Packages
-7 RCS_InterfacesPkg
(-5 RCS_ScenariosPkg
E-EJ RCS_ActorPkg
=] bE' ActorBlacks
- 2aRCS_ACES_Management
E aaRCS_Power
=] aaRCS_Hydraulics
bn Parts

g Tags

[0 Use Case Diagrams

£ Use Cases actor blocks
571 ACES_Control_Surface_RetractingPkg
E:I ACES_Control_Surface_With_TrimPkg
E:I ACES_ManagementPkg

]Ej WEBScenariosPkg
]Ej SubsystemUseCasesPkg
[ Requirements Diagrams

Figure 201:

We can use any of the alternative methods from Figure 4 but we’ll continue
to use the Interaction-based approach. That means the next step is to

Current structure of the ACES_ControlSurface subsystem packages

define scenarios.

9.3.2.4

In this set of scenarios, there are some sub-activities that go one in parallel,
draw these as separate sequence diagrams references by the main

and we’ll
flows.

Define Subsystem-Level Scenarios

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 188




The first is that there are requirements ACES system to report the surface
positions on a periodic basis. This is passed down to the individual control

surface subsystems to report their own positions on a periodic basis.

sd [Package] RCS_ScenariosPkg [RCS Tmed Postin Report]

aaRCS_Power aaRCS_Hydraukcs 2aRCS_ACES_Management Uc_Rotate_Control_Surface
(=)

Subsystem

ACES_Control_Surface poveer «gontinuous> ~

Use Case: Rotate Control hoydrudc_pressine ScoruouRY >

Surface

Sub-behavior loop [unti disable || movement command received]

Updates the

ACES_Management subsystem DUH(TIME_TU_MEASURE_PQS)
periadically with curment position -

Preconditions getMeasured_Positon()

Subsystem is configured and in

an operational state <

herezaPostion(surfacelD, pos)
Post-conditions

ACES_Management subsystem
is updated with current position

Figure 202: Interaction fragment for Timed Position Report

Next, when the subsystem is operational but not currently responding to a
movement command, it must be performing stationkeeping. This means
that the system must periodically make small adjustments to the surface
position to keep that position correct even in the face of changing forces.

Here's that interaction fragment.

sd [Package] RCS_ScenariosPkg [RCS Stationkeeping]

:22RCS_Power | | :aaRCS_Hydrauics :aRC5_ACES_Management iic_Ratate_Control_Surface

o ! power “continuous? 4!

“continuous»

Subsystem: hydraulic_pressure

ACES_Control_Surface

Use Case: Rotate Control loop [unt disable || movement command received]
Surface

Sub-behavior:

Performs station keeping

(maintaining position)

Ejmfsrmommmsgmw)
jEIMEasurEd_PnsmnnO

Determine_Position_Error()

Precondition
Subsystem is configured and in
an operable condition

Post-condition
Position is maintained or error

is reported oot [position_error > SURFACE_POSITION_JITTER_TOLERANCE]

Adjust_Position{position_error)

Figure 203: Interaction fragment for Stationkeeping

Case Study:

Architectural Design

Now we can look at the main scenarios for this use case. The first, shows
what happens when the subsystem receives a valid movement command:

sd [Package] RCS_ScenariosPkg [RCS Rotate Surface Scenario 1]

:aaRCS_Power :3aRCS_Hydraulics

SubsystemlL

Name: Scenario 1

Description: loop
Receives command to mave

- - parzllel
to avalid position

Ref
Pre-conditions: =

Control surface is configured
and operational

Post-conditions:
Control surface successfully

maoved
Ref

(] «continuols»

ACES_Control_Surface (Dydradic_pressure | FRMMMONRR .

RCS Timed Pasition Repart

evMovement_Done(suffacelD, measured_position, elapsed_time)

:aaRCS_ACES_Management :Uc_Rotate_Control_Surface

[until disabled]

RCS Stationkeeping

evMove_To(sID, command_position)

Check_Cmd_Range (command_position)

Start_Movement Timer()

Move_To(command_position)
Stop_Mova:LﬁT\mer(}

getMeasured_Position()

]

Chede_Movement(command_position, measured_position, elapsed_time)

L]

Figure 204: Rotate Control Surface Scenario 1

The second main scenario shows what happens when a command value is

sent that is out of range:

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 189



Case Study: Architectural Design

sd [Package] RCS_ScenariosPkg [RCS Rotate Surface Scenario Z]

:aaRCS_Power :a3RCS_Hydraulics :aaRCS_ACES_Management :Uc_Rotate_Control_Surface
[}
SubsystemL ppower e SR >
ACES_Control_Surface
hydraulic_pressure o Senimweuss >

Name: Scenario 2
Description:
Receives command to move to loop [until disabled]
an invalid position Saraie]
Pre-conditions:

Ref
Control surface is configured
and operational

RCS Timed Position Report

Post-conditions:
Movement command rejected

Ref

RCS Stationkeeping
evMove_To(sID, command_position)
alt [Check_Cmd_Range(command_position) == FALSE]

evError(surfaceID, COMMAMND_VALUE_FRROR,|measured_position, command_position, 0)

[else]

Start_Movement_Timer()

Move_Tmfcummand |_positior))
swu_Movsﬁﬁmero

getMeasured_Position()

a

Check Movement({command_position, measured_position, elapsed_time)

a

evMovement_Done(surfacelD, measured_position, elapsed_time)

Figure 205: Rotate Control Surface Scenario 2

Note that the error passed in Scenario 2 comes from the ERROR_TYPE we

defined in the Start Up use case package.

(=]
SubsystemL
ACES_Control_Surface

Name: Scenario 3

Description:

Receives command to move to
avalid position but fails to
achieve it with the proper
accuracy or timing.

Also shows the processing of
ACES_Managment command
to go to a failed state or to
disable the control surface

Pre-conditions:
Control surface is configured
and operational

Post-conditions:

Control surface unsuccessfully
maved and the
ACES_Management
subsystem is notified

Handle the command
to go to a failed state

Handle the command
to go to a non-opera

:3aRCS_Power | | :3aRCS_Hydraulics :2aRCS_ACES_Management Uc_Rotate_Control_Surface
power . e S >
hydraulic pressure | seenueds> >]
paraliel
loop [until disabled or Failed]
parzllel [until movement command received]
Ref
RCS Timed Position Report
[until movement command recsived]
Ref
RCS Stationkeeging
evMove _To(sld, command_position)
alt, [Check_Cmd_Range(cammand_position) == FALSE]

evError{surfacelD, COMMAND_VALUE_ERROR,|measured_position, command_position, 0)

[else]
Start_Movement_Timer()

Mova;rfcnmmand |_position)
smp,Muveﬁnmar()

getMeasured_Position{)

L

Check_Movement(command_position, measured_gosition, clapsed_time)

L]

evMovement_Done(suffacelD, measured_position, lapsed_tine)

o, [Check_Movement{command_positon, measured_position, elapsed_time) == TRUE]

[else]
evError(surfacelD, POSITION_ERROR, measured_position, commanded_position, elapsed_tine)

evGoto_Failed_State()

Failed

evDisabled()

WARM

The last scenario in this set show what happens if either the commanded tronal state

position is not achieved with enough accuracy or if the command position is

achieved outside of the timing constaints: Figure 206: Rotate Control Surface Scenario 3

As before the error passed in Scenario 3 comes from the ERROR_TYPE
previously defined for the Start Up use case.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 190



Case Study: Architectural Design

9.3.2.5 Define Subsystem Ports and Interfaces Event : evMove_To in RotateSurfacesPkg o |
General Arguments Descripion Relations Tags  Properties
At this point the two different workflows join and proceed together. First, (evove o GataceiD o0, o) |
we’ll use the Create Ports and Interfaces tool of the SE Toolkit as before. =
Since the interface blocks are defined in the RCS_InterfacesPkg, the toolkit Nome — ol .
will update these interface blocks with the events. Then we’ll update the Ej siD SurfacelD
parameters of the events. i) cPos int v
) . . . . Locate oK
Go to each of the sequence diagrams in the previous section, right
click in the diagram and select Auto Realize All Elements. This will
add the elements to the model from the sequence diagram. Event : evError in RotateSurfacesPkg ~ B3
Right click the DesignSynthesisPkg > ArchitecturalDesignPkg > Genersl Aumerts Desciption Relations Tags  Propeties
ACESDecompOSitionPkg > ACES_ControlsurfacePkg > FAPkg > |evEm:|r (SurfacelD id, ERROR_TYPE emor, int mPos, int cPos, Second elapsed) |
RotateControlSurfacesPkg > RCS_ScenariosPkg and select SE- HEX TS
Toolkit > Ports and Interfaces > Create Ports and Interfaces Recusive Name Type Value A
Go to DesignSynthesisPkg > ArchitecturalDesignPkg > ::tfl id E::;:'?YPE
ACESDecompositionPkg > ACES_ControlSurfacePkg > FAPkg > B, rpos o
RotateControlSurfacesPkg > Events and add the parameters to the Ei) cPos int
. . 5 elapsed Second
events used in the sequence diagrams. = hd
Edit the event parameters as shown below. This may require using — -
the Select option in the Type drop down list to navigate to the high-
level InterfacesPkg > DataTypesPkg package.
Event : evMovement_Done in RotateSurfacesPkg - n
Event: herezaPosition in RotateSurfacesPkg - n sl Armerts |[Beseresml el 8 e B
|evM0vement_Done (SurfacelD sld, it mPos, Second elapsed) |
General Arguments  Description Relations Tags  Properties
=k ST
|herezaPos'rti0n (SurfacelD id, int mPos) |
= MName Type Value G
=k Tl &) sid SurfacelD
MName Type Value L ki) mPos int
=y id SurfacelD iy elapsed Second v
ki) mPos int v
. Locate oK
Locate oK

Last in this section, we must manually add the flows to the interface blocks,
since the AutoRealize All Elements will not realize either of the power and

pressure flows that begine each scenario. Note that they may (or may not)
affect the execution, but they are still an important interface that should be

specified.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 191




Right click on the aaRCS_Hydraulics actor block in the browser and
select Add New > Ports and Flows > Flow Property. Name this
property hydraulic_pressure (the default type of int is fine).

Right click on the aaRCS_Power actor block in the browser and
select Add New > Ports and Flows > Flow Property. Name this
property power (the default type of int is fine).

Add both power and hydraulic_pressure flow properties to the use
case block Uc_RotateControlSurface.

Add the pressure flow property to the interface block
iUc_RotateControlSurface_aaRCSHydraulics. Set its direction to in.
Add the pressure flow property to the interface block
iUc_RotateControlSurface_aaRCSHydraulics. Set its direction to in.
Set the stereotype of all of these flow properties to
«directedFeature»

-

Full Ports
General

[ Show Inherted

Proxy Ports Constraints Relations Tags Properties
Description Value Properties Flow Properties Operations
HEX

MName

B power Public int In
<New>

Visibility Type Initial Value Flow Direction

Flow Property : power in iRotate_Power X ﬂ

General Description Relations Tags  Properties

|irri power |

Name: [power | [ ebel
Stereotype:
Visibility: Public o

Atribute type
Use existing type v
Locate 0K

[drectedFeature v] &

U@|

Locate

0K

Case Study: Architectural Design

-

Full Ports Proxy Ports

General Deescription Value Properties

[ Show Inherited

Constraints Relations Tags
Flow Properties

Properties
Operations

HEX

Name Visibility Type
= hydrauli.. Public int
<Mews

Initial Value

Flow Direction

In

Flow Property : hydraulic_pressure in iRotate_Hydraulics *

General Description Relations Tags  Properties

|irvt hydraulic_pressure

Name: | hydrauiic_pressure

|| Lael..

Stersatyps [diectedFeature

~| %]

Visibility: Public

Attribute type
Use existing type
Locate 0K Apply

Locate oK

The features of the blocks and interface blocks should now look like Figure

207.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 192




Case Study: Architectural Design

=-{7 FAPkg

[ porkages 9.3.3 Derive Subsystem Use Case State Behavior

B--gj RotateSurfacesPkg

o 6B Blocks We can now construct the state machine for this subsystem use cases. In
[=! Uc_Rotate_Control_Surface

55 Flow Properties this case, we’ll build the ACES_ControlSurface subsystem use case Rotate
2 E «directedFeatures hydraulic_pressure . Y]
. @OEI directedFeatures power Control Surface state machine, but we have a few others that we’ve
erations
I getessre Postion) identified that we could use as an example, such as the ACES_Management

E Adjust_Position()

"E“MM’T“M“E'D JDint Pos subsystem use case Coordinate Surface Movement.
g

Check_Cmd_Range()

Start_Movement_Timer(]
E Move_To()

Stop_Movement_Timer()

= The figure below shows the state machine for the Rotate Control Surface
Check_Movement()

- B evGoto.Failed State() use case block:
EP evDisabled()
B2 Proxy Ports
pPower
~i&H pHydraulics
paaRC5_ACES_Management
[ Components
(=5 connectors evEnor(surfacelD, POSITION_ERROR, measured_postion, commanded_postion, elipsed_trme) to paaRCS_ACES_Management
= D Internal Block Diagrams
: Rotate Control Surface Use Case Execution Context
=7 Packages
-7 RCS_InterfacesPkg
2% Events [position_error < SURFACE_POSTTION_TOLERANCEY/
E-0E Interface Blocks - J | Adjust Poston(positon_error: &
=K iRotate_Power i
== Flow Properties Foiled
B «directedFeatures power

Waiting._for_Movement_Command

Waiting_to_Stationkeep felse)

‘bﬂ Tags
=E iRotate_Hydraulics

== Flow Properties

= «directedFeatures hydraulic_pressure

= Q iUc_Rotate_Control Surface_aaRCS_ACES_Management

15 Operations
i EP" «directedFeatures herezaPosition(SurfacelD id,int mPos)
ﬁt «directedFeature» evMove_To(SurfacelD sID,int cPos)
T «directedFeatures evMovement_Dene(SurfacelD sld,int mPos,Second elapsed)

T «directedFeatures evGoto_Failed_State()
& wdirectedFeatures evDisabled()
-7 RCS_ScenariosPkg
57 RCS_ActorPkg
62 ActorBlocks
& 2aRCS_ACES_Management
Operations
E}:' herezaPosition(SurfacelD id,int mPos)
T evMovement_Done(SurfacelD sld,int mPos,Second elapsed)
E}:' evError(SurfacelD id, ERROR_TVYPE error,int mPos,int cPos,5econd elapsed)
(2 Proxy Ports
= Q aaRCS_Power
== Flow Properties
power
= Prowy Ports
£+-E aaRCS_Hydraulics
Flow Properties
E hydraulic_pressure
(= Proxy Ports

&F’ Parts

ﬁ' «directedFeature» evError(SurfacelD id ERROR_TYPE error,int mPos,int cPos,Second elapsed)

Figure 207: Block features for the Rotate Control Surface use case

evGoto_Falled_State - |

(ST ATIONKEEPNG_INTERVAL)/
measured_position = getMeasured_Posivon();
position_emor = Determine_Position_Error()

State_Completion

Disabled
evDisabled
c
position_error < i
SURFACE_POSITION_JITTER_TOLERANCE] felse]

Waiting_to_Measure

t(MEASUREMENT_INTERVAL)/
measured_position = getMeasured_Position();

herezaPostion(surface D, measured_position) to paaRCS_ACES_Management

evMove_To/
proposed_position = params->cPos;
ok = Check_Cmd_Range(proposed_position);

State_Completion_t [eise]
" evemor(surfacelD, COMMAND_VALUE_ERROR, measured_position, comrmanded_poskion, 0) to paaRCS_ACES_Management
oKy

commanded_position = proposed_position;
Start_Movement_Timer();

Yorog ") MAX MOVE_TMEY
#  elapsed_ume = Stop_Movement_Timer();

Reaczonses measured_position = getMeasured_Positon();

‘evEror{surfacelD, COMMAND_VALUE_ERROR, measured_postion, commanded_pastion, 0) to paaRCS_ACES_Man:
3 Move_To{commanded_position);

/ elapsed_sme = Stop_Mavemert_Timer();
measured_positon = geteasured_Poston);
ok = Check_Movement(commanded_position, measured_position, elspsed_time);

State_Completion_2 1ok
{C | evMovement_Done(surfaceID, measured_position, elapsed_time) to pasRCS_ACES_Management

[else] _ evError{surfacelD, POSITION_ERROR, measured_position, commanded_position, 0) to paaRCS_ACES_Management

Figure 208: Rotate Control Surface use case block state machine

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 193



Because the image may be a bit small, here are two areas of the state evMove_To/ 7
machine zoomed in. First the Waiting_for_Movement_Command state:

dy: Architectural Design

proposed_position = params->cPos;
ok = Check_Cmd_Range(proposed_position);

Waiting_for_Movement_Command

Waiting_to_Stationkeep [else]
[position_error < SURFACE_PO SITION_TOLERANCE]/

; Adjust_Position{position_emror);

(ST ATIONKEEPMG_INTERVAL)/

measured_position = getMeasured_Position();

position_error = Determine_Position_Error();
State_Completion

|

-
[position_error <
SURFACE_POSITION_JITTER_TOLERANCE]

[else]

‘Waiting_to_Measure

L a—

tm(MEASUREMENT _INTERVAL)/
measured_position = getMeasured_Position();

herezaPosition(surfaceID, measured_position) to paaRCS_ACES_Management

evMove_To/
proposed_paosition = params->cPos;
ok = Check_Cmd_Range(proposed_position);

evError(surfacelD, POSITION_ERROR, measured_position, commanded_position, elapsed_time) to paaRCS_ACES_Managemeant

State_Completion_1 [el=e]

evError(surfaceID, COMMAND_VALUH

[ok]/
commanded_position = propesed_position;
Start_Movement_Timer{);

Maving 2) tm{MAX_MOVE_TIME)/

elapsed_time = Stop_Movement Timer();
Reactionses

measured_position = getl‘ﬂeasured_PositionQ o
gMwe_To(oommanded_posit\on];

| evGotn_Failed_state

/ elapsed time = Stop_Movement_Timer();
measured_position = getMeasured_Position();
ok = Check_Movement{commanded_position, measured_position, elapsed_time);

State_Completion_2
evDisabled

[ok]
] Z

and the part to its right:

[else] 1
evError(surfacelD, COMMAND_VALUE_ERROR, measured_position, commanded_position, 0) to paaRCS_ACES_Management
1
manded_position = proposed_positian;
rt_Mavement_Timer();

tm(MAX_MOVE_TIME)/
elapsed_time = Stop_Movement_Timer();

measured_position = gewleasured_Posian evErTor(surfacelD, COMMAND_VALUE_ERROR, measurad_position, commanded_position, 0) to paaRCS_ACES_Man:

and then the command processing part of the state machine:

© Bruce Powel Douglass 2017. All Rights Reserved

measured_position, elapsed_time);

[ok]

t_Done(surfacelD, measured_position, elapsed_time) to paaRCS_ACES_Management

[else]

evError(surfacelD, POSITION_ERROR, measured_position, commanded_position, 0) to paaRCS_ACES_Management

Before this can be executed, the following elements must be defined:
Constants

e STATIONKEEPING_INTERVAL
e MAX_MOVE_TIME
e MEASUREMENT_INTERVAL

Harmony aMBSE Deskbook 194



e SURFACE_POSITION_JITTER_TOLERANCE
e SURFACE_POSITION_TOLERANCE

The constants are just symbolic names used to represent important
unchanging values.

Value Properties
e SurfacelD surfacelD
e int measured_position
e int commanded_position
e int proposed_position (we’ll need this later...)
o Second elapsed_time (note: Second is defined in the SysML profile)
e bool ok

Value properties represent information that generally varies when the
system is operational.

Operations
e int getMeasuredPosition()
e void Adjust_Position(int pos)
e bool Check_Cmd_Range(int pos)
e void Start_Movement_Timer()
e void Move_To(int pos)
e Second Stop_Movement_Timer()
e int Determine_Position_Error()
¢ bool Check_Movement(int cPos, int mPos, Second elapsed)

Operations, for the most part, represent system or subsystem functions that
are important enough to be exposed at this level.

Defining the Constants

The constants are all relevant to the architecture and so will be stored in the
InterfacesPkg > DataTypesPkg package. The STATIONKEEPING_INTERVAL
is clearly needed to meet the stationkeeping requirements but its value is
not specified. This means that a requirement is missing — so in a real project,
we’d have to go back to the subject matter expert (or do experiments in the

Case Study: Architectural Design

lab) to determine the value and add it as a requirement. For our purposes,
we’ll do it every 800 miliseconds so we'll define it as the value of 800. In the
ValueType category in the InterfacePkg > DataTypePkg, add the item as a
Language Kind with the declaration

#define %s 800

In similar fashion, define MAX_MOVE_TIME as with the value 3000 (3
seconds) and MEASUREMENT_INTERVAL as the value 1000.

The constant SURFACE_POSITION_JITTER_TOLERANCE is there to
determine how big an error justifies a correction. This is not specified in the
requirements, so we’ll have to go back to our subject matter experts (or the
lab), determine a reasonable value, and add a new requirement. For our

purposes (simulation), we’ll just use the value +2:
#define %s 2

The constant SURFACE_POSITION_TOLERANCE is a larger value that means
that if the deviation is this much, then we need to raise an error. Our
subject matter experts need to weigh in the the actual value we need to

require but for our purposes here, we’ll use 4.
define %s 4

Defining the Value Properties

Simply add the numeric value properties to the Uc_RotateControlSurface
use case block using the default type (int) and assign a initial value of zero.
ok should be defined as a Rhpboolean. For the surfacelD value property,
we’ll need to type it properly and assign it an initial value. In this case, |
assigned the value Left_Inboard_Aileron.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 195



Value Property : surfacelD in Uc_Rotate_Control_Surface - n

General Description Relations Tags  Properties

|Surfac:eID surfacelD |

Name: |surfac:eID | Label...
Stereotype: | v| l53| U&|
Visibility: Public o

Attribute type

Use existing type

Type: |Surfac:eID in DataTypesPkg v| =]
Muttiplicity | 1 “ | Ordered

[ Constart [ Reference [ static

Initisl Value: [Left_Inboard Rileron |

Advanced
Redefines:

£ >
Locate oK

Defining the Operations

As before, it is important to remember that we’re implementing these
functions for the purpose of simulation support, not specifying the internal
design.

int getMeasured_Position()

The intent of this operation is to get the actual measured position. Since
we’re just simulating the system, here is would be usedful to add some
randomness, so we’ll include an implementation that adds a small random
value. Sometimes it will be enough to trigger stationkeeping movement but
not always.

Case Study: Architectural Design

Operation : getMeasured_Position in Uc_Rotate_Control_Surface - ﬂ

General Description  Implementation  Aguments Relations Tags — Propeties

int getMeasured_Position() |

int introducedError = rand() %100 ~
if (introducedError > 75)
return measured position + (rand() % 5) - 2Z:

else
return measured position;

Locate OK

void Adjust_Position(int posinc)

This just augments the reported measured position with an offset. This is
used to simulate and adjust when the measured position differs from the
commanded position.

Operation : Adjust_Position in Uc_Rotate_Control_Surface - n

General Description Implemertation  Argumerts Relations Tags — Propeties

|V0id Adjust_Postion{int posinc) |

measured postion += posInc: ~
£ >

Locate oK

bool Check_Cmd_Range(int pos)

To add this operation, we’ll also need to add two value properties to the use
case block to represent the low (low_position_limit) and high
(high_position_limit) set limits (actually set during configuration of the
subsystem). When you define these value properties, set their initial values
to -40 and 40, respectively. This function returns TRUE if the commanded
value is within the configured limits of the control surface.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 196



Operation : Check_Cmd_Range in Uc_Rotate_Control_Surface - n
~
Relations Tags Properties
General Description Implementation Arguments

RhpBoolean Check_Cmd_Range(int pos) |

return ( (pos >= low_position limit) && A
(pos <= high position_limit) ):

Locate oK

I

void Start_Movement_Timer()
We won't actuall time anything so this operation can have an empty
implementation.

void Move_To(int pos)

This operation simulates the movement of the control position to its
commanded position. Since we're not simulating the internal design, it is
enough to simply assign the commanded value to the measured value.

Operation : Move_To in Uc_Rotate_Control_Surface - n

General Description  Implementation  Argumerts Relations Tags — Propeties

void Move_Tolint pos) |

measured position = pos; -~

Locate OK

Second Stop_Movement_Timer()

This operation needs to return the time required for the movement to take
place. In this situation, we’ll just use a random number between 0 and 3100
and then divide it by 1000 to get the time in seconds (3.1 seconds). This
means that usually it will be in range but occasionally it will not.

Case Study: Architectural Design

Operation : Stop_Movement_Timer in Uc_Rotate_Control_Surface - n

General Description Implementation  Argumerts Relations Tags — Properties

Second Stop_Movement_Timer() |

return Second(rand() % 3100) / 1000: ~

Locate oK

int Determine_Position_Error()
This function returns the error between commanded and measured
positions.

Operation : Determine_Position_Error in Uc_Rotate_Control_Surface - n

General Description Implementation Arguments Relations Tags  Properties

int Determine_Position_Emor{) |

return commanded position - measured position; ~

< >

Locate oK

RhpBoolean Check_Movement(int cPos, int mPs, Second elapsed)
This function checks the success of the movement.

Operation : Check_Movement in Uc_Rotate_Control_Surface - :

General Description Implementation  Arguments Relations Tags  Properties

RhpBoclean Check_Movement{nt cPos int mPos, Second elapsed) ‘

return ( (abs(cPos - mPos) <= SURFACE POSITION TOLERANCE) && ~
(elapsed < MAX MOVE TIME) );

Locate QK

Instrumenting the aaRCS_ACES_Management Actor

In this execution model, the only subsystem actor block relevant is
aaRCS_ACES_Management, as aaRCS_Hydraulics and aaRCS_Power don’t
receive or emit events. Create the following state machine for the
aaRCS_ACES_Management actor block:

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 197



stm [Actor Block] 2aRCS_ACES Management [statechart 2]

Waiting
moveTheSurface
= evMove To{Left Inboard Aileron, pararms->pas) to pUc Rotate Control Surface
<
failTheSurface

_—
- evGoto_Failed_State to pUc_Rotate_Control_Surface

<

disableTheSurface

- evDisabled to pUc_Rotate Control_Surface

/N

evMovement_Done/
std::cout << "Movement Done with ID " << params->sld << " to position " << params->mPos
<< " with elapsed time " << params->elapsed << std::endl;

evError/
std::cout << "ERROR at surface " << params->id << " with error code " << params->emor
<< " measured pos=" << params->mPos << ", commanded pos= " << params->cPos <<
e ", elapsed time =" << params-> elapsed << std::endl;
herezaPosition/
std::cout << "Position update. Surface " << params->id << "at pesition " << params->mPos << std::endl;

Figure 209: aaRCS_ACES_Management actor block state machine

This will enable you to run the use case state machine by driving the actors
with the events moveTheSurface, failTheSurface and disableTheService.

9.3.4 Running the subsystem use case model
Compile and run the RCS_Component::Animate configuration that we
defined in Section 9.3.2.3.

Note: For the compilation to succeed, the events defined in the
InterfacesPkg should be in a subpackage (here there are in the
SubsysteminterfacesPkg. They cannot be in the InterfacesPkg directly if the
DataTypesPkg is a subpackage.

Case Study: Architectural Design

[=] E‘J InterfacesPkg

-0 Packages

£ MergedinterfacesPkg

E157 DataTypesPkg g
. B2 Blocks

- Data Types

%a Tags

(= Types

- ValueTypes

ElE:l SubsysteminterfacesPlg : —
E-ZF Events

BT reqEMABLE_Command()
i P hereza_Power_Status(Power_Status] ps)

i P hereza_Hydraulic_Pressure(Hydraulic_Status1 hs)
i P evlpdate_Positions(Surface_Positions sp)

i P evDisable()

- B evEnter_Operational_State()

o7 evEnable()
)
)
)
)

L)

-7 evPilotConfirmation()
™ evPilotRejection()
P evStartup()
P evSurfaceFault()
-1 Select_Battery_As_Source()
-7 evRequest_Power_Status(POWERSOURCE_TYPE source)
-7 evSelect_Battery_As_Source()
~ 1 Req_config_parameter()
~ P herezaConfiguration(SurfacelD id,Surface_Configuration_Type config)
~ P Command_To_Position(SurfacelD id,int pos)
~ P Update_Position(SurfacelD id,int pos,Second movement_duration)
-7 Select_Power_Source(POWERSOURCE_TYPE source)
- evRequest_Hydraulic_Status()
— Update_Power_Status(Power_Status] p_status)
-7 Check_Hydraullics()
-7 Update_Hydraulic_Status{Hydraulic_Status1 h_status)
-7 Request SW_Integrity Check()
-7 SW_Status(SurfacelD id,SW _Status sw_status_msg)
- evEnter WARM_State()
7 evEnter_Operating_State()
P evReport_Error(Error_Report * err)
™ evEnter_FAILED State()
bE' Interface Blocks

-5 E-E-E-E-E

Here is an example output scenario, first driving the movement to position
20 (legal) to position 80 (illegal) and then to position -10 (legal). There are a
number of other paths you should execute to ensure the quality of the
model and its requirements.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 198



Case Study: Architectural Design

132RCS_Power :@aRCS_Hydraulics 132RCS_ACES_Management :Uc_Rotate_Control_Surface

{m(300)

1

e

2

leasured_Position()

Determine_Position_Error()

0)

i il

2

etMeasured_Pasition()

herezaPosition(id = 8, mPos = 0)
evMove To(sID = 8, cPos = 20)

Ched:_Cmd_Range(pos = 20)

Waiting

Start_Movement_Timer()

Maving

Move_To(pos = 20)
smf Movement_Timer()
etMeasured_Position()

Check_Movement(cPos = 20, mPos = 20, elapsed = 0.562)

evMovement_Dpne(Eld = 8, mPos = 20, elapsed = 0.562)

evMove To(sID = 8, cPos = 80)

wwaitrg Check_Cmd_Range(pos = 80)

evError(d = 8, error [=-10, mPos = 20, cPos = 20, elapsed = 0)
evMove To(sID = 8, cPos = -10)

Chedk_Cmd_Range(pos = -10)
Waiting

Start_Movement_Timer()

Moving

Move_To(pos = -10)

t]

top_Movement_Timer()

fatﬂeasuredjnymnn

Check_Movement(cPos = -10, mPos = -10, elapsed = 1.5)

e

evMovement_Done(sld = 8, mPos = -10, elapsed = 1.6)
D:mfs
ietMeasured_PusmunO

Determine_Position_Error()

e

e

=]
=]

)

0)

fatﬂeasuredjnymnn

T_T;
5
g

herezaPosition{id = 8, mPos = -10)
Figure 210: Sample execution of the Rotate Surface subsystem use case model

These sequence diagrams can be converted to use the actual subsystem
elements using the technique outlined in Section 9.3.1.2 on page 171. To

Create an appropriate package within the WBScenariosPkg to hold the
copied sequences. Then, for each newly added sequence diagram

Copy the subsystem use case analysis sequence diagram to the
newly created package. Rename to add “WB” to the name to
indicate it is a white box (architecture-dependent) scenario.

