

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 1

Harmony aMBSE Deskbook Version 1.02
Agile Model-Based Systems Engineering Best Practices with IBM Rhapsody

Bruce Powel Douglass, Ph.D.
Principal
Bruce-Douglass.com

www.bruce.-douglass.com

http://www.bruce.-douglass.com/

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 2

This is the latest version of the Harmony aMBSE Deskbook, released September, 2017.

This Deskbook is written for the systems engineer. This Deskbook assumes the reader is familiar with

• Systems engineering concepts

• The SysML language

• The IBM Rhapsody UML/SysML Modeling Tool

Permission to use, copy, and distribute this Deskbook is granted, however, the use, copy, or distribution rights of the Deskbook are in whole, and
not in part and must contain attribution information.

THIS DESKBOOK IS PROVIDED “AS-IS”. Bruce Douglass MAKES NO REPRESENTATIUON OR WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING BUT
NOT LIMITED TO, WARRANTIES OF MECHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

Bruce Douglass WILL NOT BE LIABLE FOR ANY DIRECT, INDIRECT, SPECIAL OR CONSEQUENTIAL DAMAGES AREIVING FROM THE USE OF THIS
DESKBOOK OR ANY PART THEREIN, OR THE PERFORMANCE OR IMPLEMENTATION OF THE CONTENTS OF THIS DESKBOOK.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 3

Introduction

1 Foreword

This Deskbook provides guidance, “best practices”, for using model-based
systems engineering in an agile way. This deskbok is based on the method
outlined in my book Agile Systems Engineering (Elsevier Press, 2016), seen
at the left, which is, in turn based on the previous Harmony for Systems
Engineering and Harmony for Embedded Software work. Readers wanting
more detailed exposition are referred there for more detail. Although based
heavily on that book, this Deskbook differs in a number of important ways.

• The Deskbook is considerably lighter in depth and breadth,
compared to a full book.

• The Deskbook does not introduce the SysML, Rhapsody tool, nor, in
any detail, agile methods as they apply to systems engineering in
general. It does, however, briefly introduce the work flows and
work products of the Harmony aMBSE process.

• The Deskbook is intended primarily as means to get system
engineers quickly up to speed using the approach without a great
deal of theoretical and historical backstory.

• The Deskbook is meant to introduce the best practices in the
context of a process (the Harmony aMBSE process), a SysML tool
(IBM Rhapsody), and a particular example system.

• The Deskbook provides mentoring on the use of the Rhapsopdy
tool, and especially the use of the Harmony SE Toolkit, written by
Andy Lapping.

• Finally, the Deskbook is free. ☺

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 4

Introduction

Although this Deskbook is written by me, I wish to acknowledge the
significant contributions of Graham Bleakley, Ph.D., and Andy Lapping, both
of IBM.

I have tried hard to remove all errors in this Deskbook. Despite that effort, I
have no doubt that some remain. If you discover an error, please report it to
me via email at Bruce.Douglass@outlook.com.

This Deskbook was created using the Rhapsody Developer Edition version
8.2.1.

mailto:Bruce.Douglass@us.ibm.com

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 5

Foreword

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 6

Table of Contents

2 Table of Contents

1 Foreword ... 3

2 Table of Contents ... 6

3 Introduction ... 8

3.1 Why this Deskbook? ... 8

4 Overview of the Harmony aMBSE Process .. 10

4.1 Systems Requirements Definition and Analysis 11

4.2 Architectural Analysis ... 16

4.3 Architectural Design ... 19

4.4 Handoff to Downstream Engineering ... 21

5 The Harmony SE Toolkit ... 23

5.1 The Harmony-SE Profile .. 23

5.2 Functional Analysis Helpers .. 23

5.2.1 Import Description from RTF ... 23
5.2.2 Create System Context .. 24
5.2.3 Create System Model from Use Case .. 25
5.2.4 Create Scenario (“Generate Sequence Diagram”) 31
5.3 Miscellaneous Helpers .. 32

5.3.1 Straighten Messages ... 32
5.4 Summary ... 33

6 Case Study: Introduction ... 36

6.1 Case Study Workflow.. 37

6.2 Creating the Harmony Project Structure .. 40

7 Case Study: System Requirements Definition and Analysis 42

7.1 Get System Requirements Into Rhapsody 42

7.2 Create the System Use Cases ... 43

7.2.1 Add use case mini-specification .. 45
7.2.2 Allocate requirements to the use cases 45
7.3 Analyze the Start Up Use Case ... 48

7.3.1 Create Use Case Functional Analysis Model Structure 49
7.3.2 Create the Activity Diagram .. 51
7.3.3 Generate Scenarios from the Activity Diagram 54
7.3.4 Create the Logical Data and Flow Model 60
7.3.5 Create the Safety Analysis ... 66
7.3.6 Create the Use Case State Machine and Execute Model 70
7.4 Analyze the Control Air Surfaces Use Case 91

7.4.1 Create Use Case Functional Analysis Model Structure 91
7.4.2 Create Scenarios.. 93
7.4.3 Creating the Logical Data and Flow Schema 98
7.4.4 Safety Analysis for Control Air Surfaces Use Case 101
7.4.5 Create the Control Air Surfaces Use Case State Machine (and
execute it too!) .. 107

8 Case Study: Architectural Analysis ... 138

8.1 Identify Key System Functions .. 138

8.2 Define Candidate Solutions .. 139

8.3 Architectural Trade Study: Define Assessment Criteria 141

8.4 Architectural Trade Study: Assign Weights to Criteria 142

8.5 Architectural Trade Study: Define Utility Curve for Each Criterion
 143

8.6 Architectural Trade Study: Assign MOEs to Candidate Solutions 144

8.7 Architectural Trade Study: Determine Solution 146

8.8 Merge Solutions into System Architecture................................... 147

9 Case Study: Architectural Design ... 148

9.1 Identify Subsystems .. 148

9.1.1 Merge functional analysis ... 149
9.1.2 Allocate merged features to subsystem architecture 156
9.2 Allocate Requirements to Subsystems ... 158

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 7

Table of Contents

9.2.1 Creating Derived Requirements .. 158
9.2.2 Performing the allocation of requirements 165
9.3 Allocate Use Cases to Subsystems .. 168

9.3.1 Bottom-Up Approach: Start Up Use Case 168
9.3.2 Top-Down Approach: Control Air Surfaces Use Case 183
9.3.3 Derive Subsystem Use Case State Behavior 193
9.3.4 Running the subsystem use case model 198
9.4 Create/Update Logical Data Schema .. 204

9.5 Define / Merge System Logical Interfaces 206

9.6 Analyze Dependability .. 209

10 Case Study: Handoff to Downstream Engineering 211

10.1 Gather Subsystem Specification Data 211

10.2 Create the Shared Model .. 211

10.2.1 Define the Physical Interfaces ... 213
10.2.2 Specify the Physical Data Schema ... 221
10.3 Create the Subsystem Model .. 222

10.4 Define the Interdisciplinary Interfaces 225

10.4.1 Specifying the interfaces ... 226
10.5 Allocate Requirements to Engineering Disciplines 230

11 Post Log: Where we go from here ... 234

11.1 Downstream engineering begins .. 234

11.2 System Engineering Continues ... 234

12 Appendix: Passing Data Around in Rhapsody for C++ 235

12.1 Simple and Complex Types ... 235

12.1.1 Special Case: #define ... 238
12.2 Passing Arguments in Event Receptions 242

12.3 Summary ... 246

13 Tables ... 247

13.1 Derived Requirements Table .. 247

13.2 Subsystem Requirements Allocation Table 249

14 References .. 263

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 8

Introduction

3 Introduction

3.1 Why this Deskbook?
To enable effective systems engineering, a number of things are necessary,
most notably 1) language, 2) process, and 3) tooling. Ultimately, the
purpose of this Deskbook is to show how to best unify these aspects
together into a holistic, efficient, and effective systems engineering practice.
Let’s talk about these three key aspects of a systems engineering practice.