Add the actual actors and subsystems to the diagram

Retarget each local use case actor block with the actual actor or
subsystem block (you can use the SE-Toolkit > Add Subsystems tool
to assist)

Change the source and target of the messages to reflect the real
elements involved (selecting the messages and use the left and right
arrow keys is the easiest way)

If there are referenced sequence diagrams used, be sure to update
the references to the copied and updated white box scenarios
Once complete, realize the messages on the converted sequence
diagram by right clicking on the diagram and selection Auto Realize
All Elements.

If you are now going to add the scenarios from the Rotate Control Surface
use case model, create the package DesignSynthesisPkg >
ArchitecturalDesignPkg > WBScenarios >
ControlAirSurfacesWBScenariosPkg to contain them (since the subsystem
Rotate Control Surface use case is derived from the system level use case
Control Air Surfaces).

If we do this for the sequence produced for the Rotate Control Surface use
case, we get a WBScenariosPkg structure that looks like this:

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 199



Case Study: Architectural Design

-3 «Harmony5Es AirSurfaceControlSystem
+-(] Components

Etl RequirementsAnalysisPkg

-57 FunctionalAnalysisPkg

=-§71 DesignSynthesisPkg

[0 Packages

=] Etl ArchitecturalDesignPkg

-3 Block Definition Diagrams

bg Blocks

(2 Comments

Q Matrix Views

=-C0 Packages

=-f7 ACESDecompositionPkg

Bl Packages

£ ACES_HydraulicsPkg

b ACES_PowerPkg

-5 ACES_Control_SurfacePkg
£7 ACES_Control_Surface_RetractingPkg
b ACES_Control_Surface_With_TrimPlg
b ACES_ManagementPkg
-E‘J WEScenariosPkg

B[ Packages

EIE:I StartUpWEBScenariosPkg

B~ Sequence Diagrams
D:D ‘Warm Restart WB

U:D Cold start all tests pass WEB
U:D Cold start Min Pos test fails WB
D:U Cold start Max Pos test and SW test fails WE
[0 POST tests ONLY pass WB
00 SW POST FAILS WE
ntrolAirsurfacesWBScenariosPkg

Sequence Diagrams

Control Air Surfaces Scenario TWEB

[H-E-E- -

o
og

-3

N
U:D Control Air Surfaces Scenario 2'WE
D:[I Control Air Surfaces Scenario 3 WB

B

- U:D Control Air Surfaces Scenario 4 WB
-5 SubsystemUseCasesPkg
[+1-() Requirements Diagrams
b ArchitecturalAnalysisPkg
-7 InterfacesPkg
-7 CommonPkg
H-[ Profiles
i) Settings

Control Air Surface Mormal Operation Fragment WE

0.1 Contral Air Surfaces Unflyable Error Fragment WB

Figure 211: White box architectural scenarios

Here is a white box architectural version of scenario 1 of the system use
case Control Air Surfaces. Compare to Figure 120 on page 94.

Use Case: Control Air
Surfaces

Scenario: Scenario 1 WB
Description

Normal operation, no
fauls.

Preconditions:

System has passed self-
tests without error
System s in an Inactive
condition (WARM state)

Post-conditions:
After cooling, the system

loop.

loop.

oop

goes to Inactive condition.

ACES_Management | | :ACES_Control_Surface ACES_Power ACES_Hydraulics “AMS Fiot_Display Aircraft_Hydrauics

<confinuous»

“Aircraft_Poner Maintziner

pawer

porer _scontinyous» .
<continuous» N it “CONBNUOUS® 7 by draulic_pressure

WARM

evEnter_Operational_State()

loop, [for all control surfaces]
Command_To_Position(sufaceID, 0)

Mave To(0)

faceID, messured_positi

Vmj}uynuns,nndjmmgns,«yah\e)

OPERATIONAL

evUpdate_State(OPERATIONAL)

funti isabled]

evUpdate_Positions{positions)

Move _Tofpositions)

[for all control surfaces]

Command To_Position(sufaceID, andpos)

Move To(andPos)

measured_positon,

Venjjasman,nndmmahnassﬁs,«yab\e)

evUpdate_Status(current_status)

evDisablel)

Cooling

Am(COOLING INTERVAL)

Inactive

{for all control surfaces]
Command_Te_Position{sufaceID, 0}

Mave To(0)

evlndate_State (INACTIVE)

[=]
Distribute power and hydraulic
pressure

Figure 212: White box version of Control Air Surfaces Scanario 1

Next, we can repeat this process for Scenario 2:

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 200




=]
Use Case: Control Ar
Surfaces

Scenario: Scenario 2

Description:

Normal operation, no
faults. System in
stopped, for less than
the cooling period, and
then restarted -
WHITE BOX

Preconditions:
System has passed
self-tests without
error. System is in an
Inactive condition
(WARM state)

Post-condiions:
After cooling, the
system goes to
Inactive condition.

ACES MMaregement | | tACES_Convol_Surface | | fACES_Power | | AACES_Hydraulcs s Piot Display | | :Araraft_Hydraulcs
N <corfipuous» oot
-
(f?f’?[‘???? T poy

“continuous»

hycraulic_pressure 7 | Distribute power
hydrauiic_pressu

g Pydraulic_presau and hydraulic
pressure
warM
evEnter_Dperational_State()
loop [for all control surfaces]
Command_To_Positon| (surFEEEID. 0)
Move To(0)

facelD, measured_position,
j«én,qununsjndjmmgﬁs,ﬁyable)

OPERATIONAL

evUpdate_State(OPERATIONAL)

=
Ref
Control A Surface Normal Operation Fragment W8
evDisable()
Codling Note that this s a canceled timeout; thisi
s because in this case the evEnter_Operat
fonal_State eventis received before the t
me ot elapses
[Cm(COOLING_INTERVAL)
-—— T
eventer_Operational_State)
Ref
Control A Surface Normal Operation Fragment WB
evDisable()
Cooing
M{COOLING _INTERVAL)
Toop, [for bl control surfaces]
Command_Ta_Position| [surfg:eID. 0)
Move To(0)
g facelD, measured_position,
vevﬁ«fumﬁuns,md,nmwngﬁs,ﬁyable)
Tnactve

evindate_State (INACTIVE)

Aircraft_Power

Maintainer

Figure 213: White box version of Control Air Surfaces Scenario 2

The white box version of the normal operation interaction fragment is

shown below:

Case Study: Architectural Design

sd [Package] ControlArSurfaces WEScenariosPkg [Contral Air Surfacs Nermal Operation Fragment WE]

{ACES Management | | :ACES Control Surface | | :ACES Paner | [:ACES_Hydraulics AV Fiot Display | [ shircraft_Fydraics | [ diraraft_Poner Maintainer
o Toop, {untl dsabied]
Scenario: Fragment of
normal operations for eVUpdate.
Control Ar Surface use case Move, To(positons)
Description:
Just shows normal flow Toop For 2l conral sarfaces]
while moving control
surfaces WHITE BOX Command_To_PositonisufageID, andPos)
Move To(andPas)
Preconditions
System has entered normal vMovermentDone (surfacelD, measLred_positon, elapsedTime))
control of air surfaces e
Verfy_Positions_And_Timing(is_fiyable)
- o
System is in the process of
terminating normal control
behavior evUpdate_Status(aurrent,_statis)
Invariants:
No errors are found
Figure 214: White box version of the Normal Operation interaction Fragment
<d [Package] [Contral Air 2ug]
ACES Management | | :ACES Conrol Surface | | :ACES Power | | ACES_Fydrauics A5 Fiot_Depisy Aicraft_Hyrauics | | cArcraft_power Mantainer
FaLED
evEnter_Operational State()
=]

Use Case: Control Ar
Surfaces

Scenario: Scenario 3 WHITE
BOX

Description
POST failed. Cannot start.

Precondtions

System has failed self-tests.
System is in an Inactive
condition (FAILED state)

Post-conditions
System remains in FAILED
state.

Check_For_Errors()

‘eveEport_Error (error_status)

FALED

The last scenario is Scenario 4 in which unflyable errors are discovered.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 201




Case Study: Architectural Design

Use Case: Control Ar
Surfaces

Scenario: Scenario 4
WHITE BOX

Description:
Unfiyable error occurs
during fight ops

Precondtions:
System has passed self-
tests. System & n an
WARM condtion but not
operational

Post-condtions:
System transtons to a
FAILESAFE state

ACES_Management

“ACES_Contral_Surface

WARM

locp,
(Cammand_To_Position(su faceID, 0)

Move_To{n)

ACES_Pomes

CACES Hytraulcs | | IsUc_ConrolArSurfaces AMS Plat_Dieplay hircra_Hydaics “Arcraf_Power

evEnter_Operatonsl_State()

[for al coniral surfaces]

-
evMavermentDons{surfacelD, messured_position, elspsedTime])

CPERATIONA

EVUbdate_SISUE{OPERATIONAL)

Rt

FALLSAFE

evUndste_State{F AN SAFE)

FALED_JNACTIVE

Contrel A Suréaces Unhyatie Error Fragment W8

purposes with the actual actors.

Figure 215: White box version of Scenario 4

Finally, the details of the white box version of the unflyable interaction
fragment are shown in Figure 216.

Descrption:
During fight ops, & timing
or postion error that
results n an unfiyable
arumstances arses

Precondbons:
System has entered
normal control of ar
surfaces

Post-condiion:
System enters faled
state.

Invariants:

Unf,

ACES_Haragemert | | tACES Contro e
porsiel
= oo
Scenaro: Fragment of
faied operations for
Control Ar Surface use Move_Toipositions)
case WHITE BOX
-

Command_Te_Pesitin{aunfpceID, amePes)
Mae Tofomdos)

Verify_Posisors_tnd_Twminglls_Syabie)
-
evpdate_Status(ourent_status)
ot

ezt e

evDspiay_Sta

rabe condson detected

eRepot Ervorlermel_statis)

iy Statua(enor_stats)

CACES_Pamer

CACES Hydracs | | iisUc_ControAirsufaces S Fiat_Deiay Arcraft_Hydraudcs Arcaft_Paser

el dhzabled OR Unflystie_Frror_Detected()]
evtate_Positions{posiors)

o ol comtrel srfaces]

-
re(ourfacelD, messured_poston, elesedTing))

ntyable_Eror_Detected(]

fort 1 power_good OR | prezure_good)]

Chok_Pawer(power goad)

e “cantruous: hydrauke pressure

(Ched: piycravic_re:
-

Iovessure_oood OR ‘oresaure_good)

Maintarer

You will also need to do this for any subsystem use cases case well. Here is
the white box architectural version of the Rotate Control Surface scenario 3
from Figure 206. This replaces the stand-in actors used for simulation

UnBysbie conditon detected

Figure 216: White box version of the unflyable interaction fragment

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 202



Case Study: Architectural Design

:ACES_Control_Surface :ACES_Power “ACES_Hydraulics :ACES_Management

confnuoss e

aullc_pressufgontinuous>
parallel

o loop [until disabled or Failed]
iébé%’ 5230”;:'[0‘ Surface parallel [until movement command received]

Ref
Name: Scenario 3 *with actual
actors™

RCS Timed Position Repért

Description:
Receives command to move to a
valid position but fails to achieve it
with the proper accuracy or [unitl movement command received]
timing.

Ref

Also shows the processing of

ACES_Managment command to RCS Stationkeeping
go to a failed state or to disable

the control surface

Pre-conditions:
Control surface is configured and
operational alt [Check_Cmd_Range(command_position) == FALSE]
evError(surfacell, COMMAND_VALUE_ERROR, measured_position, command_position, 0)

Post-conditions:

Control surface unsuccessfully
moved and the
ACES_Management subsystem

is notified [else]

Start_Movement_Timer()

Movejmicnmmand _position)
smu_Muusﬁﬂmaro

getMeasured_Position()

Chedk_Movement{command,_position, measured_position, elapsed_time)

opt, [Check_Movement(command_position, measured_position, elapsed_time) == TRUE]

evMovement_Done(surfaceD, measured_position;, elapsed_time)

[else]

evError (surfacelD, POSITION_ERROR, measured_position, commanded_position, glapsed_time)

evGoto_Faied_State()

Handle the command
to go to a failed state

Failed
Handle the command evDisabled()
to go to a non-opera
tional state VWARM

sd [Package] ControlairSurfaces\WBScenariosPkg [R.CS Timed Position Repaort WE]

:ACES_Management :ACES_Control_Surface {ACES_Power ACES_Hydraulics
=]
Subsystem:
ACES_Control_Surface scontinuous» e |
Use Case: Rotate hydravlic_pressure | “confinuous=

AR fese S | e

Control Surface
Sub-behavior:
Updates the loop [until disablel || movement command redeived]
ACES_Management tm(TIME_TO_MEASURE_POS)
subsystem periodically

with current position

*with actual actors® etMeasured_Position()
Preconditions: i‘

Subsystem is

configured and in an hegaposiﬁon surfacelD, pos)

operational state

Post-conditions: [}
ACES_Management

subsystem is updated

with current position

Figure 218: Architectural version of Timed Position Report interaction fragment

Figure 217: White box Rotate Control Surface use case scenario 3

The similarly updated referenced interaction fragments are shown below.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 203



sd [Packaage] ControlairSurfacesWBScenariosPkg [RCS Stationkeeping WE]

:ACES_Management :ACES_Control_Surface 1ACES_Power :ACES_Hydraulics

()
Subsystem: loap [until disable || movement command received]

ACES_Control_Surface

tm(STATIONKEEFING _INTERVAL)
Use Case: Rotate Control
Surface

etMeasured_Position()
Sub-behavior:
Performs station keeping
(maintaining position) *with

Determine_Position_Error(]
actual actors®

Precondition:
Subsystem is configured and in onk

Al [position_error > SURFACE_POSITION_JITTER _TOLERANCE]
an operable condition

Adf’ustﬁPosiﬁon{posiﬁonferror}

Figure 219: Architectural version of the Stationkeeping interfaction fragment

Post-condition:
Paosition is maintained or error is
reported

Note that the lifelines are the actual subsystems and not the original local
stand-ins used for the functional analysis of the subsystem use case. Also
notice that the referenced sequence diagrams on Figure 217 reference the
newly created and modified copies of those interaction fragments, not the
original.

9.4 C(Create/Update Logical Data Schema

In this task, we will be creating the architectural data and flow schema for
the architecture. This schema must take into account all the analyzed use
cases as well as the specified architecture. This step is crucial because it will
be a hugely important input into the definition of the system interfaces,
performed in Section 9.5.

The good news is that many of the data types can just be copied, renamed
and used from these previous analyses. The bad news is that we cannot just

Case Study: Architectural Design

reuse the data schema diagrams, as they will refer to the original (and use-
case specific) types. These diagrams must be manually recreated in the
project-level TypesPkg. In addition, as we define additional use cases, we
are likely to identify data types that must be (manually) merged because
they must take into account multiple use cases and additional
requirements.

Reusing System Functional Analysis Types

First, let us consider the types that can be directly reused from the system
functional analysis. The previoius task of merging the functional analysis
moved many — if not all — of the types.

As a default, you can create diagrams with the same organization of
elements as the original data schema diagrams (as block definition
diagrams, of course) but using the new system types instead of the original
types from the functional analysis. Compare Figure 128 with Figure 220,
below.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 204



bad [Package] TypesPkg [System Position Schemal]

aBlocks
SurfacePositions

Vales

Operations
= getsurfa facelDType):CAS_SurfacePosition
= setsurfacePasition (d:SurfaceIDType, pos:int):vaid

|l setSurfacelD(d:SurfaceIDType) void

[ setSurfaceRange(id:SurfaceIDType lowsint, hightint):void
= istnRange (id:SurfacelDType, postint):RhpBoolean

| seteasuredposition(id: SurfaceIDType, postint):void

Valzes

= status:SystemOperationalstate

Values
= surfacelD:SurfacslDType
= measuredPosition:int
= commandedposition:int
= timeToMove:int
= tmeOfFailure:TimeDateType
= tmeOfMeasurment: TimeDateType
= isFunctional:RhpBoolean

o

Missian:

positions

Operstions

=l setTmeToAchiever facelDTyp ) svoid
= srfacelDTyps pt
_depricated» facelDType, faultyalue:RhpBo
NUMBER_OF_SURFACES
S“:;: <Blocks
SurfacePosition

values

5 surfaceID:surfaceDType
= pasition:int
= lowRange:int

= tmeToAchievePasition:Second
= hasFauit:RhpBoclean=FALSE

Cperstions
= highRange:int
[ measuredPosition:int
“Blocke
SurfacePositionStatus

Show the logical data types related to surface

“Blocks
Swstatus
Values
= cre:unsigned int
= hasFaults:bool
= versioniDaunsigned long
= LoadDate:TimeDateType

LLLLOLLLOOLLLOOLLLOOLLCLOOLCLOOCOCE

osaTyes
SurfaceIDType
Enumerstioni terais
Left_Ground_Spoiler
Right_Ground_Spoiler
Left_Fiight_Spoiler
Right_Fiight_Spoer
Upper_Rudder
Lower_Rudder
Left_Elevator
Right_Elevator
Left_Inboard_Aileron
Right_Inboard_Aieron
Left_Outhoard_Alleron
Right_Outhoard_Aileron
Left_Inboard_Wing_Flap
Right_Inboard_Wing_Flap
Left_Cuthoard_Wing_Flap
Right_Outboard_WWing_Fiap
Upper_Rudder_Trim_Tab
Lower_Rudder_Trim Tab
Left_Elevator_Trim_Tab
Right_Elevator_Trim_Tab
Left_Inboard_Allieron_Trim_Tab
Right_Inboard_Aileron_Trim_Tab
Left_Outboard_Aileron_Trim_Tab
Right_Outboard_Aileron _Trim_Tab
Left_Inboard_Wing_Flap_Trim_Tab
Right_Inboard_Wing_Flap_Trim_Tab
Left_Outboard_Wing_Flap_Trim_Tab
Right_Outboard_Wing_Flap_Trim_Tab
Left_Leading_Fdge_Flap
Right_Leading_Fdge_Flap
Left_Leading_Edge_Slat
Right_Leading_Edge_slat
Left_Leading_Edge_Flap_Extender

©¥Right_Leading_Edge_Flap_Extender
©Eleft_Leading_Edge_Slat_Extender
©3Right_Leading_Edge_Slat_Extender

Bk
SurfaceConfiguration
Values
= id:SurfaceIDType
= minimumPos:int
= maximumPos:int

ety

qualified

Tags

4=1Bit_Layout:RhpSiring
iZIMax_Latency:RhpString
Prahibited_Values:Rhpstring
IRange _High:RhpString
#=IRange_Low:RhpSiring
4=15pace_Complexity:RhpString
ilacauracy:Rhpstring
predsion:RhpString

e —
NUMBER_OF_SURFACES

e —
TimeDateType
Attributes

= «valueProperty» date:Rhpstring
= <ValueProperty» time:RhpString

DTy
SystemOperationalState
Enumerationtiterals
©FOPSTATE_OFF
2 OPSTATE_BIT
S OPSTATE_OPERATING
E0PSTATE_COLD
&£ OPSTATE_COOLING
O OPSTAE_WARM
2 OPSTATE_FAILED
S OPSTATE_DEGRADED
<OPSTATE_FAILSAFE

Figure 220: System Data Schema for control surface positions

We must also replicate the Start Up Data Schema diagam (Figure 80) using
the elements in the InterfacesPkg > DataTypesPkg (Figure 221). Again, this
means updating all references to the types used in the use case functional
analysis and replacing them with references to their counterparts in the
DataTypesPkg. This includes the types referenced with relations

(composition and dependency in this case) and the types used to specify the

attributes and value properties.

Case Study: Architectural Design

wBlocke
ErrorLog

Valves

«Blocke
TestLog

Valves

Cpperations

bdd [Package] TypesPkq [Start Up Data Schema]

pE—

wBlocks
ErrorReport
Values
= error:ERROR_TYPE
= dateTime: TimeDateType
[ surfacelD:SurfacelDType

H source:POWERSOQURCE_TYPE

Operations

lsage»

P —
TimeDateType

-—

«Blocks

PowerStatus

Vales

= voltage:volt=120
=] amperage: Ampere=10
= hasFaults:RhpBoolean=FALSE

Operations

wBlocks
TestOutcome

Values
[ testID:TEST_TYPE
= dateTime:TimeDateType
= pass:RhpBoolean
[ surfacelD:SurfacelDType

PR —
ERROR_TYPE

EnumerstionLiterals

&ENO_ERROR
4 2POSITION_ERROR
4 TIMING_ERROR

.-+7| ©IPOWER_LEVEL_ERROR

e <»EPOWER_SOURCE_ERRCR

< EHYDRAULIC_PRESSURE_ERROR

£ EHYDRAULIC_PRESSURE_HIGH_ERROR
4 EHYDRAULIC_PRESSURE_LOW_ERROR
EHYDRAULIC_ACCURACY_ERROR
<E5W_INTEGRITY_ERROR

<5 COMMAND_VALUE_ERRCR

<5 COMMAND _VALIDATION_ERROR

=DalaTypes
:_\E POWERSOURCE_TYPE

Enumerationi iterals
<ENO_POWER_SOURCE
<3BATTERY_SOURCE
$EAPS_SOURCE
©EALTERNATOR_SOURCE
3 0THER_SOURCE

wBlocks

HydraulicStatus

Values

E pressure:Pascal=32000
[ hasFaults:RhpBoolean =FALSE

Operations

= DtaTyme=
TEST_TYPE
Enumerstionlferals
$ENO_TEST
EMIN_TEST
<EMAX_TEST
< EPOWER_TEST
$EHYDRAULIC_TEST
85w _INTEGRITY_TEST

Figure 221: Start up use case architectural type schema in TypesPkg

Reusing Types from Subsystem Use Case Analyses

Now, let’s look at the types who structure and content were identified

during the analysis of subsystem use cases.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 205




In this case, no new types were identified in the subsystem use case analysis
no nothing must be added for the schema.

9.5 Define / Merge System Logical Interfaces

System logical interfaces include both subsystem-actor and subsystem-
subsytem interfaces. These will ultimately come from the system use case
functional analysis for use cases not decomposed, or from the detailed
analysis of the subsystem use cases for those use case which are
decomposed. These are the logical interfaces between these contextual or
architectural elements and will be captured as interface blocks. Physical
interfaces will be derived from these in the Handoff Worflow, which is
described in detail in Section 10.

If we've done a good job in defining the white box scenarios, then they
contain all the information we need. It is important to not only identify the
events that get passed around the archtictural element; we must also
identify and characterize the data they carry and any separate flows not
carried by events. This means that it is crucial that this information be
provide in the sequence diagram and the types (identified in the previous
section) be fully specified in all their logical glory.

Note that the Create Ports and Interfaces tool creates the events as directed
features in the interfaces but does not necessarily include all the types
(depending on how the sequences from which the interfaces were derived
were created). You must review these identified services thorough to
ensure they are complete with data types.

Right click on the DesignSynthesisPkg > ArchitectureDesignPkg >
WBScenariosPkg and select SE-Toolkit > Ports and Interfaces >
Create Ports and Interfaces Recursive

Case Study:

Architectural Design

Features..
Entire Model View ~ Add New

Cut

Copy

Delete from Model

Set Stereotype

Change to

Refactor

Edit Order of Types
Navigate

Browse Hierarchy

Refresh inferred

Unit

Configuration Management
Check Model

Spell Check

Generste Code

Edit Code

Rounduip

Fermat..

Calculate ATG Requirements Coverage Summary
Rational Rhapsady Gateway
SyshiL

SE-Teolkit

Debug

Design Manager

L Pa
+-L) ACESDecor Apps
5 T ey

CtrieX.
Cul-C

D4l

Exportto New Model

Ponts and Interfaces 5 CreatePors and Interfaces

Add Hypertinks »  Create Ports and Intesfaces Recursive
Add Dependencies » Conversion

Architgcture Tools I

Look at the created interface blocks in the InterfacesPkg:

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 206




=-§ InterfacesPkg
=~ Packages
+ tl MergedinterfacesPkg
+tl DataTypesPkg
—EI SubsystemlnterfacesPkg
+1D\=> Events
5-{2 Interface Blocks
= Q iACES_Power_Aircraft_Power
=8 Operations
B =directedFeatures evSelect_Battery As_Source()
EP «directedFeatures Select_Power_Source(POWERSOURCE_TYPE source)
EP «directedFeatures evRequest_Power_Status(POWERSOURCE_TYPE source)
#-Efr «directedFeatures hereza_Power_Status(Power_Status1 ps)
= Q IACES_Management_AMS
=-(8 Operations
Ef «directedFeatures evEnter WARM_State()
+ Ef «directedFeatures reqENABLE_Command()
B «directedFeatures evEnter_Operating_State()

il «directedFeatures evReport_Error(Error_Report * err)
ikl «directedFeatures evEnter FAILED State()
+ EP «directedFeatures evEnter_Operational_State()
+ kP «directedFeatures evlpdate_Positions(Surface_Positions sp)
+- adirectedFeatures evDisable()
E Q IACES_Management_ACES_Power
== Operations
EP «directedFeatures Select_Battery_As_Source(]
+I=P «directedFeature= Update_Power_Status(Power_Status? p_status)
ikl «directedFeatures Request_SW_Integrity_Check()
+-Ef adirectedFeatures SW_Status(SurfacelD id, SW_Status sw_status_msg)
= Q IACES_Management_ACES_Control_Surface
=8 Operations
Ef «directedFeatures Req_config_parameter()

EP" «directedFeature= Command_To_Position(SurfacelD id,int pos)
4-gfe «directedFeatures Update_Position(SurfacelD id,int pos,Second movement_duration)
&P «directedFeatures Request_SW_Integrity_Check()
- kP «directedFeatures SW_Status(SurfacelD id SW_Status sw_status_msg)
= Q IACES Hydraulics_Aircraft_ Hydraulics
=8 Operations
B «directedFeature» evRequest_Hydraulic_Status()
4"&? «directedFeatures hereza_Hydraulic_Pressure(Hydraulic_Status1 hs)
= Q IACES_Management_ACES_Hydraulics
—@ Operations
‘&P adirectedFeatures Check_Hydraullics()
+ kP «directedFeatures Update_Hydraulic_Status(Hydraulic_Status1 h_status)
Ef «directedFeatures Request SW_Integrity_Check()
+-Ef «directedFeatures SW_Status(SurfacelD id,SW_Status sw_status_msg)

+ g Tags

* B «directedFeatures herezaConfiguration(SurfacelD id, Surface_Configuration_Type config)

Walk through these interface blocks and ensure that for each

service the parameter list matches the sequence diagram call. For

example, in the figure above the following events are missing

parameters that will need to be added (by editing the referenced
events (not the event receptions)). You can find the appropriate

parameter lists be going to the originating white box scenarios in
the WBScenariosPkg. This must be done for all interface features
generated using the “bottom up” approach discussed earlier. You

Case Study: Architectural Design

may find that you need to create new types such as
SurfaceConfiguration and SWStatus.
o iACES_Management_ACES_ControlSurface
= Command_to_Position()
= Updated_Position()
= herezaConfiguration()
= SW_Status()
o Inthe case of the Command_To_Position() event reception,
the following parameters should be added:
= id: SurfacelDType
= pos:int
o Also identify misspellings and merge together any features
that are synonymous. For example in the
iACES_Management_ACES_ControlSurface there is both a
Command_To_Position() and Command_to_Position()
event reception that differ only in the case of the _to_ part
of the name. These are clearly meant to be the same.
Delete the one with the lower case “_to_". Also delete the
corresponding event reception from the
ACES_ControlSurface subsystem block.

Add any flows on the diagrams as flow properties to the appropriate
interface blocks. In the case, add the following flow properties
o A flow named power from the ACES_Power subsystem to
the ACES_ControlSurface subsystem,defined as of type
Ampere (from the SysML profile).
= Add this to the iACES_Management_ACES_Power
interface block.
= Stereotype this flow as a «directedFeature» with a
direction of in.
= Add the flow property to both the ACES_Power
and ACES_ControlSurface subsystems
o A flow named hydraulic_pressure from the
ACES_Hydraulics subsystem to the ACES_ControlSurface

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 207



subsystem defined as being of type Pascal (from the SysML
profile).

= Add this to the
iACES_Management_ACES_Hydraulics interface
block.

= Stereotype this flow as a «directedFeature» with a
direction of in.

» Add the flow property to both the
ACES_Hydraulics and ACES_ControlSurface
subsystems

Add a flow from the actor Aircraft_Power to the
ACES_Power subsystem.

=  Name this flow power.

= Add it to the iIACES_Power_AircraftPower interface
block.

= Stereotype this flow as a «directedFeature» with a
direction of in.

= Add the flow property to the Aircraft_Power
actor

Add a flow from the actor Aircraft_Hydraulics to the
ACES_Hydraulics subsystem.

=  Name this flow pressure.

= Add this flow to the
iACES_Hydraulics_Aircraft_Hydraulics interface
block.

= Stereotype this flow as a «directedFeature» with a
direction of in.

= Add the flow property to both the
Aircraft_Hydraulics actor

Add a new block diagram to add the new ports connecting
the ACES_ControlSurface, ACES_Power and
ACES_Hydraulics subsytems. This is because the Create
Ports and Interface wizard did not create these interface
because there is only flows between these subsystems and
no events.

Case Study: Architectural Design

In the DesignSynthesisPkg > ArchitectureDesignPkg
> ACES_DecompositionPkg add a new block
definition diagram name ACES Flow Connections
Drag the ACES_ControlSurface, ACES_Power and
ACES_Hydraulics onto the diagram

Add proxy ports and interface blocks, as shown in
Figure 222

bad [Package] ACESDecompositionPkg [ACES Fiow Connections|

1

1=

Mission: Show the continuous flows in the
ACES architecture to the
ACES_Control_Surface and

ACES Management subsystems

itSACES_Hydraulics:ACES_Hydraulics
Valses
= hydraulic_pressure:Pascal

<intefaceBlock> “intefaceBlock- <interfaceBlock>
IACES_Management_ACES_Power IACES_Control_Surface_ACES_Power IACES_Control_Surface_ACES_Hydraulics

Vlues

lues e’ Values
= out power(Out):ampere = 1n power(in):Ampere = In hydrauiic_pressure(in):Pascal

Operstions Operstions Operstions

! itsACES_Control_Surface:ACES_Control_Surface
Values

= In power(In):Ampere
roxy “proxys
pControl_Surface:n~ic_ControlAirSurfaces_aCAS_AircraftPower 5 In hydraulic_pressure(in):Pascal

pHydraulics:iUic_ControlAirSurfaces_aCAS_Airaraft_Hydraulics

PPowersiACES_Control_Surface_ACES_Power

proxy»

pControl_Surface: ~ACES_Control_Surface_ACES_Power itSACES_Management:ACES_Management

= power:Ampere
Fproxy> aproxys|
DACES_Management:iACES_Management_ACES_Power

PACES_Power:~ACES_Management_ACES_Power

Figure 222: Architectural Flow interfaces and Connections

Move (not copy) the newly created interface
blocks from the DesignSynthesisPkg >
ArchitectureDesignPkg > ACES_DecompositionPkg
package to the InterfacesPkg.

Once this is all done, the updated interface blocks features should be
updated with parameters and types and look like Figure 223.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 208




EIE:I InterfacesPkg
-2 Packages
i1 MergedinterfacesPky

E:I DataTypesPkg

Bb SubsystemninterfacesPkg
g Events
E|[§ Interface Blocks

=

&

£

Zla[gn Tags

Q IACES_Power_Aircraft_Power

== Flow Properties

. [~ sdirectedFeatures power

-8 Operations

----- B «directedFeatures evSelect_Battery As Source(]

""" B «directedFeatures Select_Power_Source(POWERSOURCE_TYPE source)
""" B «directedFeatures evRequest_Power_Status(POWERSOURCE_TYPE source)
[P sdirectedFeatures hereza_Power_Status(Power_Status1 ps)

E] iACES Management AMS

E-(= Operations

""" B «directedFeatures evEnter WARM_State()

[-gP «directedFeatures reqENABLE_Command()

""" B «directedFeatures evEnter_Operating_State()

""" B «directedFeatures evReport_Error(Error_Report * err)

""" B «directedFeatures evEnter_FAILED State()

[P «directedFeatures evEnter_Operational_State()

[-gP «directedFeatures evlpdate_Positions(Surface_Positions sp)

(- «directedFeatures evDisable()

Q IACES_Management_ACES_Power
=]

(= Flow Properties
- adirectedFeatures power
-8 Operations
----- B «directedFeatures Select_Battery_As_Source()
[P «directedFeatures Update_Power_Status(Power_Status1 p_status)
""" B sdirectedFeatures Request_SW_Integrity_Check()
[P sdirectedFeatures SW_Status(SurfacelD id, SW_Status sw_status_msg)
Q IACES_Management_ACES_Control_Surface
B@ Operations
""" B «directedFeatures Req_config_parameter()
[-gP «directedFeatures herezaConfiguration(SurfacelD id,Surface_Configuration_Type config)
""" £ «directedFeatures Command_To_Position(SurfacelD id,int pos)
[P «directedFeatures Update_Position(SurfacelD id,int pos,Second movement_duration)
""" B sdirectedFeatures Request_SW_Integrity_Check()
[P «directedFeatures SW_Status(SurfacelD id, SW_Status sw_status_msg)
Q IACES_Hydraulics_Aircraft_Hydraulics
(= Flow Properties
i b sdirectedFeatures hydraulic_pressure
@ Operations
&P wdirectedFeatures evRequest_Hydraulic_Status()
E‘P «directedFeatures hereza_Hydraulic_Pressure(Hydraulic_Status1 hs)
Q IACES_Management_ACES_Hydraulics
== Operations
= B sdirectedFeatures Check_Hydraullics()
g wdirectedFeatures Update_Hydraulic_Status(Hydraulic_Status1 h_status)
g wdirectedFeatures Request_SW_Integrity_Check()
[P «directedFeatures SW_Status(SurfacelD id, SW_Status sw_status_msg]
Q IACES_Control_Surface_ACES Hydraulics
-2 Flow Properties

Q IACES_Control_Surface ACES_Power

E-(2 Flow Properties
(- = adirectedFeatures power

Figure 223: Interface Blocks updated with parameters and types

Case Study: Architectural Design

9.6 Analyze Dependability
We won’t perform this activity in this Deskbook in order to keep it a little
shorter. We'll just say a three of things about it here.

First, as we’ve mentioned before, dependability analysis is an ongoing
parallel activity to requirements and design. It ensures that the created
engineering data and work products meet the safety, reliability, and security
needs of the customer. As we make design decisions — and architecture is
heavily design focused — we introduce the possibility that 1) we didn’t
properly address concerns already identified, and 2) we introduced new
concerns. Therefore, as we define and evolve the architecture, we must
maintain and update our dependability analyses.

Secondly, if you’re using Rhapsody to perform such dependability analysis,
then you need to have a place to put it. Previously, we added a package for
each use case in the functional analysis package to hold all use case detail.
We added subpackages to organize this detail, including a Safety Analysis
package. We will do the same here. Since this is a type of architectural
analysis, we’ll add it into the ArchitecturalAnalysisPkg Package as shown in
Figure 224,

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 209



Case Study: Architectural Design

—--B «Harmony5E» AirSurfaceControlSystem
+-[ Compenents
=) Packages
+E:| ActorPkg
+&I RequirementsAnalysisPkg
=-57 FunctionalAnalysisPkg
i B0 Packages
-E:I DesignSynthesisPkg
=~ Packages
+-E ArchitecturalDesi%kg
—E:I ArchitecturalAnaljvisPlkg
=+ Packages
+&I TrimCentrelTradeStudy
=-57 ArchDependabilityPkg
=~ Packages
- ArchSafetyPkg
BT ArchSecuityPlg

+E:| InterfacesPkg
+tl CommonPkg

E:I TypesPkyg
Figure 224: Architectural Dependability Analysis

Thirdly, the result of such analysis at the architectural level is usually to
generate more requirements. These requirements are due to the
interaction of the existing safety requirements and the addition of design
and technology decisions. These newly identified requirements are
allocated to subsystems and result in work in the parallel activities of
Create/Update Subsystem Requirements and Allocate Use Cases to
Subsystems (see Figure 10 on page 19).

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 210



Case Study: Handoff to Downstream Engineering

10 Case Study: Handoff to Downstream Engineering

The purpose of the Handoff to Downstream Engineering is to

e Refine the system engineering data to a form usable by downstream
engineers

e Create separate models to hold the prepared engineering data in a
convenient organizational format

e  For each subsystem, work with downstream engineering teams to
create a deployment architecture and allocate system engineering
data into that architecture

It is crucial to understand that the handoff is a process and not an event.
There is a non-trivial amount of work to do to perform the above objectives.
As with other activities in the Harmony aMBSE process, this can be done a
single time, but is recommended to take place many times, in an iterative,
incremental fashion. It isn’t necessarily difficult work, but it is necessary
work for project success.

The refinement of the systems engineering data is necessary because to this
point it has been primarily focused on its conceptual nature and logical
properties. What is needed by the downstream teams are the physical
properties of the system —along with the allocated requirements — so that
they may design and construct the physical subsystems.

The workflow for this activity is shown in Figure 13 on page 22 but is
replicated below in Figure 225.

Inputs
SRS, System Architecture

Logical ICD, Data Types, Scenarios

L Subsystem UCs (optional)
Gather Subsystem
Specification Data
= -9
o8
Create Subsystem Model
LS
Create Shared Model —
o
Define Interdisciplinary
Interfaces
e
Define Subsystem N
Physical Interfaces e
Allocate Requirements to
Engineering Disciplines
For all subsystems <>

Outputs:

Shared and Subsystem Models
Physical ICD

Subsystem SRS

Figure 225: Handoff Workflow

10.1 Gather Subsystem Specification Data

This task refers to the gathering together of the information to support the
hand off. However, if you’ve organized the model how the Deskbook
recommends, it’s already done! Good for you.

10.2 Create the Shared Model
The SE Toolkit can create the basic struture of the Shared and subsystem
models for you. The tool kit provides automation here and the created

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 211



models follow the recommended model structure supported by the SE
Toolkit.

@ To be included in the automatic creation of the Shared model,
packages must be tagged with includelnSharedModel (of type
Boolean with the value set to TRUE).

El--ﬁB «=HarmonySE= AirSurfaceControlSystem
[J Components
El-C3 Packages
EI ActorPkg
BE:I RequirementsAnalysisPkg
[g Matrix Views
-0 Packages
i BT RequirementsPkg
-0 Packages
-8 Tags
includelnSubsystemModel=true
571 UseCaseDiagramsPkg
Q RequirementsTables
=2 Tags
&0 includelnSharedModel=true
[]-"tl FuncticnalAnalysisPkg
-5 DesignSynthesisPlg
=-£7 InterfacesPkg
-0 Packages
EI MergedinterfacesPkg
"L DataTypesPkg
. B-f7 SubsysteminterfacesPkg
=2 Tags
-8 includelnSharedModel=true
-5 CommonPkg
Profiles
Settings

5
53

& Mark the following packages with the includelnSharedModel tag
o RequirementsAnalysisPkg
o InterfacesPkg
o TypesPkg
& To be create a relevant subsystem model for hand off each of the
relevant subsystem packages must be marked with the tag
isSubsystem (of type Boolean with the value set to TRUE).

e

Case Study: Handoff to Downstream Engineering

=-f DesignSynthesisPkg
E|[:l Packages
=57 ArchitecturalDesignPkg

3 Block Definition Diagrams
bEI Blocks

H-[J Internal Block Diagrams
Q Matrix Views
- Packages
=-£7 ACESDecompositionPkg
(- Block Definition Diagrams
f‘g—" connectors
bg Interface Blocks
Q Matrix Views
El[:l Packages
=57 ACES HydraulicsPkg
bg, Blocks
=-(2 Tags

%] isSubsystem=TRUE
E-f7 ACES_PowerPkg
bEI Blocks
Bg Tags

-4 isSubsystem=TRUE
=57 ACES_ControlSurfacePkg
i-(E Blocks
-2 Comments
* [9 Matrix Views
i~ Packages
- g Tags
-4 isSubsystem=TRUE
; -1 Use Case Diagrams
- Use Cases
ACES_ContrelSurfaceRetractingPkg
ACES_ControlSurfaceWithTrimPkg
ACES_ManagementPkg
(2 Blocks
(2 Comments
Q Matrix Views
[g Tags
-4 isSubsystem=TRUE
#1-[J Use Case Diagrams
- Use Cases
[]---E':l SubsystemActorsPkg
57 SubsystemUseCasesPkg
[-CE] Parts
-5 WEBScenariosPkg
E]---tl SubsysternlseCasePkg
-2 Parts
-5 Architectural AnalysisPkg

U

i

Mark the following packages with the isSubsystem tag
o ACES_HydraulicsPkg
o ACES_PowerPkg
o ACES_ContolSurfacePkg

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 212



o ACES_ManagementPkg
In the browser, right click on the project (at the top) and select SE-
Toolkit > Architecture Tools > Create Handoff Models.

This results in the creation of the shared and subsystem models. A project
set is then loaded into Rhapsody with the system engineering model and
the created models as separate projects. This is to facilitate the setting of
properties. The models can still be loaded and worked on separately, as
desired. Figure 226 shows the starting model organization for the the
Shared model and one of the subsystem models (the other subsystem
models are organized similarly).

¥ ACES_Control_Surface_RetractingPkgMeodel (RO)
_R ACES_Control_Surface_With_TrimPkgModel (RO)
; ACES_Control_SurfacePkgModel

i-f71 ACES_Control_SurfacePkg
£7 DeploymentPkg

£ Physicallnterfaces (REF)
157 PredefinedTypes (REF)
B PredefinedTypesCpp (REF)
(-4 RequirementsPkg (REF)
£7 SubsystemSpecPkg

{0 ACES_HydraulicsPkgModel (RO)
H-{ ACES_ManagementPkgMaodel (RO)
].. !

R, ACES_PowerPkgModel (RO)
E-4d SharedModel (RO)
(- Components
-2 Packages
~£7 CommonStereotypes (RO)
57 InterfacesPkg (REF)
3 Packages
£ DataTypesPkg (REF)
£ MergedinterfacesPkg (REF)
£7 SubsystemlInterfacesPkg (REF)
‘b" Tags
£7 Physicallnterfaces (RO)
(-5 PredefinedTypes (REF)
B0 PredefinedTypesCpp (REF)
=57 RequirementsAnalysisPkg (REF)
Q Matrix Views
-0 Packages
£7 RequirementsPkg (REF)
£7 UseCaseDiagramsPkg (REF)
(- Table Views
‘b" Tags

Figure 226: Models created with Create Handoff Models tool

Case Study: Handoff to Downstream Engineering

You should also note these the created models are UML models, rather than
SysML. This is because we anticipate that a great deal of the downstream
work will proceed in software. Nevertheless, if desired (and we’ll see later
why it might be, you can always add the SysML and HarmonySE profiles.

10.2.1 Define the Physical Interfaces

The primary purpose of the Shared model is to contain elements relevant to
multiple subsystems. This includes the physical interfaces between
architectural elements and common physical types passed by those
interfaces.

At this point, close Rhapsody with the project list and open the
Shared model which is located in the file system as a folder under
the folder containing the SE project:

w | AirSufaceControl System

I ArSurfaceCantrol System_rpy

I Control_Air_SurfacesSim

i RC5_Componert

T Start_UpSim

w [ SubsystemModels

1 ACES_Cortrol_Surface_RetractingPkgMaodel
(= ACES_Cortrol_Surface_With_TrimPkgModel
= ACES_Control_SurfacePkgModel
() ACES_HydraulicsPkgMadel
I ACES_Management PlkgMaodel
I ACES_PowerPkgModel
) SharedMode] S

Interface blocks inherently contain specifications of services or flows. So far,
all the interface blocks in the InterfacesPkg > SubsysteminterfacesPkg
package (contained by reference in the Shared model) specify services with
event receptions, which may or may not carry data. These serve as the
logical specification of the interfaces. However, the subsystem teams are
going to do detailed design and implementation of actual, physical
subsystems and must use the physical interfaces of those systems. The

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 213



Case Study: Handoff to Downstream Engineering

purpose of this task is to derive the physical interface specifications from
the logical ones.

This task produces two related, but distinct work products. The first is the
specification of the actual interfaces, whether they be message passing,
protocol-oriented, electrical, or mechanical. That is the subject of this
section. The second part is the specification of the physical data schema
which includes physical details of the data, such as bit mapping of values.
This latter work product will be the subject of Section 10.2.2.

Three distinct interfaces are going to be used in this system. The first is the
messaging interface which includes an electrical and software protocol
specification, together known as the Control Bus Protocol (CBP). Then there
are also the power and hydraulic interfaces. The following sections will
discuss these in detail.

10.2.1.1 Control Bus Protocol

For most of the interfaces, the system will use a custom communications
protocol known as the Control Bus Protocol which runs on top of an RS-232
physical electronics layer. Since the RS-232 electronic specification is
available elsewhere (see, for example https://en.wikipedia.org/wiki/RS-
232), we will focus exclusively on the software aspects of the protocol.
Almost all the services currently defined as events in the interface blocks
will be refined from this logical realization to a physical message
implementation. We will do that in this section.

Useful Stereotypes

The following stereotypes are used to formally specify the physical message
schema. These all the specification of the actual bit and byte structure of
the message features. These stereotypes should be added to the
Physicallnterfaces package so that they are visible to the subsystem models.

«bitmapped»
This stereotype is used for value properties/attributes, variables, or
registers that use bit fields to represent information.

Stereotype: bitmapped in Physicallnterfaces - n

General Description  Relations Tags  Properties

Name: |b'rtmapped | Label..
Applicable to: | Argumert, Attrbue, Class, Object, Type v]

[ New Tem
Locate oK

It has tags that allow the specification and usage of the bit fields, including,

if applicable, starting address in a memory map.
= Smreclype=
bitmapped
i=abit_0:RhpString
4=bit_1:RhpString
i=abit_2:RhpString
i=abit_3:RhpString
4=bit_4:RhpString
i=abit_5:RhpString
i=abit_s:RhpString
4=bit_7:RhpString
i=abit_s:RhpString
i=abit_9:RhpString
4=bit_10:RhpString
i=bit_11:RhpString
iZabit_12:RhpString
4=bit_13:RhpString
i=bit_14:RhpString
iZabit_15:RhpString
4=INumber_Of Bits:RhpString
@Sbrt_Address:thShing
@ﬁming_Constraints:thString
@Usage:thSh’ing

«bytemapped»

This stereotype is used for value properties/attributes, variables, and
registers that are byte-mapped, including, if applicable, start address in a
memory map.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 214


https://en.wikipedia.org/wiki/RS-232
https://en.wikipedia.org/wiki/RS-232

= Hmrealype=

bytemapped
Endianism:RhpString=Big
Format:RhpString
Mumer_Of_Bytes:RhpInteger
Start_Address:RhpString
Starting_Byte_Number:RhpInteger
Timing_Constraints:RhpString
Units:RhpString
Usage:RhpString

Case Study: Handoff to Downstream Engineering

SampleClass «bitmapped»
statusField:unsigned char

E «bitmapped» statusField:unsigned char
E «bytemapped» rangedPressure:int
E «bytemapped» measureStatus:char

This bit-mapped attribute contains HW status information
Start Address: Hardware memory map

bit 0: 0 if ok, 1 if bad

bit 1-2: Active Channel 0..2

bit 3-7: Error Code 0.. 15

=N umber_Of_Bits:RhpInteger=8

L= Start_Address:RhpString=0A00: 1FFF

Q@Timing,Cunstrainls:thString=VaIid 1ms after a write to the measureStatus attribute

o Usage:RhpString=SW writes any value to measureStatus attribute, waits 1ms, then can read HW status
L= bit_0:RhpString=Ermors: 0 = No Eror, 1 = Errors found

% bit_1:RhpString=low bit of Active Channel (value in range of 0 .. 3)

(=] bit_2:RhpString=high bit of Active Channel (value in range of 0 .. 3)

Example § ] @bitj:thSlring:Error code (valueinrange0 .. 15)

. . . . i & bit_4:RhpString=E de (value i 0..15
Below, I’'ve shown SampleClass that has three attributes. statusField is bit ; S S
mapped with 3 fields held in bit combinations. measureStatus is a hardware Sabit_g:Rhpstring=Emor coce (alue n ange . 15)

register in a memory map (at address 0A00-01FE) that is 1 byte in size and is
a write-only hardware register. rangedPressure is an example of a ranged bytenoppeds
real value, whose valid range is -100.00 kP to +100.00 kP, but is held as a
scaled 32-bit integer value. The stored value is 100 times the actual value
and only the integral part is stored. Thus, an actual value of -32.98 kP would (£ Format Rhpsiing

be stored as an integer value of -3298.

= bit_7:RhpString=Error code (valuein range 0 .. 15)

v

measureStatus:char

This is a write-only register to command the HW to measure its status.

g Endianism:RhpString=Big

L= umer_Of_Bytes:RhpInteger=1

%= Start_Address :RhpString=0A00-01FE

g Starting_Byte_Number:Rhplnteger

Z=I Timing_Constraints:RhpString=A write of any value to this address causes HW status to appear in statusField in 1 ms.
(& units:Rhpstiing

g Usage:RhpString=Write any value to get the measured hardware status.

«bytemapped»
rangedPressure:int

This helds pressures in kilopascals in the range of -100 to +
100 with accuracy of 0.01 kP. It is held as a scaled integer;
stored value is the integral part of (actual pressure * 100).

For example -32.98 kP is stored as the inteaer value -3288.

g Endianism :RhpString=Big

(=] Format:RhpString=32 bit scalled integer

L= umer_Of Bytes:RhpInteger=4

o Start_Address:RhpString=0A00:1FF)
Starting_Byte_Number:RhpInteger=0
QEITiming,Cunstraints:thString:Ma)dimum lag on velue is 500 ns
o Units:RhpString=Kilopascals

Defining the protocol
& Add two packages to the PhysicalinterfacesPkg.
o PhysicalTypesPkg will hold base types used by the protocol
messages

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 215



o MessageTypesPkg will hold the message definitions

Cantrol Bus Protocol Base Structure

(=]
Message structure (Summary)

Ty
CBP_Command

=43 SharedModel
3 Components
- Packages

Control Bus Protocol message defines the
structure for the CBP across RS-232 links.
Each sender and receiver must provide a
protocol stack to marshal and unmarshal
messages

DISPLAY_STATE_MSG
DISPLAY_ALARM_MSG
DISPLAY_ERROR_MSG
DISPLAY_HYDRAULIC_PRESS_MSG

CommonStereotypes

7 InterfacesPkg (REF)

=-3 Packages

£ DataTypesPkg (RER)

(-5 MergedinterfacesPkg (REF)
=57 SubsystemInterfacesPkg (REP)
&E; Classes

&P Events

-2 Tags

=7 Physicallnterfaces

=-[3 Object Model Diagrams

:E,t' Non-Software Interfaces

jiu’

5y Sterectypes Diagram
-3 Packages
b MessageTypesPkg
{1 PhysicalTypesPkg
-2 Stereotypes
-5 PredefinedTypes (REF)
£ PredefinedTypesCpp (REF)
-5 RequirementsAnalysisPkg (REF)
- Profiles

Figure 227 shows the base structure for a CBP message. All of the fields are
stereotyped as «bytemapped» so we can define the size (in bytes), it’s
position in the message, whether it is big- or little-endian, and define its
usage. In addition to this more formal specification of the bit format of the
message, the diagram contains a comment that summarizes the structure.

The command byte is 2 bytes (16-bits) in size, big-endian format and holds
one of the values of the CBP_Command enumerated type, shown at the
right of the figure. Most of these messages will have actual content fields,
which are defined in the relevant subtype.

Byte Pgs Field Description
04 omd Command (message ID)
23 ength Entire length of message in bytes
= 12 + sizeOf{content)
4-5 senderlD ID of message sender
67 receiverlD D of message receiver
811 CRC 32-bit CRCcontent
12-124n content Message content as defined in
subtype .
©F

Unless otherwise specified: Big Endian
Space complexity

Type  Size in bits

char 8 ~
shot 8 =

it 16 S
long 32
double 32

[ —
CRC:unsigned int

“CiEndianism:Rhp3tring=Big

#Numer_OF Bytes:Rhpinteger=4

(8D start_Address:RhpString
#IStartng_Byte_Number:Rhplnteger=8

(2 Timing_Constraints:RhpString

1 Usage:RhpString=32 bit CRC for the message

~oyterasest-
senderID:unsigned int

“CiEndianism:Rhpstring=Big

“CiNumer_Of Bytes:Rhplnteger=2

(2= Start_Address:RhpString
“Cistarting_Byte_Mumber:Rhplnteger=4

(32 Timing_Constraints:RhpString

1 Usage:RhpString=ID of the sender system or subsystem

i

SET_POWER_SOURCE_MSG
GET_ALARM_CODE_MSG
GET_CONTROL_POS_MSG

CBPMessage

GET_STATUS_MSG

in the content.

The CRC is 32-bit

REQ_POS_MSG.

the appropriate subtype.

An array of unsigned iptg is used to hold
the message content. This array is only
big enough to hold all the content.

Different commands have different fields

Used directly for message that have no
data paylead, ing| START, STOP,
ENABLE, DISABLE, REENABLE,

REQ_TRIM_POS_MSG. Othenise use

PERFORM_BIT_MSG
REPORT_ERROR_MSG
SET_CONTROL_POS_MSG
ENABLE_MSG
DISABLE_MSG
REENABLE_MSG
EIT_REPORT_MSG
CONFIGLRE_MSG
ERROR_MSG
LIFETICK_MSG
MOVE_TO_MSG
MOVE_DONE_MSG
MOVEMENT_ERROR_MSG
NON_OP_TEST_MSG
START_MSG

5 “bytemapped» and:CP_Command

= <bytemapped> lengthiunsigned int

.+ «bytemapped» CRC:unsigned int

[ <bytemappeds» senderD:unsigned int
| B bytemapped» receiverID:unsigned int

STOP_MSG
HEREZA_CONFIGURATON_MSG
HEREZA_POSITION_MSG
REQ_POS_MSG
MOVE_TRIM_TO_MSG
REQ_TRIM_POS_MSG

L0000 000000000L0000CLLLLO0 O

“arteraseeis
«cmd:CBP_Command

CEndianism:Rhpstring =6ig

“iNumer_0f Bytes:Rhplnteger=2
((9start_Address:RhpSting
“Clstarting_Byte_Number:Rhplnteger =0
(#2Timing_Constraints:RhpString

4=lUsage:RhpString =Specifies the command byte of a message

e—
receiverID:unsigned int

pre—
length:unsigned int

A3Endianism:RhpString =Big

A=INumer_OF Bytes:Rhplnteger=2

(S start_Address:RhpString
Starting_Byte_Number:RhpInt=ger =6

o ber:Rh

(= Timing_Constraints:RhpString
Usage:RhpString=ID of the receiving system or subsystem

o h f the b

AEndianism:RhpString =Big
(S start_Address:RhpString

(A= Timing_Constraints:RhpString

A=INumer_OF Bytes:Rhplnteger=2
iiStarting_Byte_Number:Rhpinteger =2

#ClusagesRhpstring=spec's the length, in bytes, of the entre message

Figure 227: Base Structure of CBP Messages

Figure 228 shows the set of CBP messages. All of the defined subtypes
provide their own contents structure.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 216




Case Study: Handoff to Downstream Engineering

Control Bus Protocol Message Subtypes for Movement Control Bus Protocol Message Subtypes Other
i =~ CBPMessage
CBP_ControlSet An array of unsigned ints is used_to hold An array of unsigned jpts is used to hold
the message content. This array is only the message content. This array is only o
= «bytemapped= lefiFlevator:double (=] big enough to hold all the content. big enough to hold all the content. "
= <bytemappeds leftElevatorTrim:double Mission: Different commands have different fields CBP_ReportError Different commands have different fields 1ssion
= - . - = Show miscellaneous control
<bytemapped> leftFlightSpoiler :double Show Control Bus in the content. in the content. b bi
E b . = <bytemapped: surfacelD:SurfacelDType us message subtypes
ytemapped> leftGroundSpoiler:double Mlessages related to = i
= «bytemapped= leftInboardAileron:double movement The CRC is 32-bit. “bytemappeds ermorType:ERROR_TYPE The CRC is 32-bit.
= «bytemapped= leftinboardaileroriTrim:dovbl | <bytemapped when:TmeDate_Type
Vi=mappedz ETnboaraAlleroninim:double : Used directly for message that have no
= «bytemappeds leftInboardWingFlapTrim:double Used directly f_m message that have no data payload, ing| START, STOP.
= <bytemapped> leftinboardWringFlap:double data payload, ingl START, STOP, ENABLE, DISABLE, REENABLE
v e ENABLE. DISABLE, REENABLE g : :
E <bytemapped> lefiLeadingEdge:double REQ F‘O‘S MSG § § REQ_POS_MSG,
= «bytemapped= left eadingEdgeExt:double — = g REQ_TRIM_POS_MSG. Ctherwise use
= sbytemapped: lefil eadingEdgeslat:double REQ_TRIM_POS_MSG. Otherwise use the appropriate subtype.

the appropriate subtype.

E-:bytemapped»IeFﬂ.eadngdgeS\alExt:double CBP_State /

shytemappeds leftOutboardAileron:double sbytemapped» cmd:CBP_Command

E <bytemapped> leftOutboardAileronTrim:double E <bytemappeds cmd:CBP_Command B <ovtenapped: stateib:systemOperatonaisiate E -d::tamazzﬁdnlﬁngm:un_s\gned int

E shytemappeds leftOutboardwingFlap: double E <bytemappeds length:unsigned int E <bytemapped» CRC:unsigned int

E <bytemappeds leftOutboardWingFlapTrim:double E <bytemappeds CRC:unsigned int [ «bytemapped» senderID:unsigned int
= sbytemappeds lowerRudder:double = <bytemapped:» receiverID:unsigned int
E <shytemappeds lowerRudderTrim:double
E <bytemappeds rightElevator:double

E <bytemappeds senderID:unsigned int
E <bytemapped: receiverID:unsigned int

= «bytemappeds rightElevatorTrim:double £|5 =
sbytemappeds rightFightspailer:double
E -h:EmaEEed» rizhtGriun ;SDD“E“ double [ «bytemapped> powerSource:POWERSOURCE_TYPE
E sbytemappeds rightinboardaileron:double ‘ e
sbytemappeds rightinboardaileronTrim:double «bytemappeds surfacelD:SurfacelDType
= «bytemappeds rightinboardWingFlap:double oy eDoee E omapmeds eorTypetROR, TYPEL
E shytemappeds rightinboardWingFapTrim:double E <bytemappeds surfacelD:SurfacelDType = «bytemappeds cmdPos:double
= sbytemappeds righti eadingEdge:double = «bytemappeds posAchieved:double = <bytemapped» measuredpos:double
= <bytemappeds rightl eadingEdgeExt:double = «bytemappeds timeUsed:Interval_In_MS = <bytemapped: duration:Interval_In_M5
= «bytemappeds righti eadingEdgeSlat:double
= «bytemappeds rightl eadingEdgeSiatExt:double Figure 229: Other CBP Messages
= «bytemappeds rightOutboardaileron:double .

= «bytemappeds rightOutboardaileronTrim:double
E <bytemappeds rightOutboardWingFlap:double

oy g netoutbom W Trmdouie CBP_Move It is also possible show this as a table with message type, list of attributes,
Eijzzzgﬁjjjjﬁ;j{i:jj:{;‘f{’;ﬂ:ma B <oytemepped poson:doutle type and description and other properties.