A Systems Engineering Language
First, a language is needed to capture the semantic elements and their
relations. Natural language has its place; it is wonderfully expressive and
easy for non-technical people to understand, at least in general terms, what
is being said. It is a great way to capture poetry or to discuss the nuances of
philsophical arguments. Nevertheless, it is problematic for systems
engineering. It is ambiguous, and the same word often not only means
different things to different people, it often means several different things
to the same person. Natural language is imprecise because even if a word
has a precise meaning, it is likely to have subtle aspects. In general, natural
language is not computable, or at least not in the same way as mathematics
or temporal logic are. Natural language sacrifices precision for universality.
This is a good tradeoff if you want to write a haiku, but a bad one if you
want to describe the laws of physics.

SysML, on the other hand is a more precise language with a metamodel
specification (http://www.omg.org/spec/SysML). It includes a number of
representational views for functionality (use case and requirement
diagrams), structure (internal block and block definition diagrams), behavior
(activity and state diagrams), interaction (sequence diagrams) and relations
(various table and matrices). These views adhere to an underlying semantic
model so that their meaning is precise enough to create computable
models.

Computable models are important because they allow the verification of
the information the hold. An important subset of computable models are
executable models – models that can be executed or simulated to verify
they correctly capture semantic content. Since the primary outcome of
systems engineering activities is specification, computable models permit
the engineer to verify the correctness of the information within the model
as well as to validate, with the customer, that the system under
development will meet their needs. This can be done with virtually all
systems engineering work products, from requirements specifications to
architecture trade studies, architectural specifications, interface
specifications, and other work products handed off to downstream
engineers.

A Process for Planning and Enacting Engineering Work
A process is a procedure that specifies what you want to do, when you want
to do it, what you need to consume and create, who needs to be involved,
and how to go about it.

In this context, the Harmony Agile Model-Based Systems Engineering
(aMBSE)[2] process defines all those things and provides guidance on how
to proceed. aMBSE is agile because it incorporates some key agile
approaches to optimize both correctness of the work and to minimize the
effort required. aMBSE is model-based because it relies on SysML and
computable modeling to identify, represent, and verify the system
properties of concern. aMBSE is for systems engineering in that it focuses on
the specific needs of systems engineers. The Harmony aMBSE process will
be discussed in more detail in the next chapter.

A Tooling and Automation Environment
From one perspective, tools are nothing particularly special. They merely
automate things that you would normally do via more manual procedures.
However, good tools do more than just save time; they also improve quality,
and in the best case, empower the engineer to perform activities that, while
desirable, were unachievable before.

http://www.omg.org/spec/SysML

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 9

Introduction

In this Deskbook, the tool of concern is IBM Rhapsody, a highly capable
UML/SysML modeling environment. Logically, Rhapsody consists of a
number of interconnected capabilities that collectively provide a powerful
conceptual place from which to develop systems.

Figure 1: Rhapsody conceptual model

Rhapsody’s graphical editor provides diagrams and tables to both enter and
view model information. The model management portion of Rhapsody
maintains the model repository – the information content of the model
itself, and manages storage, recovery, and reporting. Beyond that,
Rhapsody’s model compiler constructs executable version of the model
(provided that the model is well-formed) . The model compiler generates
software source code to simulate the modeled system behaviors and
properties. Rhapsody provides facilities to visualize the model execution –
by showing state changes via dynamic coloring or by generating messages
on sequence diagrams as model elements interact during the simulation.

Model execution control facilities give the engineer the ability to run, single-
step, examine values, and set breakpoints. Additionally, web-based and
panel-based views can be constructed to monitor and control the
simulation. Beyond this, Rhapsody has a tool add-on called Test Conductor
which supports the UML Testing Profile, and so can offer model-based
testing specification, execution, verdicts, and management.

Rhapsody supports generation of code in a number of languages (notably, C,
C++, Java, and Ada) and many compilers. In this book, we are generating
code in C++ and will be using the popular Cygwin compiler. The Microsoft
C++ compiler is also commonly used with Rhapsody as well and is almost
completely compatible1.

Rhapsody integrates with many other tools for special purposes. Notably,
Rhapsody integrates with IBM DOORS and DOOR NG (Next Generation) for
requirements traceability (although Rhapsody supports internal model
traceability as well), many different version control tools (including Rational
Team Concert), Simulink for control loop integration, SimulationX and
Modelica for physics modeling and the Functional Mockup Interface (FMI)
specification (http://fmi-standard.org).

1 The only difference you’re likely to notice is with the cout and endl applicators; in
Cygwin you use them with the library context (as in “std::cout << “Hello “ <<
std::endl;”) while some versions of the Microsoft compiler wants you to move the
library context (“cout << “Hello “ << endl;”).

http://fmi-standard.org/

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 10

Introduction to the Harmony aMBSE Process

4 Overview of the Harmony aMBSE Process

Harmony Agile Model-Based Systems Engineering (Harmony aMBSE)
process focuses on the development of model-based system engineering
work products such as requirements, architecture, interfaces, trade studies,
and various analyses (such as safety, reliability, and security). It does this in
an agile fashion by incorporating incremental development of engineering
data, early and continuous verification of the correctness of that
information, and continuous integration of the work of collaborating
engineers. Figure 2 shows the overall process flow.

Figure 2: Harmony aMBSE Delivery Process

Each of the rectangular boxes in the figure represents a process activity,
which, in turn, is defined by a set of nested activities or tasks. The
diamonds represent decision points (at which only a single flow is taken at a
time), while the horizontal bars are either forks or joins, which represent
concurrent flows. The labeled pentagons are tasks on which one or more
engineers work. Each task is defined with inputs and outputs, a purpose,
description, the set of steps necessary to complete the task, and optional
guidance material.

The activities and tasks of the Harmony aMBSE process shown in Figure 2
are2:

• Initialize Project
Identify and prioritize stakeholder use cases, create the engineering
team structure, create first cut schedule, risk management plan,
and the System Engineering Management Plan.

• Define Stakeholder Requirements
Identify stakeholders of interest, stakeholder needs as
requirements, allocate these to use cases, and perform rudimentary
requirements analysis, normally limited to scenario elaboration.

• System Requirements Definition and Analysis
Identify system use cases (normally 1:1 match for the stakeholder
use cases), derive system requirements, allocate them to use cases,
analyze the use cases with computable models, create logical flow
data and flow schema, analyze dependability, and create the initial
system verification plan.

• Architectural Analysis
Identify and analyze system trades and make technological and/or
architectural choices based on that analysis

2 Activities which are the focus of this Deskbook as in bold.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 11

Introduction to the Harmony aMBSE Process

• Architectural Design
Identify subsystems, allocate system requirements to subsystems,
create subsystem requirements, create and allocate use cases to
subsystems, update the logical data schema, develop control laws,
and update dependability analyses.

• Control Project
Perform project management activities, maintain risk management
plan, and use daily meetings to enhance engineer collaboration

• Perform QA Audit (task)
Perform quality assurance audits to ensure process compliance.

• Manage Change
For work products under configuration management, control the
change request process including review, assignment, resolution,
and verification of each change request.

• Perform Iteration Retrospective (task)
Ascertain the project’s adherence to the project plan and look for
opportunities to improve; also replan as necessary and appropriate.

• Handoff to Downstream Engineering
Develop materials necessary for downstream engineering, including
physical interface specification, creation of subsystem models,
creation of a deployment (interdisciplinary) model, allocate
requirements to engineering disciplines and define the
interdisciplinary interfaces.

Let’s look at the key activities in a little bit more detail.

4.1 Systems Requirements Definition and Analysis
This activity is a crucial one in the Harmony aMBSE process. In this activity,
we will define the set of systems requirements (with traceability back to the
stakeholder needs they will satisfy), group them into use cases, and then
analyze them, a use case at a time, for completeness, accuracy, correctness,

and consistency. We will do this through the development of a computable
use case model and through this effort, we almost always find missing or
incorrect requirements. In addition, we will do other work that uncovers
other important requirements, such as modeling the logical data and flow
schema (for things coming to or exiting from the system) and the system
dependability (safety, reliability, and security) needs.

Figure 3: System Requirements Definition and Analysis

Figure 3 shows the overall workflow for this activity. Note that three
different primary analytic approaches are supported – flow-based, scenario-
based, and state-based. All accomplish the same purpose but using slightly
different workflows.

In actual fact, there are five alternative workflows from which to choose.
Figure 4 shows a decision tree for deciding which work flow to use. The
options are:

• Flow-based
This approach is best when the use case is heavily algorithmic, has

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 12

Introduction to the Harmony aMBSE Process

significant continuous flows, or is mostly flow based. This workflow
is intended for use cases that are primarily focused on complex
algorithms (such as encryption), continuous flows (such as fluid or
energy), or when the flows into and out of the system predominate
the use case behavior. In this case, executable models can be
constructed with Rhapsody + Simulink, with fully executable activity
diagrams, or poll-based state machines.

• Harmony “Classic”
This is an older, less comprehensive approach and is deprecated,
but still supported. This approach is only recommended for projects
that have been started with the workflow defined in the previous
version of Harmony SE but not for new development. Note that the
“activity diagram” used here is not really a well-formed activity
diagram but really is intended to be used as a summary of multiple
scenarios. State machines form the normative black box behavioral
specification.

• Activity-Based
In this workflow, the primary purpose of the activity diagram is to
identify system functions. This approach is recommended when the
functionality of the system is less focused on input and outputs and
more focused on the transformations the system performs. In this
case, the work is aimed towards identifying and characterizing
system functions. Similar to the “Classic” approach, activity
diagrams here are used to summarize multiple scenarios rather than
as a true model of behavior.

• Interaction-Based
This option is best when working with non-technical stakeholders
OR the use case is heavily interaction-based. This work flow is
recommended when working with intended system users or other
non-technical stakeholders, or when the interactions (as opposed to
the system functions) are complex. The activity diagram is generally
skipped in this workflow and the state machine forms the normative
specification.

• State-based
This approach is best when the use case is strongly modal or state-
based AND you have strong expertise in developing state machines.

This workflow is recommended for use cases that are either
obviously state-based (such as automotive transmissions) or highly
modal in nature. Note that this requires a generally higher level of
technical skill on the part of the engineer.

While Figure 4 may look complicated, you will only be doing one of the five
identified workflows for a given use case. It does provide options for
different kinds of use cases, or when working with stakeholders or
engineers with different skill sets. It should be noted that generally any of
these workflows may be used for a use case analysis, so personal preference
may be expressed as well. Note that each of these workflows involves the
creation of an executable model – generally a state machine but it might
also be an activity diagram.

Remember, all of these approaches work, so the selection of the best one is
a matter of both personal preference and the nature of the problem being
addressed. Later in this desk book we will use two of these approaches –
flow-based and sequence-based – to illustrate the differences.

Functional Analysis of Requirements – Different Flows, Different
Folks
Also notice the iterative nature of the workflows. Each has a “loop back” in
the case of “more requirements.” It is recommended that a small number of
requirements be analyzed at a time so that the behavioral models are
incrementally constructed. Experience has shown, time and time again, that
delaying the analysis and execution of the behavioral model only serves to
make the analysis much more difficult. The length of time for these
feedback loops in the workflows should not exceed an hour or two; this is
what we call the nanocycle and is key to the agility of the Harmony aMBSE
process.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 13

Introduction to the Harmony aMBSE Process

Figure 4: Use case analysis workflow decision tree

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 14

Introduction to the Harmony aMBSE Process

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 15

Introduction to the Harmony aMBSE Process

A Note about Use Cases
Use cases may be thought of as collections of system interactions and
system functions around a common usage of a system. An alternative, but
equivalent view is that they cluster requirements around a common system
capability that involves interactions with elements in the system’s
environment.

Good use cases are independent from other use cases, at least in terms of
requirements. This allows independent analysis of the use cases, allowing a
“divide and conquer” strategy to address complex systems problems. Good
use cases generally represent anywhere between 10 and 100 requirements
and contain both functional and quality of service (QoS) requirements, such
as performance, accuracy, fidelity, and reliability. This usually implies
between three and 25 scenarios of interest, including both normal, or
“sunny day” scenarios, and exceptional, or “rainy day”, scenarios. We
recommend incremental analysis of use cases, beginning with the sunny day
scenarios and later adding in all the ways that things can go amiss.

There are two primary outcomes from the functional analysis of use cases.
First, is the identification of problems with the stated requirements. In the
course of analysis, it is very common to identify requirements that are
missing, incomplete, inconsistent, or just plain wrong. As the analysis
proceeds, requirements are fixed or added in parallel (see the
Generate/Update System Requirements activity in Figure 3).

The second outcome is the identification and characterization of the logical
interfaces. The term “logical” here means that we are defining the essential
properties of the interfaces but not their ultimate realization. For example,
we model most actor-system interactions as asynchronous events (which
may or may not, carry data), but actual realization of these interfaces might
be messages across a communications bus. It is important to note that
incoming messages to the use cases invoke one or more system functions
and messages to the actors are produced by one or more system functions.
Different use cases often invoke common system functions and that is a
point of potential co-dependence.

This leads us to the issue of “merging use cases.” If use cases are
independent, then merging use cases together in a larger scale analysis isn’t
difficult unless one of the following is true:

• Use cases are not completely independent in terms of requirements

• Use cases share system functions

The 2nd of these is the more likely. When the use cases are completely
independent, then the actor-system interfaces are merely the sum of the
messages from all the use cases that involve that actor. When they are not
completely independent, the interfaces must be “merged” so that the
common system functions are defined with a common definition: service
name, inputs, outputs, pre-conditions, post-conditions, invariants, and
definition of the required behavior of the system function.

Create Logical Data and Flow Schema
The purpose of this task is to characterize the flows into and out of the
system. These flows may be discrete – such as in a commanded position to
which to move the wing flap – or they may be continuous, such as the
movement of water through a conduit. They may informational, such as the
blood pressure of a patient undergoing a medical procedure; energy, such
as the heat flow in a deicing system; materiel, as in a dispersal of projectiles;
chemical, as in the diffusion of an anesthetic drug in a breathing circuit;
fluid, as in the flow of air in a building heating system; or mechanical, as in
the movement of a robot limb.

What all these flows have in common is their need to be characterized so
that the quantities, statics, dynamics, and necessary precision of the system
can be understood and so that good downstream engineering choices can
be made. Typically, the metadata to be characterized includes topics such
as:

• Set or range of acceptable values, including units

• The fidelity of control (Harmony aMBSE defines fidelity to be the
“precision of an input to the system”)

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 16

Introduction to the Harmony aMBSE Process

• The accuracy of control (Harmony aMBSE defines accuracy to be the
“precision of an output from the system”)

• Expected behavior if the data within range as well as out of range

• Safety impact of the flow

• Safety level of the flow (specific to the standard being used for
conformance)

• Reliability of the delivery of the flow

• Security of the flow

• Whether the flow is measured, actuated (controlled), computed, or
estimated

• Other “invariants” (assumptions)

The flow metadata is typically stored in tags, one of the means SysML
provides for extension of the modeling language.

Again, the logical data and flow schema define the essential properties but
not the physical realization of those data and flows.

Analyze Dependability
Dependability – literally “one’s ability to depend upon a system” – has three
primary aspects: safety, reliability, and security. These aspects are defined
thusly:

• Safety is freedom from harm due to use, misuse or exposure to a
system

• Reliability is a stochastic measure of the availability of services and
flows

• Security is the ability of a system to resist attack

The first two of these aspects have a large and well-defined literature.
Security for a cyber-physical system is less well defined but has been studied
deeply in the information assurance field. In our systems context, Harmony
has a broader scope of concepts and measures. Rhapsody has (optional)
profiles available for the representation and analysis of these aspects of
dependability. If you prefer to use other, specialized tools for this purpose,
that’s perfectly fine, as they are likely to have more capability than the
Rhapsody profiles in those domains.