CBP_sSurfaceConfiguration

& Inthe CommonStereotypes package, add a new table layout named

[ sbytemappeds lowPos:double (230 R

15 i hafPosdontle B <bytemappecs errTypeiERROR_TYPE Class and Attributes Table.

= sbytemappeds lowTrimPos:double = «bytemappeds cmdPos:double . H 1

S <bytemappeds highTrimPos:double 5 wbytomanpecds messsedPoudobie & In the Columns Advanced Options set the following context pattern:
End: mapped: lowExtPos:double mapped> duration:Interval_In 1

I ortomecoers oo i rtensped- dastonntena In WS o {pkg}Package*, {cls}Class, {Attr}Attribute*, {tags}Tag

E <bytemapped= surfacelD:SurfacellType

&  Define the columns in the Columns tab

. Tabls ut: Class and Attri Table in C 154 x
Figure 228: CBP Message Types related to movement ableLayo o oen il a
A
General Description Columns  Relations Tags ~ Properties
| Advanced Options... B L
Type Property Column name Context Column width
General Attribute  Mame Name in cls cls
General Attribute  Name MName in Attr Attr
General Attribute  Classifier Classifier in Attr Attr
General Attribute Mame MName in tags tags
General Attribute  Value Value intags tags
v
Locate oK Apply J

& Create a table view in the MessageTypesPkg named Message
Attributes Table.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 217



dy: Handoff to Downstream Engineering

@ Right click on the table view and select Features. (!

& Inthe Scope property of the General tab, set the scope to be the
MessageTypesPkg. Click on OK to close the Features dialog.

& Double click on the table view to open it. !

You should see a table of the message types, their attributes, types, and
filled out tagged values. A limited snapshot of this table is shown below:

Name in s -1 Name in Atr ~ | Cassierin At ~ | Name integs ~ | Valeintags -
EJCBP_HycrauicStatus B status & Hydraulic Status
EJCBP_Move H posttion < double “iNumer_Of_Bytes =0
EICBP_Move = sufacelD < SufacelDType
EJcBr_Move I postion < double & Format 3 &byte EEE floating poirt format
Hcer_move I postion < double Usage ‘i3 Commanded position
Elcer_moveDone = sufacelD < SurfacelDType &Numer_Of_Bytes an
Elcer_moveDone f time Used < Interval_in_MS & Usage 2 Duration of movemert time in ms
Bicer_moveDone = time Used © Interval_in_MS @y Stating_Byte_Number &5
ElcBP_MoveDone i posAchieved < double &=Fomat = 4byte IEEE floating poirt format
EJCBP_MoveDone = poshchieved < double &iNumer_Of_Bytes =g
EcBP_MoveDone H poshchieved < double Usage 42 The measured posttion achieved in movement
EJCBP_MoveDone = postchieved < double &1 5tarting_Byte_Number #31
EJcBP_MoveDone = posAchieved < double & Endianism @By
Ecer_moveDone I time Used < Interval_In_MS fNumer_Of_Bytes (=1
Elcer_moveDone = sufacelD < SurfacelDType & Endianism g
Elcer_moveDone = sufacelD < SufacelDType &y Statting_Byte_Number &30
Bicer_moveDone = sufzcelD © SufacelDType g Usage 211D of the referenced control suface.
EIcBP_MoveDone H time Used < Interval_In_MS 4= Endianism ‘=iBg
EJcBP_PowerSource = powerSource £ POWERSQURCE_TYPE
EJCBP_PowerStatus = status E PowerStatus
EJcBP_ReportEror = when E TmeDate_Type
[EJcBP_ReportEror i emorType <» ERROR_TYPE
EcaP_ReportEror b sufacelD < SurfacelDType
Elcer_RequestCorfiguration [ surfacelD < SurfacelDType
Elcer_Requestswtatus [ surfacelD % SufacelDType
CBP_State = statelD & SystemOperationalState &= Endianism gy
ElcBP_SufaceConfiguation | lowPos < double %) Statting_Byte_Number =10
EJcBP_SutaceConfiguration | [ lowPos < double Usage = spec for low movemert range end point. Starting_Byte s relative to start of conterts.
EcBP_sutaceConfiguration | [ lowPos < double %= Endianism =g
EJcBP_SutaceConfiguration | [ lowTrimPos < double 1 Starting_Byte_Number 18
EJcBP_SurtaceConfiguration [ lowTrmPos < double tUsage ‘tca Specforlow end of Trim range. Number of Btes s relative to start of contents.
EceP_suraceConfiguration [ lowTrmPos < double fFormat 3 4yte EEE floating poirt format
Ecer_sufaceConfiguration | [ lowTrimPos < double & Endianism g
Ecer_sufaceConfiguration [ lowTrimPos < double &Numer_Of_Bytes =
Ejcer_sufaceCorfiguration | = highPos © double & Numer_OF_Bytes =
ElcP_SutaceCorfiguation | H sufacelD 4 SurfacelDType 4= Endianism ‘=iBg
EJcBP_SutaceConfiguration [ surfacelD 4 SufacelDType &iNumer_Of_Bytes =1
EcBp_SutaceConfiguration [ surfacelD < SutacelDType & Starting_Byts_Number =122
[54CBP_SufaceConfiguration [ sufacelD % SurfacelDType oUsage 31d of the surface this configuration refers to. Number of Bites i reative to stat of cortents.
EJcBP_SuraceConfiguration [ highExtPos < double 41 Starting_Byte_Number 320
EctP_suraceConfiguration [ highExtPos < double fNumer_Of_Bytes (=1
Ecer_sufaceConfiguration [ lowFos < double &aFomat 22 4byte IEEE floating poirt format
[Ejcer_sufaceConfiguration [ highEdPos < double &Usage 3 Specfor high end of extension range. Number of Btes s relative to start of conterts
Ejcer_sufaceConfiguration [ highEdPos © double = Endianism aBg
ElcBP_SurtaceCorfigurtion | [H highExPes < double &=Fomat = 4byte IEEE floating poirt format
EJcBP_SutaceConfiguration | [ lowPos < double &iNumer_Of_Bytes =g
EJcBP_SutaceConfiguration | = lowExtPos < double & Stating_Byts_Number =116
EJcBp_SutaceConfiguration | I lowExtPos < double & Format 2 4byte IEEE floating point format
EJcBP_SuraceConfiguration [ lowExtPos < double tUsage ‘'z Specforlow end of extension range. Number of BYtes is relative to start of contents.
ElcsP_suraceConfiguration [ lowExtPos < double fNumer_Of_Bytes (=1
Elcer_sufaceConfiguration | [ lowExtFos < double & Endianism g
EJcer_sufaceConfiguration | [ high TrimPos < double & Endianism g
Elcer_sufaceCorfiguration | [ high TrimPos © double g Usage 4 Spec for high end of trm range. Number of BYtes is relative to start of cortents
ElcP_SurtaceCorfigurtion  [H highTrimPos < double &=Fomat = 4byte IEEE floating poirt format
EJCBP_SurtaceConfiguration | high TimPos < double &iNumer_Of_Bytes =g

Figure 230: Message Attributes and Tags

Other properties of interest can be easily added to the table, as desired.

It is important to show how these (physical) messages related to the
(logical) services identified in the InterfacesPkg, referenced from the
systems engineering model.

Use the File > Add Profile to Model menu item to add the
HarmonySE profile to the model (yes, it’s ok to add this to a UML
project as well. We want to use some of its features).

In the CommonStereotypesPkg, add a new table layout named
Logical_Physical

Table Layout : Logical_Physical in CommonStereotypes - B
| General I Description | Columns | Relations I Tags I Properti
Advanced Options... = -

Type Property Column name Context Column width
General Attribute Mame Mame in pkg pkg
General Attribute Mame MName in cls cls
Relation Attribu...  To element To elementin p..  physicalRealization

Advanced Table Opticns 2

Appearance:

[T Collapse 15t colurn

when pushing “Enter” move selection to:
Align column header menu to: Right

Context table:
Contest pattern:

4

{pkaolPackage”, {clsiClass, {physicalR ealizationrepresents B

Column name format:
$[Praperty] in ${Cantest]

Locate oK

Add a table view in the MessageTypesPkg using the above layout.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 218



Case Study: Handoff to Downstream Engineering

Table View : Messages Realizing Logical Interfaces in MessageTypesPkg

General ‘ Diescription I Relations I Tags I Properties

Name: Messages Realizing Logical Interfaces Label
Sterectype: - E E
Layout: Logical_Physical in CommonStersotypes '] E
Scope: Message TypesPkg -

Locate oK

& Looking at the interface blocks (they’re now classes) in the
IntefacesPkg package, walk through all the event receptions, one by
one and with the Harmony Dependency wizard, add a «represents» L
relation from one of the CBP messages to the event reception.

o Ones that do not require a content payload can directly use
the base class CBPMessage since the command field will
identify which command is intended. All other messages will
have to be subclassed from CBPMessage and have their

additional contents defined.

o If no CBPMessage subtype meets the need, then add a new
one, defining its content fields and making it a subclass of

CBPMessage

+ B
= [£] Modeling Toolbox = | B |
L Options
Selecta Source and Target Panel
[ l Select Source J [ Select Target ] c
ollapse
Class Reception
Expand
CBP_State evEnter_WARM_state
l Create Basic Dependency J
Profile: Stereotype
| HarmonySE "] | InterfacesPkg 'J
Create Dependency with Selected Stereotype J
Existing D Existing D ies to Remote Resources

LS T

Reception: evGotoFailedState<=<represents=»
Reception: evEnter_WARN_state=<<represents==
Reception: evEnter_OPERATING_state<=represen
Reception: evEnter_FAILED_state=<represents=>

—l Dependencies l Selection Information J

When complete, every event reception in every interface block will be
represented by a CBPMessage:

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 219




Found 22 elements
MName in plg

| Mame in PhysicalRepresentation

| To element in LogicalRepresenta. ..

B [ MessageTypesPkg

=] CBPMessage

Q CBFMessage

E CBFMessage

E CBPMessage

=] CBP_CortrolSet

£ CBP_Emor

E] CBP_HydraulicStatus

El CBP_HydraulicStatus

| CBP_Maove

= CBP_Maove

Q CBP_MoveDone

E CBP_MoveDone

| CBP_MoveDone

E CBP_PowerSource

Q CBP_Power5Status

E CBP_Power5Status

=] CBP_ReportEmor

E CBP_RequestCorfiguration
Q CBP_RequestCorfiguration
E] CBP_Request 5W Status
| CBP_Request SWStatus
= CBP_SWStatus

E] CBP_SWStatus
ElCBP_State

=] CBP_State

= CBP_State

ElCBP_State

Q CBP_SudaceConfiguration

Eﬁ-checkiner

Epe evRequest Hydraulic Status
EinrquN}-‘\B LE_Command
Eﬁ)request_l-hrdlaulic_Status
Eﬁﬂ-herezaPns'rtinnSet
EpeevEmor
E’ﬁrherezal-hfdlaulic_Pressure
Eﬁ)herezal-hrdlaulic:_Pressure
E#-Cnmmand_Tn_Pnsitinn
E#EVMDVETD

E’ﬁr Updated_Position
Eﬁ)evMovemen’[Done
EﬁbherezaPos'rtion

Eﬁr Select_Battery_As_Source
E’ﬁr Update Power_Status
EinupdatePowerStaius

EF:“' ReportEmror
E#Heq_cnrrfigjammeter

Epe Req_config_parameters
Einrequest_s‘.“a'_lrdegrity_ﬂﬂeck
Eﬁbrequest_s‘."u'_lrdegrity_ﬁﬂeck
Ep:* SW_Status

Ep SW_Status
EinevErrler_FAILED_state
EinevErrter_OPEHATING_state
Eﬁ-evE‘der_WAH M_state
EpevGotoFaiedState
E#hereza(:nrrfigumtion

Case Study: Handoff to Downstream Engineering

e iACES_ControlSurface_ACES_Hydraulics::pressure
The last two were added manually in the last chapter and you must move
them from the ACES_DecompositionPkg to the InterfacesPkg to see them
in the Shared model.

To provide those specifications is straightforward (far easier than the
definiiton of the CBP messages we just performed.

In the PhysicalinterfacesPkg add the following Object Model Diagram
(OMD) to create the classes
e Hydraulic_Interface_Spec
e External_Powerlnterface_Spec
e External_Power_Set
o Note that this contains a frequency attribute which is of
type Hertz; this must be added to the types in the
Physicallnterfaces package. Ampere and Pascal are
available from the SysML profile if you decide to add it to
the model.
e Drag the appropriate interface blocks from the InterfacesPkg and
add «represents» relations to those elements

Figure 231: Logical - Physical Schema Mapping Table

10.2.1.2 Power and Hydraulics Interfaces
Most, but not all services are modeled using event receptions in the logical
interfaces. There are some, however, that are actual flows that are modeled
as flow properties (attributes in UML). In this model, these are

e iACES_Power_Aircraft_Power::power

e iACES_Hydraulics_Aircraft_Hydraulics::pressure

e iACES_ControlSurface_ACES_Power::power

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 220



dy: Handoff to Downstream Engineering

o vintefacaBlocks vintefaceBlocks «Types «tytemappers
Wission: IACES_tydraulics_Aircraft_Hydraulics ACES_Power_Aircraft_Power NUMBER_OF_SURFACES SurfacelDType
ission: Show the n fit
oriented interfaces = Unspedified hydraulic_pressure:Pascal = 1n power(tn):Ampere OSL & | to
3Left_Elevator
H )
[ prov evRequest_Power_Status(source:POWERSOURCE_TYPE) OE Left_Elevator_Trim_Tab
EP;’DW evRequest_Hydraulic_Status() Efeprov evselect_Battery_As_Source() ileft_Flight_Spoiler
Tereqd hereza_Hydraulic_Pressure (he:Hydrauiic_Stat... EPreqd hereza_Power_Status(ps:Pomer_Status1) %\ eft Ground Spoil
= b prov Select_Power_Source(source:POWERSOURCE_TYPE) "i‘g,"m nd sz: ft:Irln—:::r d__.;:alrzrn
; H
ainterfaceBlocks o ileft_Inboard_aiieron_Trim_Tab
IACES_Control_Surface_ACES_Hydraulics 7 gl OEBH-REPORT-MSG OgLeﬂ: Inboard_Wing_Flap
v g ] - _ ||
= n hydraulic_pressure (In):Pascal sinterfaceBlocke OECONFIGURE‘MSG ¢§Lef‘t Inboard_Wing_Flap_Trim_Tab
3 ! iACES_Control_Surface_ACES_Power OSDISABLE_MSG @ - T - - -
/ : $3DISPLAY_ALARM_MSG @jleft Leading Fdge Flap
et . 5 1 power {in)sampere H - - $ileft_Leading_Edge_Flap_Extender
¢ 7 €EDISPLAY_ERROR_MSG o e o
I : H {ileft Leading_Edge_Slat
- =7 €2DISPLAY_HYDRAULIC_PRESS_MSG o )
5 el H ileft_|eading_Fdge_Slat_Extender
“reptesents» K 4»2DISPLAY_STATE_MSG s ’
; External_Power_spec EENABLE_MSG @ sLeft Outboard_Aleron
Hydroubcs: Interooe Spec - - § - ileft_Outboard_aileron_Trim_Tab
] alternator:External_Power_Set ©IERROR_MSG $ELeft Outhoard_ Wi ]
= hydraulic_pressure:Pascal = aPU:External_Power_Set ¢§GEI' ALARM CODE MSG gLE _Outboard_Wing_Flap
b i |_Pow - - — 3Left_Outboard_Wing_Flap_Trim_Tab
attery:External_Power_Set ©2GET_CONTROL_POS_MSG ggL:“;r l;u::;r_ ing_Flap_Trim_Ta
@ @ Jer_t
OEGH_STATUS_MSG iLower_Rudder_Trim_Tab
EHEREZA_CONFIGURATON_MSG OiRiaht Hevator
i evator
i <EHEREZA_POSITION_MSG St )
g OSLIFETICK MSG 4r2Right_Elevator_Trim_Tab
Z H - <ERight_Flight_Spailer
S ©EMOVE_DOMNE_MSG $3Right_Ground. Spoil
Emrrent:,nmuere $EMOVE_TO_MSG Og;!ghz_fr;un d_s:lm &
frequency:Hertz H 3Right_Inboard_Aileron
| isActive:RhpBoolean QEMOVE_TRIM_TO_MSG ¢§Right Inboard_Aileron_Trim_Tab
= sDigital:ahpBoolean < ZMOVEMENT_ERROR_MSG i ~ueron_trim._
= voltagesvalt ¢§NON OF TEST MSG Qgnght_Inboard_\ Ving_Flap
i - 4»2Right_Inboard_Wing_Flap_Trim_Tab
<EPERFORM_BIT_MSG it — e e
2 I $3Right_Leading_Edge_Flap

. . IREENABLE_MSG i !
Figure 232: Hydraulic and Power Interfaces OSREPORT ERROR_MSG ©ERight Leading Edge_Flap_Extender
QEREQ POE MSG - 42Right_Leading_Fdge_Slat

OEREQ_TRII\; POS MSG ¢§Right_Leading_Edge_SIat_Exhender

OISET CONTROL POS._MSG 3 Right_Outboard_aileron
S5ET _POS_]

Note that the stereotype InterfaceBlock is marked as Undefined. This is
QgRight_Ouﬂmard_AiIeron_Trim_Tab

because we’ve not added the SysML profile to the model. This is not a igii;i“ﬂ’:Q-S““R“-”% ORight Outboard. Wing, Fiap
problem but you can add the SysML profile using the File > Add Profile to ©35TOP_MsG ©3Right_Outhoard_Wing Fiap_Trim_Tab

<3 Upper_Rudder
<>§ Upper_Rudder_Trim_Tab

Model feature of Rhapsody to resolve it. . P————

(=B Format:RhpString = Endianism:RhpString=Big
#ZINumer_Of Bytes:Rhplnteger=2 (2= Format:RhpString
. ) (= start_Address:RhpString 4=iNumer_Of_Bytes:RhpInteger=1
10.2.2 Speley the PhySlcal Data SChema gsmrﬁng_Byhe_Number:thInheger abﬂstart_.ﬁ_tddr_esi:thS:'ing Q
(= Timing_Constraints:RhpString (22 starting_Byte_Number:RhpInteger
. . . . (2 Units:RhpString ab"'I'Iming_(:onsh'aints:thSh’ing
We defined some basic types for a number of the attributes in the #UsageiRhpstring=Enumerated type to specify ¢... | | (S Units:RhpString

Qﬁ!Usage:thSh’ing=Enumerahed type to specify whic...

messages. Some are new, such as the CBP_Command which enumerates
the different message type command fields, and others, such as SurfacelD,
that are copied directly (and renamed slightly) from the referenced
InterfacesPkg > DataTypesPkg.

Figure 233: Some base types to support the physical data schema

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 221



«tytmmagpmts
Interval_In_MS

«tilmappeds
DigitalBooleanVoltage

Endianism:thSh’ing=Big

gFormat:thsving
Numer_Of_Bybes:thInbeger=4
g‘smrt_nddress:thSh'ing
g‘Siﬁrﬁng_Byte_Number:thInteger
ab‘:''I'|rning_C|)nstrainis:Rh|:|5tring

(22 Units:RhpString

Usage:thShing=Deﬁnes a time interval in ms.

=byt=mapp=i=
SystemOperationalState

$E0OPSTATE_OFF
E0PSTATE_BIT

<8 OPSTATE_OPERATING
$E0PSTATE_COLD
$E0PSTATE_COOLING
{EOPSTAE_WARM
$E0OPSTATE_FAILED

<3 OPSTATE_DEGRADED
< OPSTATE_FAILSAFE

#=Endianism:RhpString=Big

gFormat:thString
Numer_Of_Byhes:thInbeger=2
gsmrt_nddress:thSh'ing
gsmrﬁng_Bybe_Number:thInbeger
g‘ﬁming_Consh'ainis:thSh’ing

(22 Units:RhpString

Usage:thString=Enumerabed value to spedfy syst...

Mumber_Of_Bits:RhpInteger=1
gsmrt_nddress:thSh'ing

&h Timing_Constraints:RhpString

gUsage:thSting

#E1bit_0:RhpString=0= Digital FALSE, 1= Digital TRUE

«iytemappeds
ERROR_TYPE

$ENO_ERROR

<iPOSITION_ERROR

S TIMING_ERR.OR.
<IPOWER_LEVEL_ERROR
<»3POWER_SOURCE_ERROR
<3HYDRAULIC_PRESSURE_ERROR

< 3HYDRAULIC_PRESSURE_HIGH_ERROR
<3HYDRAULIC_PRESSURE_LOW_ERROR
3HYDRAULIC_ACCURACY_ERROR
<35W_INTEGRITY_ERROR

<3 COMMAND_VALUE_ERR.OR

<3 COMMAND_VALIDATION_ERR.OR

Endianism:thSh’ing=Big

gFormat:thShﬂng

@Numer_Of_Bytes:thInteger=2
gsmrt_nddress:thSh'ing
gStarﬁng_Byhe_Number:thInteger
gﬁming_Consh'ainis:thSh’ing

(32 Units:RhpString

Usage:thSh'ing=Enumerated type used to identify errors

[ —
BITSET64

Mumber_Of_Bits:RhpInteger =64
g‘ Start_Address:RhpString
g‘ﬂming_ConsUainE:thSh'ing

Usage:thShing=Each of the last 63 bits {1..63) reprsents the status of a test outcome 0=fail, 1=pass
g‘bit_[):thSh'ing=Bit 0 has overall test result. Other bits are spedific to one test

Figure 234: Some additional base types

10.3 Create the Subsystem Model

We created the subsystem models at the same time as the Shared model
earlier in this chapter by using the SE Toolkit automation. If you have been
doing things manually and have not yet created the subsystem models, now

is the time.

Case Study: Handoff to Downstream Engineering

There are a number of subsystem models to elaborate but we will do only
one in this Deskbook — the Control Surface Subsystem. This was selected
because it has an interesting deployment architecture with mechanical,
electronic, and software aspects. Feel free to create the other subsystems
when you’ve completed this Deskbook.

The structure of the subsystem models is all the same. As a starting point,
the model has
e A copy (not a reference) of the subsystem specification package
from the systems engineering model
e Areference to the RequirementsAnalysisPkg of the system
engineering model (so the susbsytem can see its requirements)
e Areference to the PhysicallnterfacesPkg package of the Shared
model
o A reference to the CommonStereotypes package of the Shared
model
e An (empty) SubsystemSpecPkg to hold any additional requirements
work that must be done
e An (empty) DeploymentPkg to hold the deployment architecture.

| like to enable browser ordering (View > Browser Options > Enable
Ordering) to arrange the packages in this fashion:

B--ﬁs ACES_ControlSurfacePkgModel
- Components
-0 Packages
E-f7 ACES_ControlSurfacePkg
-} SubsystemSpecPkg
E-f7 DeploymentPkg
-7 RequirementsAnalysisPlg (REF)
-7 Physicallnterfaces (REF)
-7 CommonStereotypes (REF)
-7 CommonPkg (REF)
B PredefinedTypes (REF)
B PredefinedTypesCpp (REF)
EI[:I Profiles
E-f£51 HarmonySE (REF)
F1-f£3] SysML (REF)

Figure 235: Subsystem Model Organization

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 222



dy: Handoff to Downstream Engineering

| like to have a view of the requirements allocated to the subsystem. Such a R s O SirfacePiy : _
(= ACES_Control_Surface ) ACES_SS_requirement_32
table was defined in the system model CommonPkg::Subsystem Req Alloc EIACES Cotl Srincn | ACES, S5 pemert_33
[ _SS5_requirement _
Table Layout. | can include a reference to that. Complicating things just a (CIACES Cortrol_Suface |/ ACSCUNT_requremert_10
[CJACES_Control_Surface o/ ACSCUNT requirement_11
bit, the relation between the subsystem and the requirement is «allocate», (CJACES Cortrl_Sirace |,/ ACSCUNT_euremert_12
(TJACES _Control_Surface ) ACSCUNT _requiremert_13
. . . . . . . . ’ I i, L
which is defined in the SysML profile. So if you want to add this view, you'll (CIACES Cortrol Suface | o/ ACSCUNT reaurement 18
[J ACES_Control_Surface ./ ACSCUNT_requiremert_19
need to add to model (by reference) the CommonPkg::Subsystem Req Alloc (CJACES Cortrol_Surface |/ ACSCUNT rocuiremert 21
. . . . [TJACES_Control_Surface o/ ACSCUNT requirement_24
Table Layout (or duplicate it) and add SysML using Add Profile to Model. / ACSCUNT raquiremert 25
(CJACES_Control_Surface o/ ACSCUNT _requirement_26
[CIACES_Control_Surface o/ ACSCUNT _requirement_3
H H H . (TJACES _Control_Surface ) ACSCUNT _requiremert_7
To recap, the table layout was defined using the following context pattern: 100 ot Sto | CoaFe 1
[CJ ACES _Control_Surface +/ CorfigReq_3
(TJACES_Control_Surface / DerConfigReq_1
Advanced Table Options x (CIACES_Control_Surface / DerCorfigReq_2
[CJ ACES _Control_Surface o/ DerFunReq_1
Appearance: »/ DerlntReq_1
[CJACES _Control_Surface +/ DerlntReq_10
Collapse 1st column (CJACES _Control_Surface o/ DerlntReg_11
‘When pushing "Enter’ move selection to B = [CIACES Cortrol_Surace «/ DerlntReq_12
[CJ ACES _Control_Surface o/ DerintReq_14
Align column header menu ta: Right -~ [CJACES _Control_Surface +/ DerlntReq_2
[CJACES_Control_Surface o/ DerlntReq_8
) [CJ ACES _Control_Surface / DerReqint_13
B [CJACES _Corntrol_Surface «/ DerStartUpReg_1
Contest pattern: ) DerStartupReq, 2
- v .
{pkgiPackage®, {blkBlack, {allockllocation () ACES_Control_Surface J DerStartupRea_3
[CJACES _Control_Surface o/ EmorReq_26
[CJACES _Control_Surface +/ EmorReq_27
[CJACES _Control_Surface o/ EmorReq_28
[TJACES _Control_Surface ./ EmorReq_29
Colurnn name: format: [CJACES _Control_Surface ) EmorReq_3
${Property] in ${Context] [CJACES _Control_Surface o/ EmorReq_34
(I ACES_Control_Surface o/ EmorReq_35
./ EmorReq_36
Cereel (CJACES _Control_Surface o/ EmorReq_37
(I ACES_Control_Surface o/ FuncReq_25
[CJACES _Control_Surface o/ FuncReq_27
[CJACES_Control_Surface o/ FuncReq_28
. [CJACES _Control_Surface o/ FuncReq_29
and the following columns: SIACES Conrol_Sutoce |/ Faneq 40
[CJACES_Control_Surface o/ FuncReq_36
[CJ ACES _Control_Surface W/ FuncReq_37
i = e - T n (CJACES _Control_Surface « FuncReq_40
able Layout : Subsystem Req Alloc Table Layout in Generally tuffPkg - (JACES Contral Suface J OtherReq_D
General Description Columns  Relations Tags  Properties & (CJACES Conirol_Surface »/ OtherReq_1
(CIACES _Control_Surface +/ Rotate Cortrol Surface
Advanced Options... B e [CJACES _Control_Surface o/ SafetyReq_006
(TJACES _Control_Surface o/ Safety_Req_390202
Type Property  Column name Context (JACES Cortrol_Suface | ) Safety_Req_390207
General Attribute Mame Package pkg [CJACES_Control_Surface o/ Safety_Req_3%0209
General Attribute Mame Block blk (CJACES _Cortrol_Surface o/ Safety_Req_390210
General Attribute Name Allocated Req alloc (CIACES _Cortrol_Surface +/ Safety_Req_330211
v (=7 ACES_Control_Surface ) Safety_Req_390212
Locate QK (CIACES _Control_Surface o/ Safety_Req_330213
[CIACES_Control_Surface o/ Safety_Req_3%0214
ES_Control_Surface o/ Safety_Req_390215
(CJACES_Control_Surface o/ Safety_Req 390217
If you do that, you can create a table view that shows the requirements CACES Corirl_Sufoce | ) Sclety Rea 390213

allocated to the Subsystem. Figure 236: Requirements allocated to the Control Surface Subsystem

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 223



Case Study: Handoff to Downstream Engineering

It is recommended that you place this table view in a package nested within
in the SubsystemSpecPkg package, rather than ACES_ControlSurfacePkg
because the latter is likely to be replaced in subsequent interations of the
Harmony aMBSE process.

@ Add a package named SS_RegModel inside the SubsystemSpecPkg
@ Place the above created table in that nested package

B--ﬁs ACES_CentrolSurfacePkghModel
[ Components
[0 Packages
£ ACES_ControlSurfacePkg
Eltl SubsystemSpecPkg
E|D Packages
=71 §5_ReqModel
bo Comments
£ Object Model Diagrams
B System Requirements Allocated
W Subsystermn Requirements Allocated 1
B Subsystem Requirements Allocated 2
= Table Views
{20 Use Case Diagrams
(= Use Cases
DeploymentPkg
RequirementsAnalysisPkg (REF)
Physicallnterfaces (REF)
CommonStereotypes (REF)

-5
-£7 CommonPkg (REF)
-5

yiinfesyin Eyin)

SubsystemCommaonPkg
PredefinedTypes (REF)
PredefinedTypesCpp (REF)
-0 Profiles

&3]
&3]
&3]
E2
&3]
&3]
&3]
£

Another option for visualization of the requirements is to create some
OMDs and add the requirements on to them. The next three figures show
how this might be done.

allocated to this subsyste
systems model

Error Requirements

samets
ErrorReq_3

The system shall detect and report
the error condition:

BITfail _Built In Test failre (with
specific faiures reported)

Repiremerts
ErrorReq_29

‘The system shall detect and report
‘the error condition:

Right Flight Spoiler fail Right
fight spoiler movement out of spec

A,
Mission: Show the system and

subsystem derived requirements

m from the

Functional Requirements

“repsramets
FuncReq_27

The system shal control the Left
Ground Spoller from a minimum of 40
10 amaximum of +40 degrees

=t
FuncReq_28

‘The system shall control the Right
Ground Spoier from a minimum of -40
to-a maximum of +40 degrees

<dcompmShmirenerts
FuncReq_36

The precision of the commanded
values shal be +/-D. L degrees of
angle or +/-1cm of distance. The
range of acaracy of commanded and
measured positions achieved shal be

~Repiramt-
FuncReq_29

The system shall control the Left
Fiight Spoiler from 2 minimum of 40
10 amaximum of +40 degrees

[E——
FuncReq_37

‘The maximum time from a transition
of any control surface for a single
movement {incuding from minimum
position to maximum position or from
maximum position to minimum
position) shal be 3.0 seconds. The

Rt
FuncReq_30

The system shal control the Right
Fiight Spailer from a minimum of 40
to a maximum of +40 degrees

oot emerts
FuncReq_40

The system shall reportan error if the:
System has not achieved the
commended position +/-0.5 degrees
of a contrel surface within 3.0
seconds and shal enter

Configuration Requirements

+/-0.5 degrees or angle of 0.5 cm of
distance.

<amreres
ErrorReq_26

The system shall detect and report
the error condition:

Left Ground Spoler fail Left
ground spoiler movement out of spec

P e
ErrorReq_34

The system shall detect and report
the error condition:

Hydraiic under pressure
Hydrauiic pressure too low

<Ampirarests
ConfigReq_1

While in Maintenance Mode, the

Maintainer shall be able to

independently command the full
range of movement for each control

surface and receive achieved position

and time-to-complete each
commanded movement.

maximum time for a transition of a

control surface of less than 10
degrees shal be 1.0 seconds.

-t
ErrorReq_27

The system shall detect and report
the error condition:

Right Ground Spoler fal  Right
ground spoiler movement out of spec

st pmdheieemerts
ErrorReq_35

The system shall detect and report
the error condition:

Hydrauiic over pressure

Hydrauic pressure too high

e
ConfigReq_3

Accuracy of sensed position and
speed reported to the Maintainer
shall be atleastas accurate as that.
stored in system data.

Rireerts
ErroReq_28

‘The system shall detect and repart
the error condition:

LeftFlight Spoiler fail Left
flight spailer movement out of spec

P
ErrorReq_36

The system shall detect and report:

the error condition
Electrical fault
system fault

Internal electrical

e
ErrorReq_37

‘The system shall detect and report
the error condition:

Power fault Internal or source

power fault

Figure 237: Subsystem requirements — 1

=]

Mission: Show the
system and subsystem
derived requirements
allocated to this
subsystem from the
systems model

nmptania
DerlnReq_10

Each control surface subsystem shal
detect faults and report them to the
ACES Management subsystem.

sty
DerConfigReq_1

Each control surface urit shall be
support configuration to set min and
max positions, hydraulic and power
inputs and error imits, and zero
position.

pere——
DerFunReq_t

Once a each control surface has
acheived its commanded position, it
shall maintain station keeping
adjustments to keep it within 0, 1
degrees of angle or 0. 1cm of
extension, as appropriate, at least 10
times per second,

nmptarins
DerlntReq_1

cnsmystanie
DerlntReq 2

cnmystanie
DerlntReq_8

The Control Surface subsytem types
shallprovide an interface to set and
get the commanded control surface

position.

The Control Surface subsytem types
shall provide an interface to get the
measured control surface position

Derived Interface Requirements
“The contral surfaces subsystms
shall provide an interface to request
their hydraulic and power status

Ere—
DerlnfReq_11

Each control surface subsystem shal
detect power faults and report them

to the ACES Management subsystem.

srmprenets
DerlntReq_12

Each control surface subsystem shal
detect hycraulic fauts and report
them to the ACES Management
subsystem.

Derived Configuration Requirements

nmystanieg
DerConficReq_2

Each control surface unit shall provide
the abilty to respond to requests for
current configuration settings.

Derived Functional Requirements

-
DerReqint_13

Each control surface subsystem shall
detect movement fauits and report
them to the ACES Management
subsystem.

Derived Startup Requirements

syt
DerStartUpReq_1

Each control surface unit shall
support a Bt In Test (T) that s
only available whie not operational,
for checking movement ranges,
accuracy, and tming.

cnmpstanie
DerStartupReq_3

All BIT and PBIT resuts from the
Control Surface subsystem shall be
reported to the ACES Management
System,

Rmpirarais
DerlntReq_14

Each control surface subsystem shall
detect timing faults and report them
o the ACES Management subsystem,

cooeystemtes
DerStartupReq_2

Each control surface unit shall
support periodic BIT (PBIT) run at
least every 30 seconds; this test
suite shall only run tests which do not
interfere with surface contral
operation.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 224




Figure 238: Subsystem Regauirements - 2

Derived ASCUNT Requirements

=}

Mission: Show the system and
subsystem derived requirements
allocated to this subsystem from
the systems model

«xrysiamiag
ACSCUNT requirement_25

Each control surface unit shal have,
as persistent configuration data, low
and high mavement limits, required
measurement accuracy, and
movement time limits.

e
ACSCUNT _requirement_24

Each control surface unitinstance
shall have a unique identifier which

TS —-
ACSCUNT_requirement_12

If achieved position of any control
surface unit is out of spedification or
takes longer than 3.0s, the contral
surface unit shall inform
ACES_Management of the error

uimpstemitens
ACSCUNT_requirement_26

Each surface control unit instance
shall report an error to the
ACES_Management subsystem if the
result of a commanded movement is
out of specification either in accuracy
or timing.

r—————
ACSCUNT _requirement_18

Each control surface subsystem shall
report movement completion to the

[ —
ACSCUNT_requirement_10

The accuracy of movement of the
contral surface shall be +/-0.5
degrees angle of +/- 0.5 am distance.

entmystemime
ACES_SS_requirement_32

Any subsytem running software shall
~both at start up and upon command
-run an integrity check of the
installed software object code
verified by a method at least as
robust as 32-bit CRC check

«<sutaystamizg
ACSCUNT _requirement_19

The ACES_Management subsystem
shall listen for life ticks from each

[P —
ACSCUNT_requirement_11

Each control surface shall measure
achieved control position with an
accuracy of +/- 0.05 dearees or +/-
0.05cm

enimystemins
ACES_SS_requirement_33

Any subsytem running software that
contains configuration data shal -
both at start up and upan command -
run an integrity check of the
installedconfiguration verified by a
method at least as robust as 32-bit
CRC check as wel as reasonable
range checks.

e
ACSCUNT _requirement_21

Each control surface input shall issue
a life tick message to the

shall be used to in messages to the
ACES_Management subsystem.

ACES_Management subsystem with surface control subsystem interface,
acquired measured position and time expecting them to arrive atleast
required for the movement. every 0.5s,

ACES_Management subsystem at
least every 0, 55.

P ——— rtmytemie prr -
ACSCUNT_requirement_7 ACSCUNT_requirement_3 ACSCUNT _requirement_13

unimpstemitens
ACES_SS5_requirement_34

All subsystems other than the
ACES_Management subsystem shall
report error status and BIT results
upan query or upan completion of
commanded position and current tests.

measured position.

Each control surface shall accept a
command for it's position and wil
respond with both current

Each control surface shall accept a
command to mave it to the desired el e
position and shall begin movemert ACES_Management subsystem to set
— : rotational position.

All control surfaces shall accept

Figure 239: Subsystem Requirements - 3

If you draw these diagrams, they should also be placed in the
SubsystemSpecPkg::SS_RegModel package.

10.4 Define the Interdisciplinary Interfaces

This and the next section deal with the subsystem deployment architecture.

The deployment architecture involves the
e Identification of the design work products (which we’ll call
components here) of different engineering disciplines
e The definition of the interdisciplinary interfaces between these
components
e The allocation of requirements to the different components

Case Study: Handoff to Downstream Engineering

What we do not want to do is to define the structure of the software,
mechanical, electronic, hydraulic or pneumatic aspects; we have
engineering specialists to do that after the hand off is complete. We want to
specify these component just enough that we can do a good job of the tasks
listed above. Specifically, this means that we will not define the internal
software, mechanical or electronic structure here. That is important. Leave
that works for the experts in those disciplines.

In the DeploymentPkg, add a new Object Model Diagram (OMD)
named Deployment Architecture.
Fill out the diagram as shown in Figure 240

Mission: Show the estiectronicsiocktlectronicstlock
deployment architecture
for the Control Suriace T o ——————

subsystem type W _EE Timer | plimer

Bimer

W EE Tisr

m,v0 it
SHL_¢E_Tumer
i MsEEMovementControtEEMovementControl
eriydraukcCenl el
SN EE fiydraics
| sstEHydraubcsControbtL HydraubcsControl
SW_EE Movement
peirface peurface

W EE foyceouics
“trcaiacaon_se_pacace-
SW_EE_Hydraubes

HSEECOmATEECOMM
SWLEE COM | o
poomn
W _EE_Gorm
etz
HE_WY phearng phydracs
£ _E Movement M ydeaiics
“lomtacnom_se_rtacer “trtwticnun_se_rrwdace- ioatace,se_ma_iwca- T
ISW_EE_Hovement SW_EE_ Comm IEE_ME_Hovement EE_ME_Hydraukics £ ME Movement = Ve Hydraukcs
oot FMatar
f —attancs ' ez

Figure 240: Deployment Architecture for the Control Surface Subsystem

Note that four discipline related components (shown as classes) are
depicted in Figure 240:

e Software Block

e Electronics Block

e Maechanical Block

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 225



Case Study: Handoff to Downstream Engineering

e Hydraulics Block

Each of these elements has an abbreviation of the discipline in the name,
but more importantly carries a stereotype indicating it's domain:
«software», «electronic», «mechanics», and «hydraulic». Each of these is a
stand-in for the collection of all design elements of the respective
engineering discipline.

The Electronics block is broken down into 4 primary functional components:
o Timer Block
e Movement Control Block
e  Hydraulics Control Block
e Communications Block

These should not be interpreted as a constraint on the electronic design.
The only reason these functional components are identified at all is because
the software-electronic interface is reasonably complex and identifiying
these different components allows us to separate out the interfaces. This
could have been done with a single port (one on the software block and one
on the electronics block) and multiple provided and required interfaces. This
could even have been done without creating the internal electronics
components, but this does show the expected relation between the
software commands intended to affect the mechanical and hydraulic parts
(mediated by the electronics).

Note the direct associations between the electronic and mechanical blocks
and the mechanical and hydraulic blocks. By convention (for deployment
architecture only), | use ports to indicate connections that carry dynamic
flows, such as software commands or mechanical force, and use direct
associations to indicate non-behavioral (static) connections. Examples of
static connections include cable management and mechanical fastenings.
They are an important aspect of the design and so are represented on the
deployment architecture.

Also shown are the currently empty interfaces. These interfaces must be
detailed as to the information they carry and they means by which they are
accessed by the participating disciplines.

10.4.1 Specifying the interfaces

It is important that the specification of interfaces — even when ultimately
performed by the systems engineers — is done with the cooperation and
agreement of engineers representing the affected disciplines. It is our
experience that defining the interfaces late in the development process has
been a leading cause of integration failure. Therefore, we will endeavor to
do a good job of specifying the interfaces to clarify the anticipated
collaboration of the designs from the contributing engineering disciplines.

Having said that, we also anticipate that the interfaces are likely to change.
This is especially true in an incremental, iterative process. The keys to
interdisplinary success are to
1. Specify the interfaces, including the services and physical
implementation mechanisms using the best information currently
available
2. Hide the actual designs behind the interfaces
Freeze the interfaces under configuration control
4. Later—if and when an issue with the interface is discovered — then
thaw the interface from configuration control, renegotiate and
refreeze the interface

w

Key Interface concept
The engineers on both sides of an interface should always have a
known target to meet. It’s ok if this target changes downstream in
a controlled fashion with the knowledge and agreement of the

affected parties.

To start with add a new package named InterdisciplinarylnterfacesPkg
inside the DeploymentPkg package. Move all created interfaces there. This
structuring will make it easier to create specific table views of the interface
details later.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 226



The software-electronic interfaces

The deployment architecture in Figure 240 identifies four separate sw-ee
interfaces. In this section, we will detail those interfaces. To do so, we will
use the stereotypes in the CommonStereotypes package such as
«memorymapped» and «interruptmapped». These define the interface

metadata of interest.

First, let’s look at the timer services, as specified in the interface
iSE_EE_Timer. This is shown in Figure 241.

“Interface,swr_se_interfacer
ISW_EE_Timer

= «memorymappeds tmerRegist er:unsigned int
= «memorymapped» timerContraRegister:unsigned short

[}

Mission

Show the interface details for the SW-EE
memary mapped interface ISW_EE_Timer

Aftributes

S cmemorymacped> zero Timen(): wid
& «memorymagpeds start Timer():wid
= memorymappeds stap imer():void
& «memorymappeds resd Tmert):vord

amemorymappeds
timerRegister:unsigned int

Provides the 32 bit unsigned value of the timer when read. Writing to this register has no effect.
Units are ms.

Operations / Services

amemonymapped»
zeroTimer():void

(2 Bitmap: RhpString

(2= Numer_Of_Bytes:RhpString

(:=Range_High:RhpReal

(2= Range_low:RhpReal

(3= Start_Address:RhpString

(2= Timing_Constraints:RhpString

401 Usage:RhpString=Write a 1 to bit 0 in timerControlRegister

] Bitmap:RhpString=32 bit unsigned
i Numer_Of_Bytes:RhpString=4
= Range_High:RhpReal=2~32 - 1
¥=IRange_low:RhpReal=0
S start_Address: RhpString=0400-0000
(42 Timing_Constraints:RnpString
#1 Usage:RhpString=This & a read only register holding the efapsed time in ms

amemarymapped
timerControlRegister:unsigned short

eremenmagpat-
stopTimer():void

Writing 0 to a bit has no eflect. Writing a 1 to a bit invokes the specified behavior.
bit 0 - zero timer

bit 1 - start time: from zero

bit 2 - stop timer

bit 3-7 unused

(= Bitmap:RhpString

(4= Numer_Of Bytes:RhpString

(2= Range_High:RhpReal

(2= Range_low:RhpReal

(= start_address:RhpString

(2= Timing_Constraints:RhoString

¥ Usage:RhpString=Write a 1 bit to bit 2. Stops the timer.

41 Bitmep:RhpString=bit O=zero, hit 1=start, bit 2=stop

#CINumer_OF_Bytes:RhpString=1

(3= Range_High:RhpReal

(2= Range_low:RhpReal

¥ Start_Address: RhpString=0400-0002

(22 Timing_Constraints:RhpString

0 Usage:RhpString=bit 0 - zero timer ...bit 1 - start time from zero...bit 2 - stop timer...bit 3-7 unused

“remonmapced-
startTimer():void

(2= Bitmap:RhpString

(3= Numer_Of_Bytes:RhpString
(£5Range_High:RhpReal

(2= Range_low:RhpReal

(2= start_Address: RnpString

(= Timing_Constraints:RhpString

CUsagerRhpString=Write 3 1 bit to bit 1. Starts time from current value. If 3 1 bit iis written to bit 0, the timer st...

ememenymagpeds
readTimer(}:void

(= Bitmap:RhpString

(2= Numer_Of _Bytes:RhpString
(:=Range_High:RhoReal

(= Range_low:RhpReal

(= start_Address:RhpString

(2= Timing_Constraints:RhpString

42 Usa ge:RhpString=First stop the time by writing 1 to bit 2. Then read the value (in ms) from the timerRegister.

Figure 241: Details of iISW_EE_Timer interface

Case Study: Handoff to Downstream Engineering

The tags defined by the «memorymapped» stereotype define the interface.

There are two memory mapped attribute. The first is timerRegister:

«memonymappeds
timerRegister:unsigned int

Provides the 32 bit unsigned value of the timerwhen read. Writing to this register has no effect.
Units are ms.

#51 Bitmap:RhpString=32 bit unsigned

Mumer_Of_Bytes:RhpString=4

i=iRange_High:RhpReal=2"32 - 1

Range_low:RhpReal=0

SGrt_."—\J:Idr&cs:thString=D.-\DD—DDDU

g Timing_Constraints:RhpString

# Usage:RhpString=This is a read only register holding the elapsed time in ms

We see that this electronic register is 32 bits wide, at address 0A00:0000
and holds the current timer value when read.

The other attribute is the timerControlRegister. It is 8 bits wide and is

located at address 0A00:0002. It has the following bits: writing a 1 bit to bit

0 sets the timer value to 0; writing a 1 bit to bit 1 starts the timer; writing a
1 to bit 2 stops the timer. Writing a zero value to a bit has no effect.

«memorymappads

timerControlRegister:unsigned short

Writing 0 to a bit has no efiect. Writing a 1 to a bit invokes the specified behavior.
bit 0 -zero timer

bit 1 - start time from zero

bit 2 - stop timer

bit 3-7 unused

49 Bitmap:RhpString=bit O=zero, bit 1=start, bit 2=stop

Numer_Of_Bytes:thString=1

[E‘Range_High:thReal

(= Range_low:RhpReal

SGrt_Address:thString=DADD—DDDE

ﬁg:'Timing_Constmints:%pString

4 Usage:RhpString=bit 0 - zero timer ...bit 1 - start time from zera...bit 2 - stop timer. ..bit 3-7 unused

The operations defined merely use the memory mapped registers. They are

not invoked as normal operations, but they specify how to invoke services.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 227



For example to start the timer with the startTimer operation, it is really
meant that the software will write a 1 to bit 1 at address 0A00-0002.

amemorymappede
startTimer():void

This "pseudo-operation” is defined only to represent how the start timer semvice is invoked. It is done by writing a 1
to bit 1 ofthe timerControlRegister.

ﬁg“ Bitmap:RhpString

(2= Numer_OF_Bytes:RhpString

[E Range_High: RhpReal

Lg Range_low:RhpReal

[%‘ Start_Address: RhpString

LETiminngonstm\nts:thString

Usage:thS‘tring=V\.’rite a 1 bit to bit 1. Starts time from current value. If a 1 bit iis written to bit 0, the timer starts from 0

Next, let’s look at the iSW_EE_Comm interface. This allows the software to
send messages out through the communications bus. There are four
memory-mapped attribues:
e controlRegister — sets the properties of the communications,
including
o Parity (on/off, and even/odd),
o LSB/MSB first,
o Data Length (7 or 8 bits)
o Channel selection (0-15)
e statusRegister — returns the status of the communications
o Loopback (on/off)
Framing error
o Overrun error
o Parity error
e receiveBuffer — where values appear when received
e transmitBuffer — wher values are written to be sent

O

Figure 242 shows the details, mostly stored in the tags from the relevant

Case Study: Handoff to Downstream Engineering

“Irieface.sw_ee_ineracer
SW_EE_Comm

= <bitmapped= controlRegister:unsigned int

= bitmappeds statusRegister:unsigned int

= <bytemappeds receiveBuffer:unsignad int

= <bytemapped» transmitBuffer unsigned int
«bytemappeds interrupthiumber :unsigned int

setCe

itmappeds getStatus()unsigned int

nt

&
=
=
&

.
receiveBufferunsigned int

pro—
statusRegister:unsigned int

r—
controlRegister:unsigned int

This is where involve values coming, 16 bits at
atime.

(A2 Endianism:RhpString=Big

(XS Format:RhpString

4=INumer_Of Bytes:Rhplnteger =2
“Istart_Address:RhpString=0A00:0A10

(&= starting_Byte_Number:Rhplnteger

(35 Timing_Constraints:RhpString

(A8 Units:RhpString

#=Usage:RhpString=Read incoming data as 2 bytes

Holds and sets the status values of communications

(E=Mumber_Of_Bits:RhpInteger
“cistart_Address:RhpSiring=0A00:0102

(= Timing_Constraints:RhpString

{ClUsage:RhpString =Provides hw comm status
iclbit_0:RhpSiring=_oopback (Listen enable) 0=disable, 1=enable
fbit_1:RhpString=Framing error detected 0=Na error, 1=errar
“Cabit_10:Rhpstring

(*2bit_11:RhpString

(2bit_12:RhpString

(Ebit_13:RhpString

(E2bit_14:RhpString

(#2bit_15:RhpString

“Cabit_2:Rhpstring=Overrun error detected 0=No error, 1=errar
4cbit_3:RhpString=Parity error detected 0=No error, 1=error

AQkit AR Ctinn

Channel number is 4 bites wide for a total
of 16 possible channels. It is anticipated
that the channels connect to different
subsystems.

Start_Address:RhpString=0A00:0100

(32 Timing_Constraints:RhpString

¥ Usage:RhpString=Sets comm parameters
@ibit_0:RhpString=Parity: Disable (0) Enable ...
#bit_1:RhpString=Parity Mode: Even (0}, O...
#bit_10:RhpString=InterruptEnable: Disable...
(22bit_11:RhpString

(#2bit_12:RhpString

(3bit_13:RhpString

((=2bit_14:RhpString

(2 bit_15:RhpString

<bytemaond
transmitBuffer-unsigned int

This is where outgoing values are sent by wiiting to this buffer, 16 bits at a time

(3= Endianism:RhpString =Big
(*DFormat:RhpString

%=INumer_OF Bytes:Rhpinteger=2
Start_Address:RhpString=0A00-0104
(Dstarting_Byte_Number:RhpInteger
(3= Timing_Constraints:RhpString

(XS Units:Rhpstring

4=l Usage:RhpString=A write to this address signals the system to send the 2 bytes to the selected channel

&bit_2:Rh 5B First (0), MSB First (1)
#bit_3:RhpString=Data Length: 7-bit (), 6-...
@=bit_4:RhpString =Number of Stop bits: One ...
#=bit_5:RhpString=Channel number bit 0
#bit_6:RhpString=Channel number bit 1
@3bit_7:RhpString=Channel number bit 2
#=bit_8:RhpString=Channel number bit 3
(=bit_9:RhpString

[ —
interrupthumberunsigned int

If enabled in the StatusRegister, this interrupt is

raised when a new value has been written to the receiveBuffer.

(A2 Endianism:RhpString=Big

(B Format:RhpString

4=INumer_Of Bytes:Rhplnteger =2
“IStart_Address:RhpString=0A00:0106
(&= starting_Byte_Number:Rhplnteger
(32 Timing_Constraints:RhpString

(38 Units:RhpString

#lUsage:RhpString=This specifies the software interrupt to raise when data arrives in the receive buffer and interrupts are enabled in the control register

Figure 242: Details of iISW_EE_Comm interface

The iSW_EE_Hydraulics and iSW_EE_Movement interfaces are a bit

simpler:

stereotypes. The operations are detailed but not shown, since they primarily

just access the attributes. Note, however, that the operation

incomingValueReady() is interrupt-mapped. When interrupts are enabled in

the control register and a value is received, the specified interrupt is
invoked.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 228




S—.
aperature:unsigned int

Read write register that sets the gperature of the hydraulics valve.

(*2Bitmap:RhpString
4INumer_Of_Bytes:RhpString=2
#IRange_High:RhpReal=65535 (fully open)
elnteface,sw_se_interface =IRange_low:RhpReal=0 (fully dosed)
iSW_EE_Hydraulics #=i5tart_Address:RhpString=0A00:0120
g‘ﬁming_Constraints:thsmng
#IUsage:RhpString=R \W. Write to set the aperature. Read to see its current value

= «memorymapped: aperature:unsigned int
| «bytemapped» pressure:int

[Er—
pressuresint

Read only register that provides the pressure in the hydraulic circuit in kPa

(*2 Endianism:RhpString=Big

(2 Format:RhpString

4INumer_Of Bytes:RhpInteger=2

¥ Start_Address:RhpString=0A00:0122

(*= starting_Byte_Number:Rhplnteger

(2 Timing_Constraints:RhpString

#=Units:RhpString=kiloPascals (kPa)

#=lusage:RhpString=Read only. Provides the current value of pressure in the hydraulic drauit.

Figure 243: Details of iISW_EE_Hydraulics interface

byt
measuredPosition:int

Read only register that provides the measured position of the control surface in the range of -180
to 180 degrees, in units of 0.01 degrees.

((ZEndianism:RhpString=Big
({SFormat:RhpString
#=iNumer_Of Bytes:Rhplnteger=2
“start_Address:RhpString=0A00:0124
et (Sstarting_Byte_Number:Rhplnteger
iSW_EE_Movement (2= Timing_Constraints:RhpString
%=lUnits:RhpString=0.01 Degrees.
#Usage:Rhpstring=Read only. Provide measured pasition in range -180 to 180 in 0.0 1Degree units

[ <bytemappeds measuredPosition:int
= <bytemappeds commandedPositionzint

[ —
commandedPositionzint

Write only register that sets the commanded position of the control surface in the range of -180
to 180 degrees, in units of 0.01 degrees.

(ZEndianism:RhpString=Eig
(& Format:RhpString
lumer_Or_Bytes:Rhplnteger=.
“Numer_Of Bytes:Rhpinteger=2
uStart_Address:RhpString=0A00:0126
(2=5tarting_Byte_Number:Rhplnteger
(2= Timing_Constraints:RhpString
Units:RhpString=0.01 Degrees
[=1 h
Usage:Rhpstring=Sets the commanded angle from -180 to 180 degrees in units of 0.01 degrees.
[=1 hy the ded ange fri d 0,01 d

Figure 244: Details of iSW_EE_Movement interface

Showing the interfaces in a table

These interfaces can be shown in a table format as well as diagrammatically.

This will be similar to the Class and Attributes table layout we used in the
Shared model, but in this one we want to show operations as well.
@ Add a new top level package named SubsystemCommonPkg.
@ Right click on the new package and select Add New > Tables and
Charts > Table Layout. Name this layout Class And Features Layout.

Case Study: Handoff to Downstream Engineering

& Set the context pattern and columns and shown below

Table Layout : Class and Features Table in SubsystemCommonPkg - ﬂ

General Desciiption Columns  Relations Tags ~ Properties

Advanced Options e - T
Type Property Column name Context
General Attribute Name Class cls
General Attribute Name Operation ops
General Attribute Name Atrtibute Attr
General Attribute Classifier Attribute Type Attr
General Attribute Name Tag tags
General Attribute Value Tag Value tags

Advanced Table Options X

Appearahce:

Callapse 18t column

‘when pushing "Enter"' move selection to; Down e

Align column header menu to: Right

Contest table:
Contest pattem:

{pkalPackage®, {els}Class, {Atdatkibuteliops}Operation, {tagsiTag,

Column name format:
$[Property] in $[Context]

Cancel

< >

Locate oK

Especially note the use of the “|” (vertical bar) as an “or” operator in the
context pattern.

& Add a new table view in the DeploymentPkg >
InterdisciplinarylnterfacesPkg named Interdisciplinary Interface
Details.

@ Right click on the new table view and set the scope to be the
InterdisciplinarylnterfacesPkg package and the layout to be Class
And Features Layout.

The table, shown in the next two figures, should look something like this:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 229



ngineering

Class Operation [ Autbute Atributs Type | Tag [ Tag value
CJiEE_ME_Hydraulics
Bl &iEE_ME_Movement
= rotationRate & int
= valveApersture | < double 4 High_Range Q25
= valveAperature <> double #=Low_Range Li=T1]
= valveApersture | < double g Units Qem
= valveAperature <> double i=accuracy =00
= valveApersture | < double 4 precision C=TiI]
B Elisw_EE_Comm
[ controlRegister | < unsigned int %= Number_Of Bits Qs
= controlRegister < unsigned int %3 Start_Address %=10A00:0100
= controlRegister & unsigned int 43 Usage %=1 Sets comm parameters
= controlRegister < unsignedint  &bit_0 %=1 Parity: Disable (0) Enable (1)
[ cortrolReqister | > unsigned it | 4bit_1 “caParty Mode: Even (D), Odd (1)
= controlRegister < unsignedint  #=bit_10 &=l IntemuptEnable: Disable (D), Enable (1)
[ controlReqister | <> unsigned it ébit_2 2aLSB First (0). MSB First (1)
= controlRegister < unsignedint  &bit_2 %=1 Data Length: 7-bit (D). St (1)
= controlRegister & unsigned it dbit_4 4= Number of Stop bits: One stop bit {0), two
stop bits (1)
= controlRegister < unsignedint  #=bit_5 %=IChanne! number bit 0
[ controlRegister | < unsigned it 4bit_6 %z Channel number bit 1
= controlRegister < unsignedint  &=bit_7 %=IChannel number bit 2
[ controlRegister | < unsignedint 4bit_8 %z Channel number bit 3
[ intemupthumber | < unsigned int %) Numer_Of_Bytes (=
[ intermuptNumber | < unsigned it 3 Stant_Address %10A00:0106
E intemupt Number < unsignedint %=1 Usage %= This specifies the software intemupt to
raise when data amives in the receive
buffer and intemupts are enabled in the
H receiveBuffer < unsigned int 43 Numer_Of_Bytes a2
= receiveBufier < unsigned it %3 Start_Address %=10A00:0A1D
H statusRegister < unsigned it 43 Start_Address %c10A00:0102
= statusRegister & unsignedint %3 Usage %=1 Provides hw comm status
= statusRegister < unsigned it &bit_0 Qﬁll{ouphg‘:k {Listen enable) D=disable.
=enaple
= statusRegister < unsigned it 4 bit_1 Qﬂqmmlng emor detected 0=No eror,
=ermor
= statusRegister < unsigned int #bit_10 =
= statusRegister < unsigned int | dabit_2 Q@?vem emor detected O=No emor,
=emor
= statusRegister & unsigned int  ébit_3 % Parity emor detected D=Mo eror, 1=smor
= transmitBuffer < unsignedint 43 Numer_Of_Bytes L=}
= transmitBuffer < unsigned it %3 Start_Address %=1 0AD0-0104
= transmitBuffer < unsignedint 43 Usage 41 A wiite to this address signals the system
o send the 2 bytes to the selected
& IncomingValue Ready
H getStatus
& readincomingValue
[ sendOutgoingValue
 setControlValues = receiveBuffer & unsigned it ¥ Usage 4z Read incoming data as 2 bytes
B Elisw_EE_Hydrulics
= aperature < unsigned it 4 Numer_Of_Bytes az
= aperature < unsigned it 43 Range_High 41165535 fuly open)
= aperature < unsigned it %=1 Range_low 20 fully closed)
= aperature < unsigned it 43 Start_Address %c10A00:0120
= aperature & unsigned int ¥ Usage 4=IR/W. Writs to set the apsraturs. Read to
see it's cument value
= pressure O int &= Numer_Of_Bytes =2
= pressure &t 4 Stant_Address 41DADD:D122
= pressure O int &= Units iakiloPascals kPa)
= pressure &t 4 Usage 4z Read only. Provides the currert value of

pressure in the hydraulic circuit

Figure 245: Interdisciplinary Interfaces - Part 1

Class | Operation [ Atioute Atibute Typs | Tag [ Tag Value

Bl =iSW_EE_Movement

= commandedPosti... < int % Numer_Of_Bytes =2

= commandedPosti...| < int “c Start_Address 404000126
= commandedPosti... < int %= Urits %001 Degrees
= commandedPosti...| < int icUsage % Sets the commanded angle from - 180 to

180 degrees in units of 0.01 degrees.
= measuredPosttion | < int %= Numer_Of_Bytes =2
= measuredPosition | < int 41 Start_Address 4c0AD00124
= measuredPosttion | < int = Units %001 Degrees

= measuredPosition | < int 4lsage 41Read orly. Provide measured position in
range -180to 120in 0.01Degree units

Bl =iSW_EE_Timer

= timerControlRegis... < unsigned %=1 Btmap &bit O=zero, bit 1=star, bit 2=stop

short
= timerControlRegis... < ursigned 4 Numer_Of_Bytes al
short
= timerControlRegis... < unsigned 43 Start_Address 4=10A00-0002
short
= timerControlRegis... < unsigned &= Usage &=bit 0 - zero timer
short bit 1-start time from zero
bit 2 - stop timer
bit 3-7 unused
] timerRegister < unsigned irt 43 Bitmap 32 bit unsigned

< unsigned it %=1 Numer_Of_Bytes =T

< unsigned int | %1 Range_High =27321
< unsigned it %=1 Range_low a0

< unsigned int %3 Start_Address é=10200-0000

< unsigned it %=1 Usage 4 This is a read only register holding the
elapsed time in ms

= timerRegister
E timerRegister
= timerRegister
E timerRegister
= timerRegister

& readTimer = timerRegister < unsigned int %] Usage 43 First stop the time by writing 1to bit 2
Then read the valus (n ms) from the

E startTimer “Usage & Wite a 1 bit to bit 1. Starts time from
cument value. 3 1bit iis written to bit 0,
the timer starts from 0

| stopTimer “cUsage 4 Wirite a 1 bit to bit 2. Stops the timer.