4.2 Architectural Analysis
Architectural analysis has a couple of applications. The first – on which we
will not focus in this Deskbook – is to understand how the architecture
behaves or performs under different circumstances. The second – which we
will emphasize here – is to evaluate alternative technology and architecture
choices against a set of acceptance criteria. The work flow for this use of
architectural analysis in shown in Figure 5.

Figure 5: Architectural analysis workflow

Identify Key System Functions
The term “key functions” is a bit misleading. What it really means is to
identify those system functions that can profit from optimization of
technology or architecture choices.

Define Candidate Solutions

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 17

Introduction to the Harmony aMBSE Process

The candidate solutions are the technology or architecture choices that are
reasonable solutions to meet the requirements. Technology choices might
be to use a fluid-cooled versus an air-cooled system or a hydraulic,
electronic, or pneumatic actuator. Architectural choices might be to use
different architectural safety patterns for redundancy such as Triple
Modular Redundancy or Heterogeneous Redundancy [4].

(Perform) Architectural Trade Study
The trade study itself has a nested workflow, shown in Figure 6.

Figure 6: (Perform) Architectural trade study

Define Assessment Criteria

The assessment criteria are the aspects you want to optimize. Typical
criteria might include:

• Recurring cost

• Development time

• Power required

• Reliability

• Safety

• Manufacturability

• Weight

• Performance

• Complexity

• Testability

• Accuracy

• Resource requirements (such as memory or computational power)

Assign Weights to Criteria
Not all criteria are equally important, so each criterion must be weighed
with respect to its relative importance to the overall solution. This is often,
but not necessarily done by normalizing the weights between 1 and 10.

Define Utility Curve for Each Criteria
The utility curve provides a means by which the different solutions may be
evaluated as to how well that solution optimizes a specific criterion. A
common technique is to construct a linear equation such that the worst
solution under consideration results in a value of 0 and the best solution
under consideration results in a value of 10; thus, most candidate solutions
will be somewhere between 0 and 10.

Assign MOEs to Candidate Solutions
The assignment of the measures of effectiveness (MOEs) for each candidate
solution is computed by applying the utility curve for each criterion to the
solution and computing the weighted sum of the outputs of the utility
curves.

Determine Solution

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 18

Introduction to the Harmony aMBSE Process

The selected solution is then the candidate solution which resulted in the
highest MOE score among the evaluated candidates. Figure 7 shows a
simple trades study in a table.

Figure 7: Example trade study

Merge Solutions into Systems Architecture
The architecture is constructed by merging in the selected candidate
solutions that emerge from the trade studies, in addition to other choices
that were made without performing trade studies.

SysML and Rhapsody provide an additional means to do trade studies with
parametric diagrams. With Rhapsody, you can define the equations in
parametric constraints and then invoke third party mathematical tools, such
as Maxima or Mathlab Symbolic Toolbox, to evaluate parametric diagrams.
This is available in the Rhapsody Parametric Constraint Evaluation (PCE)
Profile. Figure 8 shows an example parametric diagram.

Figure 8: Example parametric diagram in Rhapsody

Evaluation of this parametric diagram for a candidate solution results in an
output like that shown in Figure 9.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 19

Introduction to the Harmony aMBSE Process

Figure 9: Example result from PCE evaluation

4.3 Architectural Design
The intent of architectural design in the Harmony aMBSE process is to

• Identify the subsystems

• Allocate requirements to subsystems

• Define the logical subsystem interfaces

• Update the data and flow schema

• Update the dependability analyses

A use case is almost never implemented by a single subsystem. This means
that portions of a use case must be allocated to different subsystems. In
practice, those portions are

• System requirements

• (Derived) subsystem requirements

• System functions

• (Derived) system functions

• (Derived) subsystem use cases

Figure 10 shows the Harmony aMBSE workflow for architectural design.

Figure 10: Architectural Design Workflow

Identify Subsystem
The subsystems are uses of blocks which represent the largest scale of
system decomposition. Subsystems are generally implemented in terms of
multiple engineering disciplines (e.g. software, electronics, mechanical,
hydraulic, and pneumatic) by a single team. These subsystem teams
perform what is collectively called downstream engineering in post-systems
engineering activities, including software, electronic, and mechanical
design.

One of the primary purposes of identifying these subsystems is to provide
specifications for each subsystem team to follow. For this reason, the
recommended model organization schema creates separate subsystem

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 20

Introduction to the Harmony aMBSE Process

packages to hold the relevant specifications (to facilitate the hand off).
Information shared among subsystems is put into a common shared model.

The set of subsystem is shown on either (or both) block definition diagrams
or internal block diagrams.

Allocation System Requirements to Subsystems
Some system requirements can be directly allocated to a single subsystem.
However, many – if not most – must be decomposed into derived
requirements which are then allocated. The decomposition is best done on
requirements diagrams. Allocation relations (drawn from the subsystem to
the requirement) may be done in either requirements diagram or matrices
constructed for that purpose. They are best summarized in the matrices
regardless of how they are constructed.

Allocate Use Cases to Subsystems
If only a few requirements are allocated to a subsystem, then they need not
be allocated to subsystem-level use cases. However, many subsystems are
themselves quite complex. Such subsystems can profit from exactly the
same kind of analysis that we did for use cases at the system level.

There are two approaches to developing such use cases, as shown in Figure
11. The first – a part of the (deprecated) Harmony Classic SE process – is
called bottom up because it allocates individual system functions (or
subsystem functions derived from these) to the subsystems and then uses
these as elements from which subsystem use cases may be constructed. The
other approach, top-down, decomposes system use cases into subsystem-
level uses cases via the «include» relation. In practice, smaller, less complex
subsystem use cases are more easily developed with the bottom-up
approach, but more complex use cases are better developed with the top-
down method. In general, either approach may be used.

Figure 11: Allocate use cases to subsystems workflow

Create/Update Logical Data and Flow Schema
As we develop the logical subsystem architecture, many more data and
flows are identified. They must be added to the data and flow schema.

Create/Update Subsystem Requirements
Just as we did for system requirements in the System Requirements
Definition and Analysis activity, we need to repeat the activity to manage
the subsystem requirements resulting from both the derivation from system
requirements and from the analysis of the subsystem use cases.

Develop Control Laws

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 21

Introduction to the Harmony aMBSE Process

Control laws are most commonly expressed as proportional–integral–
derivative relations representing closed-loop feedback control mechanisms.
Most such control laws fit within a single subsystem and are, as such, out of
scope here. However, some control laws are distributed between
subsystems and these must be characterized as they affect the subsystem
functions and interfaces. These may be defined as sets of partial differential
equations or on control loop diagrams [6], most often using specialist tools,
such as Simulink.

Figure 12: Example Control Loop Diagram

Analyze Dependability
The management of system dependability is an activity that goes on
throughout the systems engineering process. Whenver engineers make
technical, design, or implementation decisions, those decisions must be
evaluated for their impact on system safety, reliability and security. Most
commonly, such analyses identify the need for new requirements to
account for dependability concerns introduced with technical decisions.

4.4 Handoff to Downstream Engineering

Once the subsystem and interface specifications are ready, they must be
handed off to the subsystem teams for the performance of downstream
engineering activities. This involves two primary (sub)workflows. Firstly, the
physical interfaces and physical data and flow schema must be derived from
their logical counterparts. In the Harmony aMBSE process, we recommend
this is put into a separate shared model for inclusion (by reference) into all
subsystem models3. Secondly, a separate model must be created for each
subsystem and populated with its specification from the systems
engineering model. Also, a deployment architecture must be created for
each subsystem. This deployment architecture identifies the engineering
disciplines involved in the design and implementation of the subsystem, the
(derivation and) allocation of requirements to those participating
disciplines, and specifies the interfaces between the engineering disciplines.
This readying of the subsystem model requires the participation of
engineers from each supporting discipline as well as one or more system
engineers. The handoff workflow is shown in Figure 13.