B zeroTimer = Usage %= Wiite & 1to bit 0 in timerControl Register

Figure 246: Interdisciplinary Interfaces - Part 2

10.5 Allocate Requirements to Engineering Disciplines

Each engineering discipline within the subsystem must also know their
requirements. You must take each requirement allocated to the subsystem
and either allocate it directly to an engineering discipline or decompose it
into derived requirments that are then so allocated. In a SysML model, this
can be done on a Requirements Diagram or in a table. In this UML
subsystem model, it can be done on an OMD or in a table.

Personally, | prefer to create the new requirements on diagrams but later
view the results in tabular form. This work should be done in the
SubsystemSpecPkg > SS_ReqModel package. This package already contains
the diagrams showing the allocated requirements and the Subsystem
Requirements Table View, previously created. How | like to perform this
task:

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 230



& Create a new diagram for the purpose of allocation to the
engineering disciplines
& Drag the blocks representing the disciplines onto the diagram
@ One at a time, drag a requirement onto the diagram and either
o Create an allocate relationship from the block to the
requirement, OR
o Create new, derived requirements
o Add a derive relation between the original and the new
requirement(s)
o Draw an allocate relation from the engineering discipline
blocks to the new requirement(s)
@ Add new diagrams as necessary
& Repeat until all requirements are allocated

The diagrams below are typical of this effort.

Funceq 27 Funde_28 Funceg 25 Funcieg 30
The system shal control the Left The system shal control the Right The system shal control the Left. The system shal cantrol the Right
Ground Spoer from a mrimm of 40 Ground Spoer from a minkeurm of 40 Fight Sposer ram & nrsmum of -3 Fight Spoler Fom a mewnum of 40
1o 2 maimn of 30 degrees o 8 mamu of 40 degrees. 0.8 mamu of +40 degrees 0.2 maximum of +40 degrees
cracel
'« s e
st
— requrement_13
C reqrement i1
Mission: show the derivation and e
allocation of disciphine-specific The Cantrol Surface Subsyst
b The Control Surface Subsystem poston hydrauics shal provide enough
shal be cantrolable from between -40 I force to move the control
s +30 degrees surface from at least 40 to 440
depress
e
dernes
requrement_13 requenent_17
desives hesives walocates
e The Control Surface Subsyst
mechancs shal be sble 1o rave
The Constrl Surface Subsystem o — reqirement_1§ "
5 shal ccept cammards fo 4 e A e
‘set the control surface position e
requrement_15 bk Srutes
The contel Subsyst
e oo sufoce Sussten electroncs shal sczent softnare
‘store lower usper ‘commands to set hydraukcs
the cantrcl valve postion from compbetaly Opmratins
puig shal only accept mavement das=t o compietely azen
commands that are within the
- current setlower and,
- 7 Dawton setongs and retum an
vor message for out of bound hacates
i commands. :
<alecates _ <locate ;
el ~secronc E
— allocate» HechanicalBlock:
SoftwareBlock HectronecsBlock
e
amrees -
Operatins
p— [r——

Figure 247: Derivation of Discipline-Specific Requirements - 1

Case Study: Handoff to Downstream Engineering

Note that in Figure 247 requirement_11 is really an abstraction of all the
specific requirements about the subsystem movement ranges, and then
discipline-specific requirements are derived from that. Then those new
requirements are allocated to the different engineering discipline blocks.

o EE——
Mission: show the derivation and R
allocation of discipline-specific
requirements
‘The preciion of the commanded values shal be
+/-0.1 egrees of angle or +/-.1.cm of
distance, The range of accuracy of commanded ==
e and measured positins achieved shal be +/- e
FuncReq 0.5 degrees or angle of 0.5 an of distance, v
e
requirement_23
The system shallrzport 2n error f the system 5 7 x i =
has not achieved the commanded position +/- 2 AT n P\
0.5 degress of a control surface within 3.0 e : L
seconds and shall enter FAILSAFE_STATE ; i b5 The mecharics shallbe able to
daves § g i | position the control surface ehydrasics
N P H S within 0. 1 degress of angle: HydraulicsBlock
i - erves g = =
requrement_25 , g
o reurenen 22 cpereers
The software shall command the 4 X
position of the control surface with an v : s
£0.1dk Fangk : requirement_21 ' <alpcates
aceurey of0. 3 degress ofenge 4 * = <erive»  The dlectronics shal report i
= 5 measured value aperature with
] ] i an acauracy of 0.5 mm
<alocater 7 The electronics shall be able to
Alloca N - control the hydralic value . R =
H = aperature with an accuracy of 5 ToEE
requrement 26 ea ‘ . B
. v . allocate»
; The software shal command the - | oy Asbutes
gllocates - hydraulic aperature with a fidelity
] ofo -
¢ Electronicsalock Operations
<allocates e ertes
: ' i e
~sofwares =
- Operations
Softwareslock o
The electronics shall repart to
Adtributes e
e position of the control surface
- e within 0.1 degrees of anle.
perations |- <alocates

Figure 248: Derivation of Discipline-Specific Requirements - 2

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 231



Case Study: Handoff to Downstream Engineering

o e e Of course, this data can be visualized in tables. We’ve covered requirements
Sl L geenessete e bRt ~ tables previously, so we'll just show the allocation table.
e — > The maximum tme from a transition degrees in less than 0.55 Qlééééé;"' . -m;-:mc .
resfenen 2 — e A e & Right click on the SubsystemSpecPkg > SS_ReqModel package and
B | m— P select Add New > Views and Layouts > Table View
w — e 4M . | R s © Name this table view Discipline Requirements Allocation Table.
1 — AN — © Right click on the new table and select Features.
SRR g W e © In the Features dialog, set the Table Layout to the Alloc Table
— - 55’"*3”33;\ Sl Layout (which is located in the SysML Profile package).
= p— P & Set the scope to the entire model (default)
T CEN - R @ Click oK
m;iw':’m; . F\\‘ A 10 degrees in Iess than 0.55 Operations
e e The table shows the all allocations in the model in the first column. The
— [ s second column is the source of the allocation (mostly, the blocks
- representing the different engineering disciplines). The third column is the
Figure 249: Derivation of Discipline-Specific Requirements - 3 target (the requirement) of that allocation relation. The next two figures
show the table contents.
o ] — Note that there are more requirments to be allocated but this is enough to
- i o B show the approach.
B Lepieine b——
;;E:wmwwwﬁoe mcmms\ﬁmm ll\edhm’mtmd Softwaretiock
erives . 'M‘WML."
— The sofiwarestal maritor and ey e b ey, " e T
requirement_12 e face topravide e p—
Trecwe
The software shall set position g
e s
= [yt )
e T s
s G

Figure 250: Derivation of Discipline-Specific Requirements - 4

There are, of course, more requirements to derive and allocate but the
previous four slides shows the work that must be done.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 232



dy: Handoff to Downstream Engineering

Name -1 | From M | To ¥ | Description ¥ Name vl | From - | To - | Description ¥
\/ ACES_SS_requirement_32 |(TJACES_ControlSurface |[[ 1| ACES_SS_requirement_32 ./ FuncReg_25 [CJACES_ControlSurface | )| FuncReq_25
o ACES_S5_requirement_23 (TJACES_ControlSurface EBACES_SS_requiremem_B ‘,' FuncReq_27 (CJACES_ControlSurface EﬂFuncHeq_Z?
) ACES_SS_requirement_34 (TJACES_ControlSurface [ JJACES_SS_requirement_34 ) FuncReg_28 (JACES _ControlSurface [} FuncReq_28
./: ACSCUNT_requirernent_‘ID [CJACES_CortrolSurface EBACSCUNT_requirement_‘lﬂ ‘/u FuncReq_29 (TJ ACES_CortrolSurface EﬂFuncHeq_Zﬂ'
v ACSCU NT_requfrernent_‘I 1 |[SJACES_CortrolSurface [ 1] ACSCU NT_requfrement_‘l 1  FuncReq_30 ACES_ControlSuface [{ FuncReq 30
) ACSCUNT _requirement_12 (ZJ ACES_ControlSurface E BACSCU NT_requirement_12 - —
) ACSCUNT _requirement_13 (JACES_CortrolSurface [ 1] ACSCUNT _requirement_13 x4 pnchicalds P‘CES—&”“”"SME'CB (| FuncReq_36
) ACSCUNT requirement_18 |(JACES_ControlSuface |[[ JACSCUNT requirement_18 v FuncReq 37 (CJACES ControlSurace [ )| FuncReq 37
) ACSCUNT_requirement_19 (—JACES_ControlSurface [{ 1] ACSCUNT _requirement_19 »’ FuncReq_40 (CHACES_CortrolSuface ([ )| FuncRsa_40
o/ ACSCUNT requirement_21 |CJACES_ControlSurface |[¢ JJACSCUNT_requirement_21 +/ FuncReq_40 | SoftwareEBlock [(4] FuncReq_40
) ACSCUNT requiresment_24 (CJACES_CortrolSurface |[{ 1 ACSCUNT requirement_24 «/ OtherReq_0 (CJACES _ControlSurface [{ ]| OtherReq_0
) ACSCUNT _requirement_25 (TJACES_CortrolSurface [{ ]| ACSCUNT _requirement_25 ' OtherReq_1 (CJACES_ControlSurface |[[ ) OtherReq_1
) BCSCUNT _requirement_26 |(TJ ACES_CortrolSurface [ 1] ACSCUNT _requirement_26 / requirement_13 ] SoftwareBlock [0V requiremert_13
) ACSCUNT _requirement_3 | (TJACES_ControlSurface |[[ J|ACSCUNT_requirement_3 o/ requirement_14 QSgﬂware Block [£ 1| requirement_14
 ACSCUNT requirement_7 | (TJACES_CortrolSurface |[C ]| ACSCUNT _requirement_7 o/ requirement_15 E SoftwareBlock [t requirement_15
»/ ConfigReq_t (CIACES ControlSurface [§)|ConfigReq_1 o/ requirement_16 Q Electronics Block [0 1| requirement_16
v/ ConfigReq_3 (CJACES ControlSurface [ )|ConfigReq_3 / requirement_17 E MechanicalBlack [0 )] requiremert_17
/ DerCortighieq_1 (CJACES ControlSurface [[ )| DerConfigReq_1 ./' reguirement_18 Q HydraulicsBlock Eﬂrequiremerrt_w
/ DerConfigReq_2 [CJACES_CortrolSurface [ 1 DerCorfigReq_2 i : :
/ DerFunReq_1 [CJACES_CortrolSurface E ﬂ DerFunReq_1 ‘/, requ?rernent_Q'I E SoﬂwarPT Blockc E ﬂl‘equ?remerrt_?l
. DerlntReq_1 (= ACES_CortrolSurface EﬂDerIntReqj ./I reguirement_22 Q Electronics Block E ﬂreqmremerrt_ﬂ
./ DerintReq_10 (JACES_ControlSuface [ 1] DerintReq_10 ' reguirement_23 E MechanicalBlock [0 )] requiremert_23
./ DerlntReq_11 (SJACES_CortrolSurface [ 1] DerlrtReq_11 o/ requirement_24 K SoftwareBlock [{ llrequirement_24
./ DerlntReq_12 [CJACES_CortrolSurface |[[ 1| DerlntReq_12 »/ requirement_25 K] SoftwareBlock [£ ] requiremet_25
./ DerlntReq_14 (SJACES_CortrolSurface [ 1| DerlrtReq_14 «/ requirement_26 K] SoftwareBlock [ requirement_26
/ DerlntReq_2 [CJACES_ControlSurface |[[ ] DerlntReq_2 «/ requirement_283 ] SoftwareBlock [0 ) requiremert_28
/ DerintReq_8 [CJACES_CortrolSurface [ 1| DerlntReq_8 o/ requirement_30 ] BlectronicsBlock [£ 1| requirement_30
«/ DerReqint_13 (CJACES_ControlSurface |[[ )| DerReqlnt_13 / requirement_31 ] MechanicalBlock [0 ) requirement_31
./ DerStartUpReq_1 (I ACES_ControlSurface EﬂDerStartUpReq_‘l ‘,' requirement_34 Q Electronics Block Eﬂrequiremerrt_&'l
./: DerStartupReqg_2 [CJACES_ControlSurface EﬂDerStartupReq_Z o/ requirement_35 E MechanicalBlock Eﬂrequiremerrt_?rﬁ
./I DerStartupReqg_3 [CJACES_CortrolSurface E ﬂ DerStartupReq_3 ‘/l requirement_36 Q HydraulicsBlock E ﬂrequiremerrt_?rﬁ
‘/, S A8 ACES_ContrDISurface [0 ) EmorReq_26 / requirement_37 E SoftwareBlock [0 ) requiremert_37
‘/, zix_g ig_g:z:gz::z E % 2:2:‘:_2; o/ requirement_38 Q SoftwareBlock E ﬂrequiremerrt_SB
: ElTorF{eq:ZB ACE.S:ControISurface ] En'orReZ:ZB ./: requirement_41 E SoftwareBlock [0 ) requirement_41
./ EorReq_3 (CJACES_ControlSurface [[ 1] EmorReq_3 ./I reguirement_42 Q SoftwareBlock E ﬂrequiremerrt_-lz
./ EmorReg_34 (SJACES_ControlSurface [ 1] EmorReq_34 ' requirement_43 E Electronics Block [0 )] requiremert_43
./ EmorReq_35 [CJACES_ControlSurface |[{ 1 EmorReq_35 o/ requirement_44 Q Electronics Block [£ 1| requirement_44
./ EmorReq_36 (CJACES_ControlSurface [ 1| EmorReq_36 «/ requirement_45 E SoftwarsBlock [0 1| requirement_45
./ EmorReq_37 [CJACES_CortrolSurface [ 1| EmorReq_37 o/ requirement_46 ] BlectronicsBlock [0 1| requirement_46
. . . . . . e / requirement_47 E HydraulicsBlock [0 )] requiremert_47
Figure 251: Table of requirements allocated to engineering disciplines - 1  requiremert_48 ] MecharicalBlock [ recuirement,_43

Figure 252: Table of requirements allocated to engineering disciplines - 2

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 233




Post Log: Where do we go from here?

11 Post Log: Where we go from here

We have only traversed two use cases through the first set of system
engineering workflows. We only detailed a single subsystem, of several
involved in realizing those use cases, and even for those, we didn’t do a
complete allocation. Nevertheless, you can see how the workflow unfolds.
In a real system development, we would continue with the allocations for
the ACES_ControlSystem and we would detail the other subsystems as well.
At that point, the hand off work flow would be complete, and each of the
subsystem teams can begin work.

11.1 Downstream engineering begins

The subsystem teams are generally interdisciplinary; that is, they have
members who specialize in different engineering disciplines, such as
software, electronics, mechanics, and hydraulics. At this point, the
following models exist to support the detailed design and implementation
by the subsystem teams:

e Shared Model
o Physical Interfaces
=  Physical Types
o Common Stereotypes
e Subsystem Models, each of which has
o Requirements specification with allocated requirements
o Deployment architecture identifying the involved disciplines
= |nterfaces between the engineering disciplines
= Requirements allocated to the engineering
disciplines

This is the information required to perform the downstream engineering
work, so that later the different subsystems can be integrated and verified
and validated as a whole.

11.2 System Engineering Continues

In general, we believe the best systems engineering process is one that is
both incremental and iterative. In this Deskbook, we’ve walked through
what one such iteration might look like. However, there are a number of
other use cases and associated requirements that must be detailed. This
means that this workflow will be repeated, resulting in an increasingly
complete and comprehensive system specification and model(s).

At the end of most (although not necessarily all) iterations, a hand off
workflow is performed to update the subsystem teams with their
elaborated requirements so they can incrementally add those features and
properties to their subsystems.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 234



12 Appendix: Passing Data Around in Rhapsody for
C++

The most common language version of Rhapsody in systems engineering is
C++. This impacts systems engineers because both UML and SysML use an
action language to specify primitive actions, including the content of actions
in activity diagrams, in the implementation of functions and options, and in
the action lists in state machines. Also there is a generic action language
provided by Rhapsody. However, by far, most people just using the
underlying target implementation language as the action language, for a
variety of good reasons.

One outcome of this is to require the systems engineer to understand
enough of the underlying action language to create and manipulate data
types. This appendix is meant to give a brief introduction to the data typing
and parameter passing in Rhapsody for C++ and is not meant to be a
comprehensive discussion of C++ data typing.

12.1 Simple and Complex Types
As far as Rhapsody is concerned, simple types are either ones directly
providing by the underlying action language or map directly to them. Thus,
simple types include:
e language Independent Types
o RhpAddress
RhpBoolean
Rhplinteger
RhpPositive
RhpReal
RhpUnlimitedNatural
o OMBoolean
e lLanguage Dependent Types
o bool
o int

O O O O O

long

short

float

long double
short
unsigned char
unsigned int
unsigned long
unsigned short

O O O O O O O O O

Complex Types are all other types. The reason why it matters is that when
you add an argument to an operation or event, simple types get copied and
sent, while for complex types, a reference to the original value is sent
instead.

In (Input) Parameters
For example, if | create a function printint that takes an argument of type
int and prints it, | create the function like this:

Function : printint in DataTypingPkg = [B

|Geneml | Description I Implementation | Argumerits | Relations ITags I Properties|

woid printIrt{nt )

==k ST
MNarme Type Value direction
|;[:] X int In
=MNews
Locate oK

| can use the passed value x in the implementation directly like this:

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 235



Appendix: Passing Data Around in Rhapsody for C++

TRoncton ot m baeTpmare g |

General | Description | Implementation |Pm|.ments I Relations I Tags I Fmpertjesl
woid prirt Int{irt x)
00 =std::cout << "Value iz " << x << std::endl; .
] r
Locate oK Anply J

Here's the generated code for the function:

//## operation printInt (int)

void printInt (int x) {
//#[ operation printInt (int)
std::cout << "Value is " << x << std::endl;
//#]

And | can invoke the function like this
printInt (5);

However, if instead | use a complex type (in this case, | created an
enumeration type call ENUMTYPE with values like “ONE”, “TWO” and
“THREE”, things are different.

Here's the type definition:

e BT E e g |

| General | Description | Literals | Relations | Tags | Properties| A
EP ETRT
Mame Walue Comment
& OME 1
$E TWO 2
42 THREE 3
< [MNew>
| Locate oK Apply J

And the printEnum function parameter

| General | Description | Implementation | Argumerts | Relations | Tags | Properties|
woid prirt Enum{const ENUMTYPES &)

S1=F ETEE
Mame Type Value direction
Ei e EMUMTYPE In
<Mew=
Locate oK Spply J

With an implementation that looks like this.

void printEnum(const ENUMTYPE& e) {
//#[ operation printEnum (ENUMTYPE)
std::cout << "Value is " << e << std::endl;
//#]

See that “&” symbol? That indicates that we are passed a constant reference
to the value in e. We can treat e just like we did x in the previous example.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 236



Function : printEnum in DataTypingPkg H

General Description Implementation  Arguments FRelations Tags — Properties

void prirt Enum(ENUMTYPE &) |

00 =srtd::cout << "Value iz " << e << =ztd::endl; LS

Locate (0].4

To call printEnum, | can just just

printEnum (myValue) ;

Let’s now consider a structured value. In C++, a structured value is either a
struct or a class. These two things are essentially the same (they only differ
on the default visibility of the features; struct features are public by default
while class features are private by default).

Consider a structured type ErrorType that has multiple attributes:

Class: ErrorType in DataTypingPlkg - n
General Description Atrbutes  Operstions  Ports  Flow Ports  Relations Tags  Properties
[ Show Inherted EHEX
Mame Yisibility Type Initial Value &)

= errCode Public int

= dateTime Public RhpString

= severity Public int v
Locate aK

We can write a printError function that receives a single argument e of type
ErrorType

Function : printError in DataTypingPkg - n

General  Description  Implementation  Arguments  Relgtions Tags — Propeties

void printEmoniconst EmorTyped e) |
EHEX L

Marne Type Value direction

=G ErrorType In
<Mew:>

Locate QK

and a simple implementation:

Function : printError in DataTypingPkg - ﬂ

General Description Implementation  Aguments Relations Tags — Properties

woid prntEmoriconst EmorTyped e) |

00 std::cout << "Error code iz " << e.getErrCode() << std::endl: ~
01 std::cout << "It occurrent " << e.getDateTime () << std::endl:
02 std::cout << "With a level of severity of " << e.getSeverity() << std::endl:
W
< >

Locate oK

Why didn’t we just directly access the values of e.errCode, e.dateTime and
e.severity? Rhapsody tried to enforce good programming practices and one
of these practices is that you should always go through functions to access
the data. To that end, by default, Rhapsody generates both an accessor (get
+ variable name; also known as a getter) and mutator (set + variable name;
also known as a setter) for you. By default, even though the visibility of the
variables in Rhapsody is declared as public, the actual variable itself is
declared protected and the accessor and mutator are declared as public.

You wouldn’t be the first person to be confused by this.

This behavior can be changed with properties. If you select the class, open
its features dialog, go to the Properties Pane, select View All, and go to the
topic CG_CPP > Attribute > Visibility. Here you have a drop down list. The

default visibility is set to protected, but you can select fromAttribute. If you

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 237



make that change, then you can directly get and set attributes without using
the accessor and mutator operations. You can even set this at the project
level if you want that behavior for all classes and blocks.

Class : ErrorType in DataTypingPkg - n

General Description  Aftibutes  Operations  Ports ~ Flow Ports  Relations  Tags ~ Properties

View Al -
POSTUECIEraTIONMoanEr ~
PreDeclarationModifier
ReferencelmplementationPattern
Simplify Default
SpecificationEpilog
SpecificationProlog
VariableInitialzationFile Default
Visibilicy fromattribute

+| Dependency ©

CPP_CG::Attribute:-Visibility ~
The Visibility property specifies the visibility of that kind of model element. Code generation maps the visibility specified for an elemert to the same visibility in
the generated language. The Visibility setting has the following applicability:

* Classes - Applies only to nested classes, which are defined inside other clzsses.
* Types - Applies only to types that are defined inside classes. It does not apply to global types, which are defined in packages
The following table lists the visibility for the CPP_CG subject

* protected - Attibute is visible only within the scope of its class and descendants.

* private - Attribute is visible onby within its class.

“ public - Attribute is visible evenywhers.

“ fromAttribute - Attribute visibility depends on the Access selection in the Browser window, which specifies the visibilty of accessors and mutators for an
attribute

Default = protected w

Locate oK

If you make this change for the ErrorType class, then you could implement
the printError differently.

Function : printError in DataTypingPkg - n

General Description Implementation  Arguments Relations Tags ~ Properties

void printEmoriconst EmorTyped &) |

00 std::cout << "Error code is " << e.errCode << std::endl; -
01 std::cout << "It occurrent " << e.dateTime << std::endl;
02 std::cout << "With a level of severity of " << e.severity << std::endl;

Locate oK

12.1.1 Special Case: #define
It is a good programming practice to give important numbers explicit and
meaningful names. Obscure numbers that just show up, unexplained, in

specifications and code are often called “magic numbers”. It is not a
complement. It means that there is no support to help others (or even
yourself) to figure out why the number is there.

As a very simple example, consider converting foot-pounds of force to
horsepower. You could write something like

gxt = tgp * 5252;

Or you could write
#define HORSEPOWER2FOOTLBS 5252
force ftlb = force hp * HORSEPOWERZFOOTLBS;

The first line defines a constant. It is nothing more than a textual name
given to a value and can be used anywhere that the value it represents can
be used. It makes eases understanding of the code you write. It’s important
to understand that HORSEPOWER2FOOTLBS is not a variable with the value
of 5252. It is just another name for that value.

The second line is just an example of using meaningful names for variables;
in this case, appending an abbreviation for the units in the name itself.

To define a named constant, add a new type, give it the kind of Language,
and define it using %s to reference the value:

Type: HORSEPOWER2FOOTLBS in DataTypingPkg - n

General Description Declaration Felstions Tags  Properties

Name: |HOHSEPO‘."JER2FOOTLES | Label...
Stereotype: | e |EM
Visibility: Public it

Kind: |Language ~|

Locate oK

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 238



Type : HORSEPOWERZFOOTLES in DataTypingPkg - n
General Descrption Declarstion  Relations Tags  Propeties
Declaration:
00 #define %= 2525 ~
W
£ >
Locate 0K

InOut (Input and Output) Parameters
InOut parameters allow you to both pass in a value and receive an updated
value back. These are implemented as non-const references.

An example of this, we’re going to create a convert operation that can
convert force units between horsepower and foot-pounds. First, let’s define
an enumeration FORCEUNITS for the units. Add a new Type (or DataType if
you’re using SysML) of kind Enumeration, and define the literals:

Class : ForceType in DataTypingPkg - n

General Description Atrbutes  Operstions  Pots  Flow Pots  Felations  Tags  Propeties
[ Show Inherited ==
MName Visibility Type Initial Value R
= force Public RhpReal
E units Public FORCEUNITS in DataTypingPkg
H errorflzg Public RhpString W
< >
Locate QK

Type : FORCEUNITS in DataTypingPkg - n

~
General Description Literals Relations Tags  Properties

EHX 44

Mame Value Comment
2 NO_FORCE_UNITS
{2 HORSEPOWER
{& FOOTLBES

<Mew>

Locate 0K

Next, let’s define the type we’ll be passing around, ForceType:

Now define the convert function to take two parameters; an InOut
parameter passing in the original value and returning the converted value
and an in parameter of the type to which to convert the incoming value.

Function : convert in DataTypingPkg - n
General Description Implementation Argumerts  Relations Tags — Properties
wvoid convert (Force Typed f.const FORCEUNITSA convert2Units) |
=g=h ST
Name Type Value direction 2
=i ForceType InOut
k=) convert2Units FORCEUMITS In v
Locate QK

Here's the implementation of the function:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 239



Function : convert in DataTypingPkg - n

General Description  Implementation  Aguments Relations Tags  Propeties
void convert(Force Typed f const FORCEUNITS& convert2Units) |

00 switch (convert2Units) { ~

01 case HORSEPCWER:

02 if (f.units == FCOTLES) i

03 f.force = f.force / HORSEPOWERZFOOTLES;

04 f.units = HCRSEPCHWER;

05 f.errorMsg = "";

o0& H

o7 break;

08

0s case FOOTLES:

10 if (f.units == HORSEPCWER) {

11 f.force = f.force * HCORSEPCWERZFCOTLBS:;

12 f.units = FOOTLBS:

13 f.errorMsg = "";

14 bi

15 break;

16

17 case NO_FORCE _UNITS:

is8 f.errorMsg = "No force units specified”;

19 break;

20

21 defaunlt: f.errorMsg = "Unknown force units";

22

23

v

£ >
Locate oK

Here is a test class with attributes and a state machine to demonstrate the
output of this function.

Class : TestClass in DataTypingPkg - n

General Description  Atibutes Operstions Ports  Fow Ports  Relations Tags  Propetties

[ Show Inherted HER
Name Visibility Type Initial Value
= a Public ENUMTYPE in DataTypin...
= eCode Public ErrorType in DataTypingPkg
=op Public ForceType in DataTyping...
<MNew>
Locate oK

state 0

evl/

. printInt(2);
ev. a = ONE;
p.force = 1200.0; printEnum(a);
p.units=FOOTLBS; printEnum(a);

p.errorMsg = "™
convert(p, HORSEPOWER);

printForce(p);

ev2/

eCode.setErrCode(17);
eCode.setDateTime("March 17 @ 16:02");
eCode.setSeverity(1);

printError(eCode);

Where printForce function is defined:

Function : printForce in DataTypingPhkg - n
General Description  Implementation  Argumerts Relations Tags ~ Properties
void printForce(const ForceTyped ) |
00 std::cout << "Value: " << f.force << std::endl: ~
01 =std::cout << "Un HE
02 if (f.units == HORSBEPCWER) s=td::cout <« "Horsepower" << std::endl;
03 if (f.units == FOOTLBS) std::cout << "Foot-pounds" << std::endl;
04 std::cout << "Error Message: " << f.errorMsg << std::endl;
05 e
£ >
Locate oK

This is the state machine to support the execution of these functions:

If you run it and insert the ev3 event, this has the output:

e: 8.47
ts: Hors

Out (Output only) Parameters
Finally, out parameters don’t provide an input value but they do provide an
output. The implementation provides a reference pointer.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 240




Appendix: Passing Data Around in Rhapsody for C++

Let’s demonstrate that by defining a new function that returns a ForceType,
as defined above:

Prmtton: grmer o DT —

General Description  Implementation Arguments  Relations Tags  Properties

|\roid gimmezforce(Force Type™& f) |

HEX T4
MName Type Walue direction
=R ForceType Out
<MNew:=
Locate oK Bpply J

Note that the out parameter f, is defined as a pointer to a reference. This is
a little bit more complex.