3 See Chapter 10 for more information on model organization.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 22

Introduction to the Harmony aMBSE Process

Figure 13: Handoff to downstream engineering workflow

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 23

The Harmony SE Toolkit

5 The Harmony SE Toolkit

This document details the features and functions of the Systems Engineering
Toolkit shipped with Rhapsody version 8.2.1. If you have an earlier version
then most of the document will still apply, however some functions may be
different.

The Systems Engineering Toolkit (referred to from here on as the SE Toolkit)
is installed automatically as part of the Harmony-SE profile and contains a
wealth of useful features for automating the building and checking of
systems engineering models.

All SE Toolkit features (except for the startup wizard) are invoked from the
contextual (right-click) menu of model elements in the browser, on a model
element, or a diagram itself.

All SE Toolkit features are found under the SE-Toolkit menu:

Figure 14 SE-Toolkit menu

Just a few of the most important helpers are described in this section. For a
full description of all of the SE-Toolkit functionality, see the Systems
Engineering Toolkit Handbook, available for download at Merlin’s Cave
(http://merlinscave.info/Merlins_Cave/Tutorials/Entries/2017/2/7_SE-
Toolkit_Handbook.html).

5.1 The Harmony-SE Profile
The Harmony-SE profile loads the Systems Engineering Toolkit. It also
contains new terms used in the Harmony workflow, along with stereotypes
and tag values that allow user-customization of the SE Toolkit features. The
profile also contains some custom table and matrix layouts.

In addition the profile loads in property files (.prp files) which override
Rhapsody’s default properties. These property files are loaded hierarchically
as shown below:

Figure 15 Harmony SE Property Files

5.2 Functional Analysis Helpers

5.2.1 Import Description from RTF

5.2.1.1 Intent
Import an existing RTF file as the description for a selected model element –
either as the finished description or as a ‘template’ – that is a partially filled
description.

HarmonySE

HarmonySE_GraphicalPropert ies

HarmonySE_ExecutionProperties

HarmonySEGraphicalPropert ies_Sequences

HarmonySEGraphicalPropert ies_UseCases

HarmonySEGraphicalPropert ies_StateMachines

HarmonySEGraphicalPropert ies_Structure

HarmonySEGraphicalPropert ies_Activit ies

HarmonySE_NewProperties

HarmonySE_Perspectives

http://merlinscave.info/Merlins_Cave/Tutorials/Entries/2017/2/7_SE-Toolkit_Handbook.html
http://merlinscave.info/Merlins_Cave/Tutorials/Entries/2017/2/7_SE-Toolkit_Handbook.html

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 24

The Harmony SE Toolkit

5.2.1.2 Invocation
The helper may be invoked from the context menu of:

• The Project

• Use Cases

• Blocks

• Operations

Menu Entry: SE Toolkit → Import Description from RTF

5.2.1.3 Basic Operation
When invoked, the tool will look for a tag called descriptionTemplate –
starting on the current element and then looking ‘up the tree’. The first
descriptionTemplate tag found in this way is used – this allows more
than one template to be used for different areas of the model. Note that
only the model has this tag out of the box as described below. If you wish to
use different templates for different parts of the model, then this tag must
be manually added (for example adding a new tag to a Use Case will cause
only that Use Case to use the template – adding the tag to a Package will
allow all elements in that Package to use the same template)

The tag should contain the full path to an RTF file. The path may be a fixed
one or may contain the following keywords:

• {OMROOT} – will be replaced with the Rhapsody root directory

• {PROJECT} – will be replaced with the current project directory

• {PROJECT_RPY} – will be replaced by the _rpy folder for the current
project (useful for controlled files which by default are stored there)

• {TYPE} – will be replaced by the user defined metaclass of the
selected model element (for example use Block – not Class). Note
that this must match the type exactly – for example use “UseCase” –
not “Use Case”

Note that the profile contains a stereotype, which if applied to project, adds
a project level tag descriptionTemplate with the default value:

{OMROOT}/Profiles/HarmonySE/{TYPE}

The profile also contains several example RTF templates (as controlled files):

• UseCase template

• Block template

• Operation template

5.2.2 Create System Context

5.2.2.1 Intent
Create a system context diagram from the Actors which associate with a
Block.

5.2.2.2 Invocation
The helper may be invoked from the context menu of a Block.

Menu Entry: SE Toolkit → Architecture Tools → Create System Context

5.2.2.3 Basic Operation
When invoked the tool will create Actor Blocks for each connected Actor. A
part is created for each Actor Block and the original System Block. Ports and
interfaces are created between these elements and everything is placed
onto an Internal Block Diagram. Note that all created artifacts are placed
into the same Package as the original Block, except for Interfaces which are
created in the Interfaces Package.

For example:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 25

The Harmony SE Toolkit

Figure 16 Actors connected to a System Block

Figure 17 Created Actor Blocks, Parts, Connectors etc.

Figure 18 Created Interfaces

Figure 19 Created System Context Diagram

5.2.3 Create System Model from Use Case

5.2.3.1 Intent
Create a use case functional model for the selected use case for the purpose
of constructing a computable model of the use case.

5.2.3.2 Invocation
The helper is invoked from a Use Case.

Menu Entry: SE Toolkit → Create System Model From Use Case

5.2.3.3 Dependencies

5.2.3.3.1 Location of Use Case Model
To create the functional use case model, the helper needs to know where to
create the new model elements. By default, it looks for a package called
FunctionalAnalysisPkg. If this package is not found, then the helper cannot
continue. See the customization section for information on how to change
this.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 26

The Harmony SE Toolkit

5.2.3.4 Basic Operation

5.2.3.4.1 Execution Considerations
The helper assumes that at some point the use case functional model will be
executed. Any artifact that executes must have a formal name – that is a
name with no spaces or special characters. To that end before creating
model elements, the helper checks the use case name and creates a
corresponding executable name (removing spaces and special characters).
Artifacts created in the use case functional model use this executable name
rather than the original use case name.

5.2.3.4.2 Use Case Model - Classic
The general form of the use case model created by the helper is shown
below (the original use case is shown in orange)

Figure 20 Use case model

5.2.3.4.3 Use Case Model - Agile
In Agile mode, each use case model also has its own types package,
interfaces package and actors package (these are options controlled by
properties). An use case-specific Actor Block is created for each connected
actor, the block has a <<represents>> dependency back to the original
Actor.

FunctionalAnalysisPkg

Use Case Model Package

Scenarios Package

Executable Model Package

Internal Block Diagram

Use Case Block

Use Case

Activity View

Activity Diagram

Activity

Parts

<<represents>>

Component

FunctionalAnalysisPkg

Use Case Model Package

Scenarios Package

Executable Model Package

Internal Block Diagram

Use Case Block

Use Case

Activity View

Activity Diagram

Activity

Parts

<<represents>>

Component

Types Package

Interfaces Package

Actor Package

Actor Blocks

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 27

The Harmony SE Toolkit

5.2.3.4.4 Package Structure
The helper creates the following package structure, where UCName is
replaced with the executable name as described above.

Figure 21 Use case functional model package structure

5.2.3.4.5 Use Case Relocation
After the creation of the use case it is at first located in the
RequirementsAnalysisPkg. With the creation of system model from use
case it is moved into the new use case functional model package
(UCNamePkg).

Relocation of the Use Case is an option controlled by the following property:

SEToolkit.CreateSystemModelFromUseCase.MoveUseCase

5.2.3.4.6 Actor Relocation
Each Actor connected to the use case is moved into the ActorPkg. If the
ActorPkg does not exist, the Actors are left where they are. Relocation of
Actors is an option controlled by the following property:

SEToolkit.CreateSystemModelFromUseCase.MoveActors

See the Customization section for details on how to change where the
Actors are relocated.

5.2.3.4.7 Internal Block Diagram
A new internal block diagram is created with the name IBD_UCName. The
IBD is populated with the parts of the Use Case Block and the associated
Actors or in case of agile the Actor Blocks.

5.2.3.4.8 Use Case Block
A block is created to represent the Use Case, named UC_UCName. The Block
receives a dependency to the Use Case stereotyped <<represents>>

Figure 22 Use Case Block Dependency

5.2.3.4.9 Actor Blocks
In agile mode – an ActorBlock is created for each associated Actor and
placed into a new Package (with the name UCNameActorPkg). This behavior
is controlled by the following property:

SEToolkit.CreateSystemModelFromUseCase.CreateBlocksFromAct
ors

ActorBlocks are named aUCName_ActorName and are given a
<<represents>> dependency back to the original Actor:

Figure 23 Actor Block

Note that Actor Block names use an abbreviated form of the Use Case
name, using only the uppercase characters. For example, an Actor called
Driver connected to a Use Case Operate Vehicle would result in an Actor
Block called aOV_Driver. This behavior is controlled by the following
property and is on by default in agile mode:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 28

The Harmony SE Toolkit

SEToolkit.CreateSystemModelFromUseCase.
AbbreviateActorBlockName

In this example if the option is switched off the Actor Block name would
instead be aOperateVehicle_Driver.

Use Case inheritance is also supported – that is, if one use case specializes
another, the more specialized use case will inherit any actor associations of
the more general use case. This is an option controlled by the following
property:

SEToolkit.CreateSystemModelFromUseCase.UseInheritedUseCase
Actors

5.2.3.4.10 Executable Use Case Model
An instance of the use case block is created (that is a part typed by the use
case block). A part is created for each actor (or in agile mode each actor
block) connected to the use case. These artifacts are placed in the
UCNameExecutionScopePkg and are also placed on the internal block
diagram.

5.2.3.4.11 Activity View
A new activity view is created under the use case. Since these do not
execute (instead they are intended to model the functional flow) they
simply take the name of the use case and add the suffix Black Box View. A
new activity and activity diagram are created under this activity view.

5.2.3.4.12 Dependencies
A dependency is added from the activity to the use case block, stereotyped
<<SDGenerationTarget>>. This is to allow the sequence diagram
generator helper to automatically detect the appropriate lifeline to use
when generating black box sequence diagrams.

A dependency is added from the activity to the BBScenariosPkg,
stereotyped <<scenarios>>. This is to allow the sequence diagram
generator helper to automatically select the package in which to place
generated sequence diagrams.

Figure 24 Activity dependencies

5.2.3.4.13 Ports and Interfaces
In agile mode, ports and interfaces are created for the Use Case and Actor
Blocks. In addition, links are created between the parts and those are also
shown on the Internal Block Diagram. Note that these are of course empty
at this point – they will be later populated through scenario analysis. This
behavior is controlled by the following property and is on by default in agile
mode:

SEToolkit.CreateSystemModelFromUseCase.CreatePortsAndInter
facesWithSystemModel

Figure 25 Ports and Interfaces on IBD

5.2.3.4.14 Interfaces and Types Packages
In agile mode two additional packages are created as part of the system
model – a types package called UCNameTypesPkg and an interfaces package
called UCNameInterfacesPkg. This behavior is controlled by the following
properties which are both switched on by default in agile mode:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 29

The Harmony SE Toolkit

SEToolkit.CreateSystemModelFromUseCase.CreateLocalTypesPac
kage

SEToolkit.CreateSystemModelFromUseCase.CreateLocalInterfac
esPackage

5.2.3.4.15 Hyperlinks
For ease of later navigation, hyperlinks are added from the use case to the
activity diagram and internal block diagram.

5.2.3.5 Example
For the example use case shown below:

Figure 26 Example Use Case

The following use case model is created (agile mode) shown:

Figure 27 Example use case model

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 30

The Harmony SE Toolkit

5.2.3.6 Customization Options

5.2.3.6.1 Functional Analysis Package
When Create System Model from Use Case executes – it requires a ‘root’
package in which to create new artifacts – by default that is a Package called
FunctionalAnalysisPkg. The name and location of the “Functional Analysis
Package” to use may be modified in two ways – locally or globally.

5.2.3.6.2 Modifying the Functional Analysis Package Locally
The tool looks ‘up the tree’ from the currently selected element, looking for
a named package. The property that controls that name is a regular
expression:

Figure 28 Functional Analysis Package Name Regular Expression

What this means is that by default – the first Package found whose name
ends in “FunctionalAnalysisPkg” will be used. By modifying the regular
expression, you could change the naming strategy used.

Figure 29 Example of a Local Functional Analysis Package

5.2.3.6.3 Modifying the Functional Analysis Package Globally
To make a more global change, apply the ‘HarmonySE’ stereotype to the
Project – this adds a tag to the project: FunctionalAnalysisPkg – of
type Package. A different “Functional Analysis Package” may then be
specified by modifying the value of the tag (regardless of the actual name of
the Package to be used)

Note that if you have already created a model for a use case, setting this tag
will result in duplicate artifacts – a new use case model will be created for
the use case regardless of whether one already exists in another location.

Figure 30 Changing the root package for use case models

5.2.3.6.4 Actor Package
The tool also attempts to relocate Actors. The selection of which package to
move the Actors into is performed in the exact same way as described
above for the functional analysis package – there is a corresponding

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 31

The Harmony SE Toolkit

property to look for a named package and a tag on the project level
stereotype to specify a global one.

5.2.4 Create Scenario (“Generate Sequence Diagram”)

5.2.4.1 Intent
To create a basic sequence diagram with an initial set of lifelines to allow
scenario modeling to proceed consistently.

5.2.4.2 Invocation
This helper may be invoked from an Activity View or a Use Case. (Note that
if you are following either of the Harmony workflows you should not
activate this tool on a Use Case – but on the Activity View instead). See the
Interaction-based workflow on Figure 4

Menu Entry: SE Toolkit → Create Scenario

5.2.4.3 Basic Operation
The tool creates a new sequence diagram (with a default name) in the
BBScenariosPkg. It detects all associated parts and adds them to the
diagram as lifelines. These lifelines are set to show their label rather than
their name for readability. This is an option controlled by the following
property:

SEToolkit.CreateScenario.UseLabelsOnLifelines

Additionally, the HarmonySE Profile contains a Comment called
SDDescriptionTemplate. A copy of this comment is made (owned by the
Sequence Diagram) and is placed on the diagram (lifelines are shifted over
to accommodate it). This is an option controlled by the following property:

SEToolkit.CreateScenario.AddCommentToScenario

The created Sequence Diagram is also added as a reference to the Activity
View to allow for later consistency checking.

Example:
For the following Use Case Diagram:

Figure 31 Create Scenario - Use Case Diagram

Figure 32 Create Scenario - Created Artifacts

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 32

The Harmony SE Toolkit

Figure 33 Create Scenario - Created Sequence Diagram

5.3 Miscellaneous Helpers

5.3.1 Straighten Messages

5.3.1.1 Intent
When animating a model, Sequence Diagrams may be generated from the
animation. Such diagrams show events as slanted lines – indicating that they
are received some time after they are sent. This representation can make
the diagrams needlessly long and less readable. This helper straightens such
messages to aid readability.

5.3.1.2 Invocation
This helper may be invoked from a Sequence Diagram.

Menu Entry: SE Toolkit → Straighten Messages

5.3.1.3 Basic Operation
Any messages that are not already horizontal will be made so. For example:

Figure 34 Straighten Messages - Before Invocation

Figure 35 Straighten Messages - After Invocation

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 33

The Harmony SE Toolkit

5.4 Summary

Rhapsody provides the Harmony SE Profile and the SE Toolkit to provide
some automation of common system modeling tasks. It is important to
remember:

Figure 36 below summarizes the capabilities of the SE Toolkit.