Here's the implementation. It uses a local variable, f1, which is a pointer to a
ForceType. Creates a new one of them and then assigns the out parameter f
to the value of the pointer (so now f points to the newly created value).

Function: gimmeaforce n DtaTypingPkg = B

General Description Implemertation  Arguments Relations Tags  Properties

|void gimmezforce{Force Type™& f) |

00 ForceType* f£1: ~
01 f1 = new ForceType;

02 fl->»units = HORSEPOWER:

03 fl->force = 0.0;

04 fl-»erroxMsg = "Ck";

05 £ = £l:
o8&
v
< >
Locate oK Apply J

To use it, we must pass a pointer in the parameter list. So we’ll add fptr (a
pointer to a ForceType) to TestClass:

Amrbute:fprinTestcles @

L]

General Description FRelations Tags  Properties

| Force Type™ fptr |
Mame: |F|::|tr | | Label... |
Stereatype: | - | @I El
Visibility: | Public e |

Attribute type

[J Uee existing type

C++ Declaration: ForceType* &3

Locate oK Apply J

and we’ll update the TestEventClass1’s state machine to use it (see ev4).

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 241



evd/
gimmeaforce(fptr);
printForce(*fptr);
state_ 0
evl/
printInt(2);
ev3/ a = ONE;
pforce = 1200.0; printEnum(a);
p.units=FOOTLBS; printEnum(a);
p.errorMsg ="";
convert(p, HORSEPOWER);
printForce(p); U
ev2/
eCode.setErrCode(17);
eCode.setDateTime("March 17 @ 16:02");
eCode.setSeverity(1);
printError(eCode);

So the function gimmeaforce is provided a pointer argument which is
updated with a value. You can see it is dereferenced and passed in the call
to printForce. (The expression *fptr returns the thing to which fptr points).

12.2 Passing Arguments in Event Receptions

So far, all the examples we’ve given were functions. It is similar for event
receptions. Once difference is that only input parameters are supported for
event receptions. If you want to be tricky and allow the state machine to
return values, you can send pointer types and have the target state machine
modify the values through dereferencing the pointers. More commonly,
separate events are used to send return values®* when necessary.

Another difference is that while as many parameters can be passed as
desired, Rhapsody wraps them up into a struct called params, which
contains pointers to each event argument. This is only visible on the

21 Although triggered operations, a synchronous kind of event receptor, can return
a value.

receiving side of the event exchange. The values held in the params
structure are only valid through the completion of the state machine step in
which they are defined.

On the sender side, it is common to use the Send Action to send the action
to the target object??. This can either use the association role name (if
associations are used) or the port name (if ports are used). To demonstrate
this, I've constructed a simple model.

The following diagram shows the two objects connected using ports:

L jtsTestEventClassl:TestEventClassl 3 L jtsTestEventClass2:TestEventClass2 3

= err:ErrorType

e2:ErrorType
= ftLb:ForceType q = "

po p

EPepd EfFep10
EPeql Ef evError(e:ErrorType)
EPes EP evForce(f:ForceType)

The instance of TestEventClass2 is the event receiver in this case. Here is its
state machine:

22 Although the GEN macro is a commonly used alternative.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 242



Appendix: Passing Data Around in Rhapsody for C++

evError/
printError(*params->¢);

N

state 0

evSimple/

std::cout << params->j << std::endl;
std::cout << params->s << std::endl;
std::cout << params->r << std::endl;

)

evForce/
printForce(*params->f);

Here is the sender (TestEventClass1) state machine:

state_0 ep/

errerrCode = -1;
err.dateTime = "Jan 1, 2017";

.\> err.severity = 3;

eq/
ftLb.errorMsg = "No Errors";

evError(&err) to p0 >
fiLb.force = 1000;

fiLb.units = FOOTLBS;
evForce(&ftLb) to p0 >

evSimple(-101, "This is a string", 3.14159265) to p0 >

The events ep, eq, and es are there so that you can send them to the
TestClass1 instance to have it send a corresponding event to TestClass2
instance.

The events of interest here are:

evSimple, which passes 3 simple values, an int, a string, and a real:

l—l—
Event: evSimple in DataTypingPkg -
General Argumerts Descrption Relations Tags  Properties
|ev5imple {int j, RhpString s, RhpReal r) |
HEX TS
Mame Type Value &
=y int
ﬁ] 5 RhpString
= RhpReal o
Locate oK Apply J

evError which passes an argument of the ErrorType class we defined earlier
in this appendix:

Event : evError in DataTypingPkg - n
General Argumerts Descrption Relations Tags  Properties
|ev Emor (Emor Type™ &) |
EEX TS
Mame Type Value
ﬁ] e ErrorType
< Mews
Locate oK Apnply J

and evForce, which passes an argument of type ForceType, also defined
earlier:

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 243



Appendix: Passing Data Around in Rhapsody for C++

Event:evForceinDatsTypingPhg =@

General Argumerts Description Relations Tage  Properties

|ev Force (Force Type™f) |

HER T &
Mame Type Value
=i ForceType
= Mews
Locate oK Apply J

On the sender side, when we send the event, we must specify where it goes
(in this case, port p0), and the values. For evSimple, the send action looks
like this:

| SemdAcion:sendaction 3instatechat 1 =@

~

General Description Relstions Tags  Properties

Name: |sendadior1_3 || Label... |
Stercotype: | > |@I EI
Preview: |evSimple(-101, "This is a sting”, 3.14159265) to p0

Target

Target: |p1]'n DataTypingPkg:: TestEvent V|

Event
Event: |e'|rﬁrple in Data TypingPkg * |
Arguments:
Mame Type Value
= int -101
= RhpString  "This is a stri...
Ehr RhpReal 314159265
W
Locate oK Apply J

For the evError event, we define an attribute err in TestEventClass1 of type
ErrorType and we’ll pass this. Note the use of the & operator to pass the
address of the attribute.

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 244



SendAction : sendaction_1 in statechart_1 - n

~
General Description Relations Tags  Properies
Name: |sendactic'n_1 | Label...
Sterecrm:ue:| v|[5{§5 kg
Preview: | evEmor{der)to pl
Target
Target: plin Data TypingPka:: TestEvent ~ || 5]
Event
Event: evEmorin Data TypingPlkg =]
Arguments:
Mame Type Value
=T ErrorType  8err
]
Locate 0K

Similarly for evForce, we define an attribute ftLb of type ForceType and
pass this value.

SendAction : sendaction_2 in statechart_1 - n
~
General Description Relations Tags  Properies
Mame: |sendaction_2 | Label...
Sterecrm:ue:| v|[5{§5 kg
Preview:  evForce(&ftlb)to pl
Target
Target: plin Data TypingPka:: TestEvent ~ || 5]
Event
Event: evForce in DataTypingPkag =]
Arguments:
Mame Type Value
= ForceType  &iftlb
]
Locate 0K

In the TestEventClass1 state machine, we assign values to the fields for the
structured types before sending the events. In the TestEventClass2, we use
the previously defined printError and printForce functions to print the
received values. Note that both these functions expect a reference to the
structure type and what we have is a pointer, so we must dereference the
pointer to pass it; for example, to send the parameter e of the evError event
to the printError function we use the syntax

printError (*params->e) ;

For the simple parameter (see evSimple event), we can just deference the
params structure to access the values.

The output from this model, if we invoke evSimple, evError and evForce
looks like this:

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 245



B C\Users\Bruce Douglass\AppData\Roaming\Microsoft\Internet Explorer\Quick La..  — O *

ational\Rhaps

12.3 Summary

That’s pretty much it. Functions, including operations of classes and blocks,
can have input, output and input/output arguments. Simple types are
passed by copy but complex arguments, including enumerations, are passed
by reference. Event receptions have only input arguments. Behind the
scenes, Rhapsody constructs a params struct to hold pointers to the pass
values. The pointers in the params struct must then be dereferenced to
access the passed values.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 246



13 Tables

This section contains a few of the larger tables from the model.

13.1 Derived Requirements Table

Each control surface subsystem shall report movement
completion to the ACES_Management subsystem with
acquired measured position and time required for the

Requirement Name

Specification

Derived From

ACES_SS_requirement_32

Any subsystem running software shall - both at start up
and upon command - run an integrity check of the
installed software object code verified by a method at
least as robust as 32-bit CRC check

StartUpReq_4

ACSCUNT_requirement_18 | movement. FuncReq_37
The ACES_Management subsystem shall listen for life
ticks from each surface control subsystem interface,
ACSCUNT_requirement_19 | expecting them to arrive at least every 0.5s. FuncReq_39
If the ACES_Management subsystem does not receive a
life tick within 0.5s of the initiating life tick, it shall report
an error to both the Pilot Display and Attitude
ACSCUNT_requirement_20 | Management systems. FuncReq_39
Each control surface input shall issue a life tick message
ACSCUNT_requirement_21 | to the ACES_Management subsystem at least every 0,5s. | FuncReq_39

ACES_SS_requirement_33

Any subsystem running software that contains
configuration data shall - both at start up and upon
command - run an integrity check of the installed
configuration verified by a method at least as robust as
32-bit CRC check as well as reasonable range checks.

StartUpReq_4

ACSCUNT_requirement_24

Each control surface unit instance shall have a unique
identifier which shall be used to in messages to the
ACES_Management subsystem.

InterfaceReq_0

ACES_SS_requirement_34

All subsystems other than the ACES_Management
subsystem shall report error status and BIT results upon
query or upon completion of tests.

StartUpReq_4

ACSCUNT_requirement_25

Each control surface unit shall have, as persistent
configuration data, low and high movement limits,
required measurement accuracy, and movement time
limits.

FuncReq_0

ACSCUNT_requirement_10

The accuracy of movement of the control surface shall
be +/- 0.5 degrees angle of +/- 0.5 cm distance.

FuncReq_36

ACSCUNT_requirement_26

Each surface control unit instance shall report an error
to the ACES_Management subsystem if the result of a
commanded movement is out of specification either in
accuracy or timing.

FuncReq_36

ACSCUNT_requirement_11

Each control surface shall measure achieved control
position with an accuracy of +/- 0.05 degrees or +/- 0.05
cm

FuncReq_36

ACSCUNT_requirement_3

All control surfaces shall accept commands from the
ACES_Management subsystem to set rotational position.

FuncReq_0O

ACSCUNT_requirement_12

If achieved position of any control surface unit is out of
specification or takes longer than 3.0s, the control
surface unit shall inform ACES_Management of the error

FuncReq_40

ACSCUNT_requirement_7

Each control surface shall accept a command to move it
to the desired position and shall begin movement based
on that command within 0.1 seconds.

FuncReq_0

ACSCUNT_requirement_13

Each control surface shall accept a command for it's
position and will respond with both current commanded
position and current measured position.

FuncReq_40

AM_requirement_1

The ACES_Management systen shall command each
control surface position either as a response to a
received command or turning built in test.

FuncReq_0

ACSCUNT_requirement_16

The ACES_Management subsystem shall check that each
command movement takes place within 3.0seconds.

FuncReq_37

ACSCUNT_requirement_17

The ACES_Management subsystem shall check that each
angular movement of less than 10 degrees is performed
in less than 1.0 seconds.

FuncReq_37

AM_requirement_27

The ACES_Management subsystem shall issue an error
message to the Attitude Management system if both
incoming and outgoing hydraulic pressures not are
within +/1 1000 kPa of the default pressure of 35000 kPa
and if this is not true.

ErrorReq_34

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 247




AM_requirement_27

The ACES_Management subsystem shall issue an error
message to the Attitude Management system if both
incoming and outgoing hydraulic pressures not are
within +/1 1000 kPa of the default pressure of 35000 kPa
and if this is not true.

ErrorReq_35

DerFunReq_1

Once a each control surface has achieved its
commanded position, it shall maintain station keeping
adjustments to keep it within 0.1 degrees of angle or
0.1cm of extension, as appropriate, at least 10 times per
second.

FuncReq_36

AM_requirement_28

The ACES_Management subsystem shall check hydraulic
pressure at least once every 2.0 seconds.

ErrorReq_35

AM_requirement_28

The ACES_Management subsystem shall check hydraulic
pressure at least once every 2.0 seconds.

ErrorReq_34

DerintReq_1

The Control Surface subsystem types shall provide an
interface to set and get the commanded control surface
position.

InterfaceReq_0

AM_requirement_29

The ACES_Management subsystem shall issue an error
message to the Attitude Management subsystem.if
incoming or internal power for fluctuations of more than
5% in voltage.

ErrorReq_37

DerintReq_10

Each control surface subsystem shall detect faults and
report them to the ACES Management subsystem.

InterfaceReq_3

DerintReq_15

The ACES Power system shall distribute power from the
aircraft to the ACES internal subsystems.

InterfaceReq_4

AM_requirement_29

The ACES_Management subsystem shall issue an error
message to the Attitude Management subsystem if
incoming or internal power for fluctuations of more than
5% in voltage.

ErrorReq_36

DerintReq_16

The ACES Power subsystem shall provide an interface to
select input source.

InterfaceReq_5

AM_requirement_30

The ACES_Management subsystem shall issue an error
to the Attitude Control System within 0.5s if it detects a
sudden power loss.

ErrorReq_36

AM_requirement_30

The ACES_Management subsystem shall issue an error
to the Attitude Control System within 0.5s if it detects a
sudden power loss.

ErrorReq_37

DerintReq_17

The ACES Power subsystem shall monitor incoming
current and voltage and inform the ACES Management
system if the current or voltage exceeds nominal values
by more than 10% for more than 30 seconds, or by more
than 30% for more than 2 seconds.

InterfaceReq_5

AM_requirement_35

The ACES_Management subsystem shall request a built
in test run by every subsystem that contains software.

StartUpReq_4

DerintReq_18

The ACES Management system will monitor the power
from the ACES Power subsystem and automatically
switch if it receives a power fault,.

InterfaceReq_5

The ACES_Management subsystem shall range check
each movement command for each control surface

The Control Surface subsystem types shall provide an

AM_requirement_4 movement to ensure that the set position is in range. FuncReq_36 DeriIntReq_2 interface to get the measured control surface position. InterfaceReq_0
If a movement position is out of range for the a specified The Fontro! Surface With Trim subsystem type shall .
control surface, the ACES_Management subsystem shall provide an interface tois?t and get the commanded trim
reject all positions specified within the incoming DerIntReq_3 tab control surface position. InterfaceReq_0
command and respond with a message indicating its The Control Surface With Trim subsystem type shall
AM_requirement_6 rejection. FuncReq_36 provide an interface to get the measured trim tab
The setting precision of the ACES_Management DerintReq_4 control surface position. InterfaceReq_0
subsystem for control surface position shall be +/- 0.1 Retracting control surface subsystem type shall provide
AM_requirement_9 degrees of angle or +/1 0,1 cm distance FuncReq_36 an interface to set and get the commanded extension of
Each control surface unit shall be support configuration DerintReq_5 the control surface. InterfaceReq_0
to set min and max positions, hydraulic and power Retracting control surface subsystem type shall provide
DerConfigReq_1 inputs and error limits, and zero position. ConfigReq_0 an interface to get the control surface measured
DerIntReq_6 extension. InterfaceReq_0
Each control surface unit shall provide the ability to
DerConfigReq_2 respond to requests for current configuration settings. ConfigReq_2

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 248




Every second the ACES Management subsystem will
query all the control surface measures positions and
DerIntReq_7 relay them to the Attitude Management System

InterfaceReq_1

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_19

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_21

The control surfaces subsystems shall provide an
DerintReq_8 interface to request their hydraulic and power status.

InterfaceReq_2

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_24

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_25

The ACES Management system shall provide the status
of power and hydraulics to the pilot display at least
DerintReq_9 every second while operational.

InterfaceReq_2

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_26

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_3

Each control surface unit shall support a Built In Test
(BIT) that is only available while not operational, for

DerStartUpReq_1 checking movement ranges, accuracy, and timing.

StartUpReq_4

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_7

ACES_Control_SurfacePkg

ACES_Control_Surface

ConfigReq_1

Each control surface unit shall support periodic BIT
(PBIT) run at least every 30 seconds; this test suite shall
only run tests which do not interfere with surface

DerStartupReq_2 control operation.

StartUpReq_4

ACES_Control_SurfacePkg

ACES_Control_Surface

ConfigReq_3

ACES_Control_SurfacePkg

ACES_Control_Surface

DerConfigReq_1

ACES_Control_SurfacePkg

ACES_Control_Surface

DerConfigReq_2

All BIT and PBIT results from the Control Surface
subsystem shall be reported to the ACES Management
DerStartupReq_3 System.

StartUpReq_4

ACES_Control_SurfacePkg

ACES_Control_Surface

DerFunReq_1

ACES_Control_SurfacePkg

ACES_Control_Surface

DerintReq_1

ACES_Control_SurfacePkg

ACES_Control_Surface

DerIntReq_10

The ACES Management system shall maintain system
DerStartupReq_4 state

StartUpReq_4

ACES_Control_SurfacePkg

ACES_Control_Surface

DerIntReq_11

Table 4: Derived Requirements Table (Complete)

13.2 Subsystem Requirements Allocation Table

Package Subsystem Requirement

ACESDecompositionPkg

ACES_Control_SurfacePkg

ACES_Control_SurfacePkg

ACES_Control_Surface

DerIntReq_12

ACES_Control_SurfacePkg

ACES_Control_Surface

DerintReq_14

ACES_Control_SurfacePkg

ACES_Control_Surface

DerIntReq_2

ACES_Control_SurfacePkg

ACES_Control_Surface

DerIntReq_8

ACES_Control_SurfacePkg

ACES_Control_Surface

DerReqInt_13

ACES_Control_SurfacePkg

ACES_Control_Surface

DerStartUpReq_1

ACES_Control_SurfacePkg

ACES_Control_Surface

DerStartupReq_2

ACES_Control_SurfacePkg

ACES_Control_Surface

DerStartupReq_3

ACES_Control_SurfacePkg

ACES_Control_Surface

ErrorReq_26

ACES_Control_SurfacePkg

ACES_Control_Surface

ACES_SS_requirement_32

ACES_Control_SurfacePkg

ACES_Control_Surface

ACES_SS_requirement_33

ACES_Control_SurfacePkg

ACES_Control_Surface

ErrorReq_27

ACES_Control_SurfacePkg

ACES_Control_Surface

ACES_SS_requirement_34

ACES_Control_SurfacePkg

ACES_Control_Surface

ErrorReq_28

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_10

ACES_Control_SurfacePkg

ACES_Control_Surface

ErrorReq_29

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_11

ACES_Control_SurfacePkg

ACES_Control_Surface

ErrorReq_3

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_12

ACES_Control_SurfacePkg

ACES_Control_Surface

ErrorReq_34

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_13

ACES_Control_SurfacePkg

ACES_Control_Surface

ErrorReq_35

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_18

ACES_Control_SurfacePkg

ACES_Control_Surface

ErrorReq_36

ACES_Control_SurfacePkg

ACES_Control_Surface

ErrorReq_37

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 249




ACES_Control_SurfacePkg

ACES_Control_Surface

FuncReq_25

ACES_Control_SurfacePkg

ACES_Control_Surface

FuncReq_27

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_24

ACES_Control_SurfacePkg

ACES_Control_Surface

FuncReq_28

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_25

ACES_Control_SurfacePkg

ACES_Control_Surface

FuncReq_29

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_26

ACES_Control_SurfacePkg

ACES_Control_Surface

FuncReq_30

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_3

ACES_Control_SurfacePkg

ACES_Control_Surface

FuncReq_36

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_7

ACES_Control_SurfacePkg

ACES_Control_Surface

FuncReq_37

ACES_Control_SurfacePkg

ACES_Control_Surface

ConfigReq_1

ACES_Control_SurfacePkg

ACES_Control_Surface

FuncReq_40

ACES_Control_SurfacePkg

ACES_Control_Surface

ConfigReq_3

ACES_Control_SurfacePkg

ACES_Control_Surface

OtherReq_0

ACES_Control_SurfacePkg

ACES_Control_Surface

DerConfigReq_1

ACES_Control_SurfacePkg

ACES_Control_Surface

OtherReq_1

ACES_Control_SurfacePkg

ACES_Control_Surface

DerConfigReq_2

ACES_Control_SurfacePkg

ACES_Control_Surface

SafetyReq_006

ACES_Control_SurfacePkg

ACES_Control_Surface

DerFunReq_1

ACES_Control_SurfacePkg

ACES_Control_Surface

Safety_Req_390202

ACES_Control_SurfacePkg

ACES_Control_Surface

DerintReq_1

ACES_Control_SurfacePkg

ACES_Control_Surface

Safety_Req_390207

ACES_Control_SurfacePkg

ACES_Control_Surface

DerIntReq_10

ACES_Control_SurfacePkg

ACES_Control_Surface

Safety_Req_390209

ACES_Control_SurfacePkg

ACES_Control_Surface

DerIntReq_11

ACES_Control_SurfacePkg

ACES_Control_Surface

Safety_Req_390210

ACES_Control_SurfacePkg

ACES_Control_Surface

DerIntReq_12

ACES_Control_SurfacePkg

ACES_Control_Surface

Safety_Req_390211

ACES_Control_SurfacePkg

ACES_Control_Surface

DerIntReq_14

ACES_Control_SurfacePkg

ACES_Control_Surface

Safety_Req_390212

ACES_Control_SurfacePkg

ACES_Control_Surface

DerIntReq_2

ACES_Control_SurfacePkg

ACES_Control_Surface

Safety_Req_390213

ACES_Control_SurfacePkg

ACES_Control_Surface

DerIntReq_8

ACES_Control_SurfacePkg

ACES_Control_Surface

Safety_Req_390214

ACES_Control_SurfacePkg

ACES_Control_Surface

DerReqInt_13

ACES_Control_SurfacePkg

ACES_Control_Surface

Safety_Req_390215

ACES_Control_SurfacePkg

ACES_Control_Surface

DerStartUpReq_1

ACES_Control_SurfacePkg

ACES_Control_Surface

Safety_Req_390217

ACES_Control_SurfacePkg

ACES_Control_Surface

DerStartupReq_2

ACES_Control_SurfacePkg

ACES_Control_Surface

Safety_Req_390218

ACES_Control_SurfacePkg

ACES_Control_Surface

DerStartupReq_3

ACES_Control_SurfacePkg

ACES_Control_Surface

ACES_SS_requirement_32

ACES_Control_SurfacePkg

ACES_Control_Surface

ErrorReq_26

ACES_Control_SurfacePkg

ACES_Control_Surface

ACES_SS_requirement_33

ACES_Control_SurfacePkg

ACES_Control_Surface

ErrorReq_27

ACES_Control_SurfacePkg

ACES_Control_Surface

ACES_SS_requirement_34

ACES_Control_SurfacePkg

ACES_Control_Surface

ErrorReq_28

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_10

ACES_Control_SurfacePkg

ACES_Control_Surface

ErrorReq_29

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_11

ACES_Control_SurfacePkg

ACES_Control_Surface

ErrorReq_3

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_12

ACES_Control_SurfacePkg

ACES_Control_Surface

ErrorReq_34

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_13

ACES_Control_SurfacePkg

ACES_Control_Surface

ErrorReq_35

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_18

ACES_Control_SurfacePkg

ACES_Control_Surface

ErrorReq_36

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_19

ACES_Control_SurfacePkg

ACES_Control_Surface

ErrorReq_37

ACES_Control_SurfacePkg

ACES_Control_Surface

ACSCUNT_requirement_21

ACES_Control_SurfacePkg

ACES_Control_Surface

FuncReq_25

ACES_Control_SurfacePkg

ACES_Control_Surface

FuncReq_27

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 250




ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACSCUNT_requirement_25

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACSCUNT_requirement_26

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

AM_requirement_35

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ConfigReq_1

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ConfigReq_3

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerConfigReq_1

ACES_Control_SurfacePkg ACES_Control_Surface FuncReq_28
ACES_Control_SurfacePkg ACES_Control_Surface FuncReq_29
ACES_Control_SurfacePkg ACES_Control_Surface FuncReq_30
ACES_Control_SurfacePkg ACES_Control_Surface FuncReq_36
ACES_Control_SurfacePkg ACES_Control_Surface FuncReq_37
ACES_Control_SurfacePkg ACES_Control_Surface FuncReq_40
ACES_Control_SurfacePkg ACES_Control_Surface OtherReq_0
ACES_Control_SurfacePkg ACES_Control_Surface OtherReq_1