SE Toolkit
Feature

Description Primary use in
Harmony aMBSE
Process

Add Hyperlinks Adds a hyperlink from the
source(s) to the destination(s)

Generic

Add
Dependencies

Adds a dependency from the
source(s) to the destination(s)
with the specified stereotype

Add Traceability Links

Add Referenced
Sequence
Diagrams

Adds sequence diagram(s) as
referenced sequence
diagrams to the selected use
case or activity view

System Requirements
Definition and Analysis
Allocate Use Cases to
Subsystems

Add as Reference Adds selected sequence
diagram(s) as referenced
sequence diagrams to a use
case or activity view

System Requirements
Definition and Analysis
Allocate Use Cases to
Subsystems

Convert Ports to
Proxy Ports

Converts ports to standard
ports and interfaces to
interface blocks

Generic

Convert Port to
Proxy Port

As above but for a single
selected port

Show Startup Shows the harmony startup

Wizard wizard which allows the user
to set default harmony-
related properties

Refactor Action
Name

Allows an action to be
“renamed” – the tool
refactors any other actions in
this – or sub/referenced
activities so they have the
same action statement

Select Sequence
Diagram to
Reference

Maps an interaction
occurrence on a sequence
diagram to a sequence
diagram

Merge Block
Features

Copies operations,
receptions, and values from
the source blocks to a single
destination block

Generic

Straighten
Messages

Cleans up an animated
sequence diagram

Generic

Duplicate
Activity View

Creates a duplicate of the
selected activity view –
removing any referenced
sequence diagrams

Architectural Design

Create Test
Bench

Creates a test bench
statechart on an actor by
analyzing the actors ports

Generic

Allocation
Operations from
Swim Lanes

Copies operations allocated
to a swim lane in an activity
diagram to the relevant
subsystem blocks

Allocate Use Cases to
Subsystems (Bottom-
up approach)

Generate
Allocation Table

Creates a table (csv file) of
the allocation decisions made
on an activity diagram and
adds to the model as a
controlled file

Allocate Use Cases to
Subsystems

Generate Creates a sequence diagram System Requirements

The toolkit provides absolutely no functionality that a competent
engineer cannot perform themselves with a small amount of effort. In
some cases, the output of the toolkit is intended to provide a starting
point that will be elaborated and embellished by the systems engineer.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 34

The Harmony SE Toolkit

Sequence
Diagrams

by processing object and/or
control flows on an activity
diagram

Definition and Analysis

Browse
References

Provides an enhanced
references browser

Model exploration

Create Harmony
Project

Creates a Harmony project
model structure

Project Initialization

Create System
Model from Use
Case

Creates a block context model
in a compliant package
structure from a use case

System Requirements
Definition and Analysis
Allocate Use Cases to
Subsystems

Create Call
Behavior

Creates a new activity and a
call behavior for it from the
selected action on an activity
diagram

Generic

Auto Rename
Actions

Harmonizes the action
statement and action name in
an activity diagram

System Requirements
Definition and Analysis
Allocate Use Cases to
Subsystems

Add Actor Pins Add Harmony-specific actor
pins to activities on an activity
diagram

System Requirements
Definition and Analysis
Allocate Use Cases to
Subsystems

Perform Activity
View Consistency
Check

Checks the consistency
between the actions on an
activity diagram and the
operations on a set of
sequence diagrams

System Requirements
Definition and Analysis
Allocate Use Cases to
Subsystems

Create Ports and
Interfaces

Creates behavioral ports and
associated interfaces (or
proxy ports and associated
interface blocks) based on the
interactions on sequence
diagrams

System Requirements
Definition and Analysis
Allocate Use Cases to
Subsystems

Create
Delegation Ports

Creates new delegation ports
on the boundary of a system

Architectural Design

block to delegate messages to
its internal parts

Connect Ports Creates links between ports
on an Internal Block Diagram

Generic

Create Scenario Creates a new sequence
diagram from the selected
use case or activity view by
analyzing the connected
actors

System Requirements
Definition and Analysis

Merge Functional
Analysis

Copies operations,
receptions, and values from
all use case blocks into a
selected block

System Requirements
Definition and Analysis
Allocate Use Cases to
Subsystems

Duplicate
Activity View

Copies an activity diagram
and strips away from the copy
any referenced sequence
diagrams

Generic

Create
Subpackages

Creates a package per
subsystem and moves
subsystem blocks into those
packages

Architectural Design

Allocation
Wizard

Copies features (operations,
receptions and attributes)
from one architectural layer
to another and tracks where
features have been allocated

Architectural Design

Perform
Allocation
Consistency
Check

Checks consistency between
the allocation actions in swim
lanes and the allocation
operations in subsystem
blocks

Perform Activity
View Consistency
Check

Checks consistency between
the actions in swim lanes and
the operations on referenced
sequence diagrams

Generic

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 35

The Harmony SE Toolkit

Create
Operations from
Call Operations

Creates new operations in a
block from ‘empty’ call
operations on an activity
diagram

Generic

Setup Model
Execution

Creates an executable,
animated, web-enabled
component with the correct
scope to execute a single use
case model

System Requirements
Definition and Analysis

Generate
Allocation Table

Summaries the allocations of
operations of a white box
activity diagram into an Excel
spreadsheet

Architectural Design

Generate N2
Matrix

Creates an Excel spreadsheet
for the provided and required
interfaces from an internal
block diagram

Architectural Design

Copy MoEs to
Children

Copies the MOE attributes of
key function block into the
solution blocks

Architectural Analysis

Copy MoEs from
Base

Copies the MOE attributes of
key function block into the
selected solution block

Architectural Analysis

Perform Trade
Analysis

For Weighted Objectives
Table, calculates the set of
solutions and displays the
results in an Excel
spreadsheet

Architectural Analysis

Export to New
Model

Creates a new model and
adds the selected packages
and profiles to it

Architectural Design

Import from XML Exports the existing package
structure (with or without
diagrams) to an xml file for
use as a project template

Export Project Creates a new project

Structure to XML structure from the selected
XML template file (created by
the above helper)

Figure 36: SE Toolkit Features

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 36

Case Study: Introduction

6 Case Study: Introduction
The Harmony aMBSE process is tool-agnostic; it’s perspective is that what
tools do is automate or perform activities that the engineer wants to do.
This is not to say that tools don’t add value. Tools remove tedium from the
engineering effort, allowing engineers to focus on those aspects of
engineering where they add value. Tools can improve quality by removing
sources of human error such as mistakes in transcription or due to lagging
vigilance. Good tools are generally process-agnostic, meaning that they
provide commonly needed services common to many processes. Of course,
it is important that tools and processes be compatible in the sense that they
have overlapping needs and services. However, just because a tool
automates some aspect of a task doesn’t mean that the task is completely
done. Nor does it mean that if a tool doesn’t automate a task, that the tool
is inappropriate for the project. There will always be steps that human
engineers perform in every engineering process.

That being said, in this, and the following sections, we will explore a case
study using the IBM Rhapsody tool and the Harmony aMBSE Toolkit (aka the
“SE Toolkit”. Both Rhapsody and the SE Toolkit automate a number of tasks
performed by human engineers. This Deskbook will discuss and provide
examples of how to use the tooling to achieve your engineering objectives.

The case study in the Deskbook is the Aircraft Control Surface Enactment
System (ACES). This system receives commands for movement of a rather
large set of aircraft surfaces that control the orientation of an aircraft. These
moving surfaces are collectively known as “control surfaces” and may be
independently rotated – and in some cases, extended and retracted – under
command from other aircraft subsystems. See Figure 37.

Figure 37: Aircraft Control Surfaces

Some of the control surfaces only rotate. These include: ground spoiler and
flight spoiler. Some have a smaller internal and separately controllable
surface known as a trim tab. These include: inboard wing flap, outboard
wing flap, inboard aileron, outboard aileron, upper rudder, lower rudder,
and the elevator. Still other control surfaces may also be extended and
retracted. These include: the leading edge flaps and leading edge slats.
Note that all of these control surfaces, with the exception of the rudders,
have both left and right side counterparts.