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerConfigReq_2

ACES_Control_SurfacePkg

ACES_Control_Surface

SafetyReq_006

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerFunReq_1

ACES_Control_SurfacePkg

ACES_Control_Surface

Safety_Req_390202

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerIntReq_1

ACES_Control_SurfacePkg

ACES_Control_Surface

Safety_Req_390207

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerIntReq_10

ACES_Control_SurfacePkg

ACES_Control_Surface

Safety_Req_390209

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerintReq_11

ACES_Control_SurfacePkg

ACES_Control_Surface

Safety_Req_390210

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerIntReq_12

ACES_Control_SurfacePkg

ACES_Control_Surface

Safety_Req_390211

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerIntReq_14

ACES_Control_SurfacePkg

ACES_Control_Surface

Safety_Req_390212

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerIntReq_2

ACES_Control_SurfacePkg

ACES_Control_Surface

Safety_Req_390213

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerIntReq_8

ACES_Control_SurfacePkg

ACES_Control_Surface

Safety_Req_390214

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerReqInt_13

ACES_Control_SurfacePkg

ACES_Control_Surface

Safety_Req_390215

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerStartUpReq_1

ACES_Control_SurfacePkg

ACES_Control_Surface

Safety_Req_390217

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerStartupReq_2

ACES_Control_SurfacePkg

ACES_Control_Surface

Safety_Req_390218

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerStartupReq_3

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ErrorReq_3

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACES_SS_requirement_32

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ErrorReq_30

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACES_SS_requirement_33

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ErrorReq_31

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACES_SS_requirement_34

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ErrorReq_32

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACSCUNT_requirement_10

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ErrorReq_33

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACSCUNT_requirement_11

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ErrorReq_34

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACSCUNT_requirement_12

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ErrorReq_35

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACSCUNT_requirement_13

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ErrorReq_36

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACSCUNT_requirement_18

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ErrorReq_37

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACSCUNT_requirement_19

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

FuncReq_1

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACSCUNT_requirement_21

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

FuncReq_36

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACSCUNT_requirement_24

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

FuncReq_37

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

FuncReq_40

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 251




ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

OtherReq_0

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

OtherReq_1

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerConfigReq_1

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

SafetyReq_006

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerConfigReq_2

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390202

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerFunReq_1

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390203

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerIntReq_1

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390204

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerIntReq_10

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390207

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerIntReq_11

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390209

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerIntReq_12

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390210

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerIntReq_14

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390211

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerIntReq_2

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390212

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerIntReq_8

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390213

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerReqInt_13

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390214

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerStartUpReq_1

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390215

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerStartupReq_2

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390217

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

DerStartupReq_3

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390218

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ErrorReq_3

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACES_SS_requirement_32

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ErrorReq_30

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACES_SS_requirement_33

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ErrorReq_31

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACES_SS_requirement_34

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ErrorReq_32

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACSCUNT_requirement_10

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ErrorReq_33

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACSCUNT_requirement_11

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ErrorReq_34

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACSCUNT_requirement_12

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ErrorReq_35

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACSCUNT_requirement_13

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ErrorReq_36

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACSCUNT_requirement_18

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ErrorReq_37

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACSCUNT_requirement_19

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

FuncReq_1

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACSCUNT_requirement_21

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

FuncReq_36

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACSCUNT_requirement_24

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

FuncReq_37

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACSCUNT_requirement_25

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

FuncReq_40

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ACSCUNT_requirement_26

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

OtherReq_0

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

AM_requirement_35

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

OtherReq_1

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ConfigReq_1

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

SafetyReq_006

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

ConfigReq_3

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390202

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390203

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 252




ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390204

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390207

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerFunReq_1

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390209

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerIntReq_1

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390210

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerIntReq_10

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390211

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerIintReq_11

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390212

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerIntReq_12

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390213

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerIntReq_14

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390214

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerIntReq_2

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390215

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerIntReq_3

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390217

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerIntReq_4

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_Retracting

Safety_Req_390218

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerIntReq_8

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerReqInt_13

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACES_SS_requirement_32

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerStartUpReq_1

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACES_SS_requirement_33

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerStartupReq_2

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACES_SS_requirement_34

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerStartupReq_3

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_10

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_10

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_11

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_11

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_12

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_12

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_13

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_13

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_18

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_14

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_19

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_15

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_21

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_16

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_24

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_17

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_25

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_18

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_26

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_19

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_3

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_20

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_7

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_21

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

AM_requirement_35

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_22

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ConfigReq_1

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_23

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ConfigReq_3

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_24

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerConfigReq_1

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_25

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerConfigReq_2

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_3

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_34

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 253




ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_35

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_36

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_5

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_37

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_6

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_4

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_7

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_5

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_8

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_6

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_9

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_7

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

OtherReq_0

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_8

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

OtherReq_1

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_9

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

SafetyReq_006

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_10

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390202

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_11

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390203

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_12

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390204

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_13

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390207

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_15

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390209

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_16

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390210

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_17

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390211

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_18

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390212

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_19

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390213

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_2

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390214

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_20

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390215

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_21

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390217

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_22

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390218

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_23

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACES_SS_requirement_32

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_24

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACES_SS_requirement_33

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_25

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACES_SS_requirement_34

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_26

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_10

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_3

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_11

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_35

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_12

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_36

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_13

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_37

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_18

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_4

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_19

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_40

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_21

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_24

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 254




ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_25

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_26

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_19

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_3

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_20

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ACSCUNT_requirement_7

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_21

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

AM_requirement_35

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_22

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ConfigReq_1

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_23

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ConfigReq_3

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_24

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerConfigReq_1

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_25

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerConfigReq_2

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_3

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerFunReq_1

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_34

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerIntReq_1

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_35

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerIntReq_10

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_36

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerIntReq_11

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_37

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerIntReq_12

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_4

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerIntReq_14

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_5

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerIntReq_2

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_6

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerIntReq_3

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_7

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerIntReq_4

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_8

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerIntReq_8

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_9

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerReqInt_13

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_10

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerStartUpReq_1

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_11

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerStartupReq_2

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_12

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

DerStartupReq_3

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_13

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_10

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_15

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_11

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_16

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_12

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_17

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_13

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_18

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_14

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_19

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_15

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_2

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_16

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_20

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_17

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_21

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

ErrorReq_18

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_22

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_23

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 255




ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_24

ACES_HydraulicsPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_25

ACES_Hydraulics

SafetyReq_002

ACES_HydraulicsPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_26

ACES_Hydraulics

SafetyReq_004

ACES_HydraulicsPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_3

ACES_Hydraulics

SafetyReq_005

ACES_HydraulicsPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_35

ACES_Hydraulics

SafetyReq_390197

ACES_HydraulicsPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_36

ACES_Hydraulics

Safety_Req_390198

ACES_HydraulicsPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_37

ACES_Hydraulics

Safety_Req_390200

ACES_HydraulicsPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_4

ACES_Hydraulics

Safety_Req_390201

ACES_HydraulicsPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_40

ACES_Hydraulics

Safety_Req_390209

ACES_HydraulicsPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_5

ACES_Hydraulics

SafetyReq_001

ACES_HydraulicsPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_6

ACES_Hydraulics

SafetyReq_002

ACES_HydraulicsPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_7

ACES_Hydraulics

SafetyReq_004

ACES_HydraulicsPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_8

ACES_Hydraulics

SafetyReq_005

ACES_HydraulicsPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

FuncReq_9

ACES_Hydraulics

SafetyReq_390197

ACES_HydraulicsPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

OtherReq_0

ACES_Hydraulics

Safety_Req_390198

ACES_HydraulicsPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

OtherReq_1

ACES_Hydraulics

Safety_Req_390200

ACES_HydraulicsPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

SafetyReq_006

ACES_Hydraulics

Safety_Req_390201

ACES_HydraulicsPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390202

ACES_Hydraulics

Safety_Req_390209

ACES_ManagementPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390203

ACES_ManagementPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390204

ACES_Management

ACES_SS_requirement_32

ACES_ManagementPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390207

ACES_Management

ACES_SS_requirement_33

ACES_ManagementPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390209

ACES_Management

ACES_SS_requirement_34

ACES_ManagementPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390210

ACES_Management

ACSCUNT_requirement_12

ACES_ManagementPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390211

ACES_Management

ACSCUNT_requirement_13

ACES_ManagementPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390212

ACES_Management

ACSCUNT_requirement_16

ACES_ManagementPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390213

ACES_Management

ACSCUNT_requirement_17

ACES_ManagementPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390214

ACES_Management

ACSCUNT_requirement_18

ACES_ManagementPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390215

ACES_Management

ACSCUNT_requirement_19

ACES_ManagementPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390217

ACES_Management

ACSCUNT_requirement_20

ACES_ManagementPkg

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_Trim

Safety_Req_390218

ACES_Management

ACSCUNT_requirement_21

ACES_ManagementPkg

ACES_HydraulicsPkg

ACES_Management

ACSCUNT_requirement_24

ACES_ManagementPkg

ACES_HydraulicsPkg

ACES_Hydraulics

SafetyReq_001

ACES_Management

ACSCUNT_requirement_26

ACES_ManagementPkg

ACES_Management

ACSCUNT_requirement_3

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 256




ACES_ManagementPkg

ACES_Management

AM_requirement_1

ACES_ManagementPkg

ACES_Management

ErrorReq_19

ACES_ManagementPkg

ACES_Management

AM_requirement_27

ACES_ManagementPkg

ACES_Management

AM_requirement_28

ACES_ManagementPkg

ACES_Management

ErrorReq_2

ACES_ManagementPkg

ACES_Management

AM_requirement_29

ACES_ManagementPkg

ACES_Management

ErrorReq_20

ACES_ManagementPkg

ACES_Management

AM_requirement_30

ACES_ManagementPkg

ACES_Management

ErrorReq_21

ACES_ManagementPkg

ACES_Management

AM_requirement_35

ACES_ManagementPkg

ACES_Management

ErrorReq_22

ACES_ManagementPkg

ACES_Management

AM_requirement_4

ACES_ManagementPkg

ACES_Management

ErrorReq_23

ACES_ManagementPkg

ACES_Management

AM_requirement_6

ACES_ManagementPkg

ACES_Management

ErrorReq_24

ACES_ManagementPkg

ACES_Management

AM_requirement_9

ACES_ManagementPkg

ACES_Management

ErrorReq_25

ACES_ManagementPkg

ACES_Management

ConfigReq_1

ACES_ManagementPkg

ACES_Management

ErrorReq_26

ACES_ManagementPkg

ACES_Management

ConfigReq_3

ACES_ManagementPkg

ACES_Management

ErrorReq_27

ACES_ManagementPkg

ACES_Management

DerIntReq_11

ACES_ManagementPkg

ACES_Management

ErrorReq_28

ACES_ManagementPkg

ACES_Management

DerIntReq_12

ACES_ManagementPkg

ACES_Management

ErrorReq_29

ACES_ManagementPkg

ACES_Management

DerIntReq_14

ACES_ManagementPkg

ACES_Management

ErrorReq_3

ACES_ManagementPkg

ACES_Management

DerIntReq_16

ACES_ManagementPkg

ACES_Management

ErrorReq_30

ACES_ManagementPkg

ACES_Management

DerIntReq_17

ACES_ManagementPkg

ACES_Management

ErrorReq_31

ACES_ManagementPkg

ACES_Management

DerIntReq_18

ACES_ManagementPkg

ACES_Management

ErrorReq_32

ACES_ManagementPkg

ACES_Management

DerIntReq_7

ACES_ManagementPkg

ACES_Management

ErrorReq_33

ACES_ManagementPkg

ACES_Management

DerIntReq_9

ACES_ManagementPkg

ACES_Management

ErrorReq_34

ACES_ManagementPkg

ACES_Management

DerReqInt_13

ACES_ManagementPkg

ACES_Management

ErrorReq_35

ACES_ManagementPkg

ACES_Management

DerStartupReq_4

ACES_ManagementPkg

ACES_Management

ErrorReq_36

ACES_ManagementPkg

ACES_Management

ErrorReq_0O

ACES_ManagementPkg

ACES_Management

ErrorReq_37

ACES_ManagementPkg

ACES_Management

ErrorReq_1

ACES_ManagementPkg

ACES_Management

ErrorReq_4

ACES_ManagementPkg

ACES_Management

ErrorReq_10

ACES_ManagementPkg

ACES_Management

ErrorReq_5

ACES_ManagementPkg

ACES_Management

ErrorReq_11

ACES_ManagementPkg

ACES_Management

ErrorReq_6

ACES_ManagementPkg

ACES_Management

ErrorReq_12

ACES_ManagementPkg

ACES_Management

ErrorReq_7

ACES_ManagementPkg

ACES_Management

ErrorReq_13

ACES_ManagementPkg

ACES_Management

ErrorReq_8

ACES_ManagementPkg

ACES_Management

ErrorReq_14

ACES_ManagementPkg

ACES_Management

ErrorReq_9

ACES_ManagementPkg

ACES_Management

ErrorReq_15

ACES_ManagementPkg

ACES_Management

FuncReq_0O

ACES_ManagementPkg

ACES_Management

ErrorReq_16

ACES_ManagementPkg

ACES_Management

FuncReq_1

ACES_ManagementPkg

ACES_Management

ErrorReq_17

ACES_ManagementPkg

ACES_Management

FuncReq_10

ACES_ManagementPkg

ACES_Management

ErrorReq_18

ACES_ManagementPkg

ACES_Management

FuncReq_11

ACES_ManagementPkg

ACES_Management

FuncReq_12

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 257




ACES_ManagementPkg

ACES_Management

FuncReq_13

ACES_ManagementPkg

ACES_Management

FuncReq_15

ACES_ManagementPkg

ACES_Management

FuncReq_7

ACES_ManagementPkg

ACES_Management

FuncReq_16

ACES_ManagementPkg

ACES_Management

FuncReq_8

ACES_ManagementPkg

ACES_Management

FuncReq_17

ACES_ManagementPkg

ACES_Management

FuncReq_9

ACES_ManagementPkg

ACES_Management

FuncReq_18

ACES_ManagementPkg

ACES_Management

InterfaceReq_0

ACES_ManagementPkg

ACES_Management

FuncReq_19

ACES_ManagementPkg

ACES_Management

InterfaceReq_1

ACES_ManagementPkg

ACES_Management

FuncReq_2

ACES_ManagementPkg

ACES_Management

InterfaceReq_10

ACES_ManagementPkg

ACES_Management

FuncReq_20

ACES_ManagementPkg

ACES_Management

InterfaceReq_11

ACES_ManagementPkg

ACES_Management

FuncReq_21

ACES_ManagementPkg

ACES_Management

InterfaceReq_12

ACES_ManagementPkg

ACES_Management

FuncReq_22

ACES_ManagementPkg

ACES_Management

InterfaceReq_13

ACES_ManagementPkg

ACES_Management

FuncReq_23

ACES_ManagementPkg

ACES_Management

InterfaceReq_14

ACES_ManagementPkg

ACES_Management

FuncReq_24

ACES_ManagementPkg

ACES_Management

InterfaceReq_15

ACES_ManagementPkg

ACES_Management

FuncReq_25

ACES_ManagementPkg

ACES_Management

InterfaceReq_16

ACES_ManagementPkg

ACES_Management

FuncReq_26

ACES_ManagementPkg

ACES_Management

InterfaceReq_17

ACES_ManagementPkg

ACES_Management

FuncReq_27

ACES_ManagementPkg

ACES_Management

InterfaceReq_18

ACES_ManagementPkg

ACES_Management

FuncReq_28

ACES_ManagementPkg

ACES_Management

InterfaceReq_19

ACES_ManagementPkg

ACES_Management

FuncReq_29

ACES_ManagementPkg

ACES_Management

InterfaceReq_2

ACES_ManagementPkg

ACES_Management

FuncReq_3

ACES_ManagementPkg

ACES_Management

InterfaceReq_20

ACES_ManagementPkg

ACES_Management

FuncReq_30

ACES_ManagementPkg

ACES_Management

InterfaceReq_21

ACES_ManagementPkg

ACES_Management

FuncReq_31

ACES_ManagementPkg

ACES_Management

InterfaceReq_22

ACES_ManagementPkg

ACES_Management

FuncReq_32

ACES_ManagementPkg

ACES_Management

InterfaceReq_23

ACES_ManagementPkg

ACES_Management

FuncReq_33

ACES_ManagementPkg

ACES_Management

InterfaceReq_24

ACES_ManagementPkg

ACES_Management

FuncReq_34

ACES_ManagementPkg

ACES_Management

InterfaceReq_25

ACES_ManagementPkg

ACES_Management

FuncReq_35

ACES_ManagementPkg

ACES_Management

InterfaceReq_26

ACES_ManagementPkg

ACES_Management

FuncReq_36

ACES_ManagementPkg

ACES_Management

InterfaceReq_27

ACES_ManagementPkg

ACES_Management

FuncReq_37

ACES_ManagementPkg

ACES_Management

InterfaceReq_28

ACES_ManagementPkg

ACES_Management

FuncReq_38

ACES_ManagementPkg

ACES_Management

InterfaceReq_29

ACES_ManagementPkg

ACES_Management

FuncReq_39

ACES_ManagementPkg

ACES_Management

InterfaceReq_3

ACES_ManagementPkg

ACES_Management

FuncReq_4

ACES_ManagementPkg

ACES_Management

InterfaceReq_4

ACES_ManagementPkg

ACES_Management

FuncReq_40

ACES_ManagementPkg

ACES_Management

InterfaceReq_5

ACES_ManagementPkg

ACES_Management

FuncReq_5

ACES_ManagementPkg

ACES_Management

InterfaceReq_6

ACES_ManagementPkg

ACES_Management

FuncReq_6

ACES_ManagementPkg

ACES_Management

InterfaceReq_7

ACES_ManagementPkg

ACES_Management

InterfaceReq_8

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 258




ACES_ManagementPkg

ACES_Management

InterfaceReq_9

ACES_ManagementPkg

ACES_Management

OtherReq_0

ACES_ManagementPkg

ACES_Management

ACSCUNT_requirement_12

ACES_ManagementPkg

ACES_Management

OtherReq_1

ACES_ManagementPkg

ACES_Management

ACSCUNT_requirement_13

ACES_ManagementPkg

ACES_Management

SafetyReq_001

ACES_ManagementPkg

ACES_Management

ACSCUNT_requirement_16

ACES_ManagementPkg

ACES_Management

SafetyReq_002

ACES_ManagementPkg

ACES_Management

ACSCUNT_requirement_17

ACES_ManagementPkg

ACES_Management

SafetyReq_003

ACES_ManagementPkg

ACES_Management

ACSCUNT_requirement_18

ACES_ManagementPkg

ACES_Management

SafetyReq_004

ACES_ManagementPkg

ACES_Management

ACSCUNT_requirement_19

ACES_ManagementPkg

ACES_Management

SafetyReq_005

ACES_ManagementPkg

ACES_Management

ACSCUNT_requirement_20

ACES_ManagementPkg

ACES_Management

SafetyReq_390197

ACES_ManagementPkg

ACES_Management

ACSCUNT_requirement_21

ACES_ManagementPkg

ACES_Management

Safety_Req_390198

ACES_ManagementPkg

ACES_Management

ACSCUNT_requirement_24

ACES_ManagementPkg

ACES_Management

Safety_Req_390199

ACES_ManagementPkg

ACES_Management

ACSCUNT_requirement_26

ACES_ManagementPkg

ACES_Management

Safety_Req_390200

ACES_ManagementPkg

ACES_Management

ACSCUNT_requirement_3

ACES_ManagementPkg

ACES_Management

Safety_Req_390201

ACES_ManagementPkg

ACES_Management

AM_requirement_1

ACES_ManagementPkg

ACES_Management

Safety_Req_390206

ACES_ManagementPkg

ACES_Management

AM_requirement_27

ACES_ManagementPkg

ACES_Management

Safety_Req_390207

ACES_ManagementPkg

ACES_Management

AM_requirement_28

ACES_ManagementPkg

ACES_Management

Safety_Req_390208

ACES_ManagementPkg

ACES_Management

AM_requirement_29

ACES_ManagementPkg

ACES_Management

Safety_Req_390209

ACES_ManagementPkg

ACES_Management

AM_requirement_30

ACES_ManagementPkg

ACES_Management

Safety_Req_390210

ACES_ManagementPkg

ACES_Management

AM_requirement_35

ACES_ManagementPkg

ACES_Management

Safety_Req_390212

ACES_ManagementPkg

ACES_Management

AM_requirement_4

ACES_ManagementPkg

ACES_Management

Safety_Req_390213

ACES_ManagementPkg

ACES_Management

AM_requirement_6

ACES_ManagementPkg

ACES_Management

Safety_Req_390214

ACES_ManagementPkg

ACES_Management

AM_requirement_9

ACES_ManagementPkg

ACES_Management

Safety_Req_390215

ACES_ManagementPkg

ACES_Management

ConfigReq_1

ACES_ManagementPkg

ACES_Management

Safety_Req_390216

ACES_ManagementPkg

ACES_Management

ConfigReq_3

ACES_ManagementPkg

ACES_Management

StartUpReq_1

ACES_ManagementPkg

ACES_Management

DerintReq_11

ACES_ManagementPkg

ACES_Management

StartUpReq_2

ACES_ManagementPkg

ACES_Management

DerintReq_12

ACES_ManagementPkg

ACES_Management

StartUpReq_3

ACES_ManagementPkg

ACES_Management

DerIntReq_14

ACES_ManagementPkg

ACES_Management

StartUpReq_4

ACES_ManagementPkg

ACES_Management

DerIntReq_16

ACES_ManagementPkg

ACES_Management

StartUpReq_5

ACES_ManagementPkg

ACES_Management

DerIntReq_17

ACES_ManagementPkg

ACES_Management

StartUpReq_6

ACES_ManagementPkg

ACES_Management

DerIntReq_18

ACES_ManagementPkg

ACES_Management

ACES_ManagementPkg

ACES_Management

DerIntReq_7

ACES_SS_requirement_32

ACES_ManagementPkg

ACES_Management

ACES_SS_requirement_33

ACES_ManagementPkg

ACES_Management

DerIntReq_9

ACES_ManagementPkg

ACES_Management

ACES_SS_requirement_34

ACES_ManagementPkg

ACES_Management

DerReqInt_13

ACES_ManagementPkg

ACES_Management

DerStartupReq_4

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 259




ACES_ManagementPkg

ACES_Management

ErrorReq_0

ACES_ManagementPkg

ACES_Management

ErrorReq_1

ACES_ManagementPkg

ACES_Management

ErrorReq_4

ACES_ManagementPkg

ACES_Management

ErrorReq_10

ACES_ManagementPkg

ACES_Management

ErrorReq_5

ACES_ManagementPkg

ACES_Management

ErrorReq_11

ACES_ManagementPkg

ACES_Management

ErrorReq_6

ACES_ManagementPkg

ACES_Management

ErrorReq_12

ACES_ManagementPkg

ACES_Management

ErrorReq_7

ACES_ManagementPkg

ACES_Management

ErrorReq_13

ACES_ManagementPkg

ACES_Management

ErrorReq_8

ACES_ManagementPkg

ACES_Management

ErrorReq_14

ACES_ManagementPkg

ACES_Management

ErrorReq_9

ACES_ManagementPkg

ACES_Management

ErrorReq_15

ACES_ManagementPkg

ACES_Management

FuncReq_0

ACES_ManagementPkg

ACES_Management

ErrorReq_16

ACES_ManagementPkg

ACES_Management

FuncReq_1

ACES_ManagementPkg

ACES_Management

ErrorReq_17

ACES_ManagementPkg

ACES_Management

FuncReq_10

ACES_ManagementPkg

ACES_Management

ErrorReq_18

ACES_ManagementPkg

ACES_Management

FuncReq_11

ACES_ManagementPkg

ACES_Management

ErrorReq_19

ACES_ManagementPkg

ACES_Management

FuncReq_12

ACES_ManagementPkg

ACES_Management

ErrorReq_2

ACES_ManagementPkg

ACES_Management

FuncReq_13

ACES_ManagementPkg

ACES_Management

ErrorReq_20

ACES_ManagementPkg

ACES_Management

FuncReq_15

ACES_ManagementPkg

ACES_Management

ErrorReq_21

ACES_ManagementPkg

ACES_Management

FuncReq_16

ACES_ManagementPkg

ACES_Management

ErrorReq_22

ACES_ManagementPkg

ACES_Management

FuncReq_17

ACES_ManagementPkg

ACES_Management

ErrorReq_23

ACES_ManagementPkg

ACES_Management

FuncReq_18

ACES_ManagementPkg

ACES_Management

ErrorReq_24

ACES_ManagementPkg

ACES_Management

FuncReq_19

ACES_ManagementPkg

ACES_Management

ErrorReq_25

ACES_ManagementPkg

ACES_Management

FuncReq_2

ACES_ManagementPkg

ACES_Management

ErrorReq_26

ACES_ManagementPkg

ACES_Management

FuncReq_20

ACES_ManagementPkg

ACES_Management

ErrorReq_27

ACES_ManagementPkg

ACES_Management

FuncReq_21

ACES_ManagementPkg

ACES_Management

ErrorReq_28

ACES_ManagementPkg

ACES_Management

FuncReq_22

ACES_ManagementPkg

ACES_Management

ErrorReq_29

ACES_ManagementPkg

ACES_Management

FuncReq_23

ACES_ManagementPkg

ACES_Management

ErrorReq_3

ACES_ManagementPkg

ACES_Management

FuncReq_24

ACES_ManagementPkg

ACES_Management

ErrorReq_30

ACES_ManagementPkg

ACES_Management

FuncReq_25

ACES_ManagementPkg

ACES_Management

ErrorReq_31

ACES_ManagementPkg

ACES_Management

FuncReq_26

ACES_ManagementPkg

ACES_Management

ErrorReq_32

ACES_ManagementPkg

ACES_Management

FuncReq_27

ACES_ManagementPkg

ACES_Management

ErrorReq_33

ACES_ManagementPkg

ACES_Management

FuncReq_28

ACES_ManagementPkg

ACES_Management

ErrorReq_34

ACES_ManagementPkg

ACES_Management

FuncReq_29

ACES_ManagementPkg

ACES_Management

ErrorReq_35

ACES_ManagementPkg

ACES_Management

FuncReq_3

ACES_ManagementPkg

ACES_Management

ErrorReq_36

ACES_ManagementPkg

ACES_Management

FuncReq_30

ACES_ManagementPkg

ACES_Management

ErrorReq_37

ACES_ManagementPkg

ACES_Management

FuncReq_31

ACES_ManagementPkg

ACES_Management

FuncReq_32

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 260




ACES_ManagementPkg

ACES_Management

FuncReq_33

ACES_ManagementPkg

ACES_Management

FuncReq_34

ACES_ManagementPkg

ACES_Management

InterfaceReq_25

ACES_ManagementPkg

ACES_Management

FuncReq_35

ACES_ManagementPkg

ACES_Management

InterfaceReq_26

ACES_ManagementPkg

ACES_Management

FuncReq_36

ACES_ManagementPkg

ACES_Management

InterfaceReq_27

ACES_ManagementPkg

ACES_Management

FuncReq_37

ACES_ManagementPkg

ACES_Management

InterfaceReq_28

ACES_ManagementPkg

ACES_Management

FuncReq_38

ACES_ManagementPkg

ACES_Management

InterfaceReq_29

ACES_ManagementPkg

ACES_Management

FuncReq_39

ACES_ManagementPkg

ACES_Management

InterfaceReq_3

ACES_ManagementPkg

ACES_Management

FuncReq_4

ACES_ManagementPkg

ACES_Management

InterfaceReq_4

ACES_ManagementPkg

ACES_Management

FuncReq_40

ACES_ManagementPkg

ACES_Management

InterfaceReq_5

ACES_ManagementPkg

ACES_Management

FuncReq_5

ACES_ManagementPkg

ACES_Management

InterfaceReq_6

ACES_ManagementPkg

ACES_Management

FuncReq_6

ACES_ManagementPkg

ACES_Management

InterfaceReq_7

ACES_ManagementPkg

ACES_Management

FuncReq_7

ACES_ManagementPkg

ACES_Management

InterfaceReq_8

ACES_ManagementPkg

ACES_Management

FuncReq_8

ACES_ManagementPkg

ACES_Management

InterfaceReq_9

ACES_ManagementPkg

ACES_Management

FuncReq_9

ACES_ManagementPkg

ACES_Management

OtherReq_0

ACES_ManagementPkg

ACES_Management

InterfaceReq_0

ACES_ManagementPkg

ACES_Management

OtherReq_1

ACES_ManagementPkg

ACES_Management

InterfaceReq_1

ACES_ManagementPkg

ACES_Management

SafetyReq_001

ACES_ManagementPkg

ACES_Management

InterfaceReq_10

ACES_ManagementPkg

ACES_Management

SafetyReq_002

ACES_ManagementPkg

ACES_Management

InterfaceReq_11

ACES_ManagementPkg

ACES_Management

SafetyReq_003

ACES_ManagementPkg

ACES_Management

InterfaceReq_12

ACES_ManagementPkg

ACES_Management

SafetyReq_004

ACES_ManagementPkg

ACES_Management

InterfaceReq_13

ACES_ManagementPkg

ACES_Management

SafetyReq_005

ACES_ManagementPkg

ACES_Management

InterfaceReq_14

ACES_ManagementPkg

ACES_Management

SafetyReq_390197

ACES_ManagementPkg

ACES_Management

InterfaceReq_15

ACES_ManagementPkg

ACES_Management

Safety_Req_390198

ACES_ManagementPkg

ACES_Management

InterfaceReq_16

ACES_ManagementPkg

ACES_Management

Safety_Req_390199

ACES_ManagementPkg

ACES_Management

InterfaceReq_17

ACES_ManagementPkg

ACES_Management

Safety_Req_390200

ACES_ManagementPkg

ACES_Management

InterfaceReq_18

ACES_ManagementPkg

ACES_Management

Safety_Req_390201

ACES_ManagementPkg

ACES_Management

InterfaceReq_19

ACES_ManagementPkg

ACES_Management

Safety_Req_390206

ACES_ManagementPkg

ACES_Management

InterfaceReq_2

ACES_ManagementPkg

ACES_Management

Safety_Req_390207

ACES_ManagementPkg

ACES_Management

InterfaceReq_20

ACES_ManagementPkg

ACES_Management

Safety_Req_390208

ACES_ManagementPkg

ACES_Management

InterfaceReq_21

ACES_ManagementPkg

ACES_Management

Safety_Req_390209

ACES_ManagementPkg

ACES_Management

InterfaceReq_22

ACES_ManagementPkg

ACES_Management

Safety_Req_390210

ACES_ManagementPkg

ACES_Management

InterfaceReq_23

ACES_ManagementPkg

ACES_Management

Safety_Req_390212

ACES_ManagementPkg

ACES_Management

InterfaceReq_24

ACES_ManagementPkg

ACES_Management

Safety_Req_390213

ACES_ManagementPkg

ACES_Management

Safety_Req_390214

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 261




ACES_ManagementPkg

ACES_Management

Safety_Req_390215

ACES_ManagementPkg

ACES_Management

Safety_Req_390216

ACES_ManagementPkg

ACES_Management

StartUpReq_1

ACES_ManagementPkg

ACES_Management

StartUpReq_2

ACES_ManagementPkg

ACES_Management

StartUpReq_3

ACES_ManagementPkg

ACES_Management

StartUpReq_4

ACES_ManagementPkg

ACES_Management

StartUpReq_5

ACES_ManagementPkg

ACES_Management

StartUpReq_6

ACES_PowerPkg

ACES_PowerPkg ACES_Power DerIntReq_15
ACES_PowerPkg ACES_Power DerlIntReq_16
ACES_PowerPkg ACES_Power DerIntReq_17
ACES_PowerPkg ACES_Power Safety_Req_390209
ACES_PowerPkg ACES_Power DerIntReq_15
ACES_PowerPkg ACES_Power DerIntReq_16
ACES_PowerPkg ACES_Power DerIntReq_17
ACES_PowerPkg ACES_Power Safety_Req_390209

Table 5: Subsystem Requirement Allocation Table (Complete)

© Bruce Powel Douglass 2017. All Rights Reserved

Harmony aMBSE Deskbook 262



References

14 References

[1] OMG SysML Specification 1.4 June 2015
http://sysml.org/sysml-specifications/

[2] Bruce Powel Douglass, Agile Systems Engineering (Morgan Kaufmann Press, 2015)
https://www.amazon.com/Agile-Systems-Engineering-Bruce-Douglass-ebook/dp/BO15XPGTNI/ref=sr 1 1?ie=UTF8&qid=1478791883&sr=8-
1&keywords=agile+systems

[3] Bruce Powel Douglass, Real-Time Agility (Addison-Wesley Professional, 2009)
https://www.amazon.com/Real-Time-Agility-Harmony-Embedded-Development/dp/0321545494 /ref=sr 1 3?ie=UTF8&qid=1478791964&sr=8-
3&keywords=agile+real-time

[4] Bruce Powel Douglass, Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems (Addison-Wesley Professional, 2002)
https://www.amazon.com/Real-Time-Design-Patterns-Scalable-Architecture/dp/0201699567/ref=sr 1 1?ie=UTF8&qid=14787920528&sr=8-1&keywords=real-
time+design+patterns

[5] Hans-Peter Hoffmann, Harmony Deskbook 4.1 (IBM, July 2013)
https://www.ibm.com/developerworks/community/blogs/35dfcb99-111b-423a-aaa4-50f3fddael41/entry/harmony Deskbook 4 1 is here?lang=en

[6] PID For Dummies
http://www.csimn.com/CSI pages/PIDforDummies.html

[7] Bruce Powel Douglass, Harmony MBSE Modeling Guidelines
http://merlinscave.info/Merlins Cave/Tutorials/Entries/2017/5/26 Harmony Modeling Guidelines.html

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 263


http://sysml.org/sysml-specifications/
https://www.amazon.com/Agile-Systems-Engineering-Bruce-Douglass-ebook/dp/B015XPGTNI/ref=sr_1_1?ie=UTF8&qid=1478791883&sr=8-1&keywords=agile+systems
https://www.amazon.com/Agile-Systems-Engineering-Bruce-Douglass-ebook/dp/B015XPGTNI/ref=sr_1_1?ie=UTF8&qid=1478791883&sr=8-1&keywords=agile+systems
https://www.amazon.com/Real-Time-Agility-Harmony-Embedded-Development/dp/0321545494/ref=sr_1_3?ie=UTF8&qid=1478791964&sr=8-3&keywords=agile+real-time
https://www.amazon.com/Real-Time-Agility-Harmony-Embedded-Development/dp/0321545494/ref=sr_1_3?ie=UTF8&qid=1478791964&sr=8-3&keywords=agile+real-time
https://www.amazon.com/Real-Time-Design-Patterns-Scalable-Architecture/dp/0201699567/ref=sr_1_1?ie=UTF8&qid=1478792052&sr=8-1&keywords=real-time+design+patterns
https://www.amazon.com/Real-Time-Design-Patterns-Scalable-Architecture/dp/0201699567/ref=sr_1_1?ie=UTF8&qid=1478792052&sr=8-1&keywords=real-time+design+patterns
https://www.ibm.com/developerworks/community/blogs/35dfcb99-111b-423a-aaa4-50f3fddae141/entry/harmony_deskbook_4_1_is_here?lang=en
http://www.csimn.com/CSI_pages/PIDforDummies.html
http://merlinscave.info/Merlins_Cave/Tutorials/Entries/2017/5/26_Harmony_Modeling_Guidelines.html