The control surfaces determine the aircraft orientation. The orientation of
the aircraft is known as the attitude of the aircraft and is defined in three
aspects: roll, pitch, and yaw. See Figure 38.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 37

Case Study: Introduction

Figure 38: Aspects of Aircraft Attitude

The responsibility for determining what the orientation should be to achieve
pilot maneuvering goals are the job of another aircraft system – the
Attitude Management System (AMS). The AMS uses an internal set of
partial differential equations – known as the kinematic model – to compute
the set of desired control surface positions necessary to achieve the correct
attitude. The fundamental responsibility of the ACES is to move the control
surfaces to the commanded positions, maintain them in those positions as
forces act on them, and to report on their status.

Other involved aircraft systems include the aircraft electrical power system,
the aircraft hydraulic system, and the pilot display. The ACES must receive
and distribute electrical power and hydraulic pressure as necessary to
execute its duties. The Pilot Display System (PDS) will receive some raw
data from the ACES, although the bulk of the data display regarding
performance of attitude control will come from the AMS so that it can be
converted to information directly usable by the pilot.

6.1 Case Study Workflow
Figure 2 shows the overview of the Harmony aMBSE workflow that will be
used for the case study. While that workflow includes the additional
activities of Initiate Project and Define Stakeholder Requirements, those
activities will not be employed in this case study. We will begin with system
requirements.

Harmony aMSBE
Activity

Work Performed Primary Work Products

System
Requirements
Definition and
Analysis

• Create Requirements

• Create use case model

• Analyze Control Surfaces
use case using system
function based worklow4

• Analyze Start Up use case
using scenario based
workflow

• Create Logical Data/Flow
Schema

• Create dependability
analyses

• System
Requirements

• Context Diagram

• Use case model

• Use case execution
context

• Activity diagram

• Sequence diagram

• Logical Data
Schema

• Logical System
Interfaces

• FMEA

• FTA

• Security Analysis

Architectural
Analysis

• Trade studies • Parametric
Diagrams

• Trade study

Architectural
Design

• Identify subsystems

• Allocate / derive
subsystem requirements

• Create subsystem use case
model

• Update logical data / flow

• Subsystem
architecture

• Subsystem logical
interfaces

• Logical Data/Flow
Schema

4 See Figure 4 to see the these workflows

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 38

Case Study: Introduction

Harmony aMSBE
Activity

Work Performed Primary Work Products

schema

• Update dependability
analysis

• Define cross-subsystem
control loops

• FMEA

• FTA

• Security Analysis

Hand off • Create Shared Model

• Derive Physical Interfaces

• Derive physical data / flow
schema

• Create Subsystem Models

• Create deployment
architecture for each
subsystem

• Derive and allocate
discpline-specific
requirements

• Define inter-disciplinary
interfaces

• Shared Model

• Physical Interfaces

• Physical data / flow
schema

• Subsystem
deployment
architecture

• Software /
electronic /
mechanical
requirements

• Inter-disciplinary
interfaces

Figure 39: Case Study Workflow

We will focus on two use cases in this case study. The first use case, Start
Up, will use the System Function-Based use case analysis workflow. The
second, Control Air Surfaces will use the Scenario-Based use case analysis
workflow in Figure 4.

Figure 40 shows the overall case study workflow.

Figure 40: Overall Case Study Workflow

Figure 41 shows the details of the primary activities to be done in the
definition of requirements and the analysis of use cases for the case study.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 39

Case Study: Introduction

Figure 41: Case Study Requirements Definition and Analysis Workflow

Figure 42 shows the detailed actions to be performed during the
architectural design of the case study. In the case study, two different
approaches will be taken to allocating the requirements for the two system
use cases under consideration.

Figure 42: Case Study Architectural Design Workflow

Lastly, Figure 43 shows the hand off workflow for the case study. In the case
study, we will create a shared model that refines the logical interfaces from
the two analyzed use cases and creates physical interfaces and data schema
from the logical specifications. Then a single subsystem model will be
created (of the several that would be created in a real project). This
subsystem model will then be detailed by creating a deployment
architecture for the subsystem and requirements will be allocated to those
disciplines. Finally, the interfaces between the engineering disciplines will
be defined.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 40

Case Study: Introduction

Figure 43: Case Study Hand Off Workflow

At this point, the systems engineering work for the case study is complete
and has resulted in specifications that downstream engineering teams can
take and begin the detailed design and implementation of the subsystems.

6.2 Creating the Harmony Project Structure

The Harmony aMBSE process recommends a particular project structure
that has proven to be useful. Once an initial Rhapsody model has been
created, this can be quickly done with the SE Toolkit feature Create
Harmony Project.

 Start Rhapsody
 In the main menu select File > New and enter the project name (e.g.

AirSurfaceControlSystem) and click on the Browse button to select
the directory for its placement.

 Under the Project Type, select SysML. Under Project Settings, select
SysML Perspectives.

o

 Click on the OK button. If a diagram appears asking if you want to
add the SysML Perspectives, click on Yes.

 If a dialog appears asking if you want to create the project directory,
click on Yes.

 Select File > Add Profile to Model and double-click the HarmonySE
directory, then double-click again on the HarmonySE.sbs file.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 41

Case Study: Introduction

 A dialog will appear for initial settings. Select Agile Harmony, select
the Do not ask again checkbox and click on the OK button.

 Now right-click on your project name in the browser and select SE
Toolkit > Create Harmony Project. The project browser will now
have the following structure:

o

 If desired, you can reorder the packages in the browser by selecting
View > Browser Display Options > Enable ordering. Once selected,
you can then select a package and using the up and down arrows of
the browser to order the packages as you like. This is the ordering
that I prefer:

We are now ready to begin the engineering work on the case study.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 42

Case Study: System Requirements Definition and Analysis

7 Case Study: System Requirements Definition and
Analysis

The objectives of this phase of the Harmony aMBSE process are to

• Get requirements into the Rhapsody model

• Create the overall use case model

• For each use case
a. Allocate relevant system requirements to the use case
b. Identify and correct requirements that are missing,

incorrect, inconsistent or inaccurate by constructing a high-
fidelity model of the use case

c. Define the logical interfaces between the system in the
context of the current use case and the actors

d. Create a data and flow schema for data and flows used in
the logical interface

e. Perform dependability analyses to identify relevant safety,
reliability, and security concerns and requirements.

• As necessary, resolve interface inconsistencies between the use
cases

We will follow the overall workflow capture in Figure 3.

7.1 Get System Requirements Into Rhapsody

For the purpose of this case study, we will import the requirements into our
model from the Rhapsody project ACES_ReqsOnly. This model has a
package named SysReqsPkg with some subpackages containing the set of
system requirements.

Figure 44: Packages in ACES_ReqsOnly model

 To add the requirements, go to File > Add to Model. Then navigate

to the location of that model in your hard disk. Then go to the
ACES_ReqsOnly_rpy subdirectory and select the file
SysReqsPkg.sbs in the dialog. Be sure that Add Subunits is checked
and you’ve selected As Unit (not As Reference). Click on Ok to add
the package to your model. This will add the package and the
nested packages and requirements.

Note that in real projects, it is far more common to import the
requirements from a requirements management tool such as
DOORS or DOORS NG. However, in this Deskbook, we are focusing
on the modeling aspects.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 43

Case Study: System Requirements Definition and Analysis

Figure 45: Adding the System Requirements package to your model

 Now select all the nested packages under SysReqsPkg and drag
them to their expected location in RequirementsAnalysisPkg >
RequirementsPkg.

Figure 46: Preparing to drag requirements packages to RequirementsPkg.

 You may delete the now empty SysReqsPkg.

7.2 Create the System Use Cases

This activity corresponds to the Identify System Use Cases task in Figure 3.

When you used the Create Harmony Project tool, the SE-Toolkit created an
empty use case diagram. Unless you’ve closed it, it should be open in a
tabbed window. If it is not currently open, navigate in the browser to

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 44

Case Study: System Requirements Definition and Analysis

RequirementsAnalysisPkg > UseCaseDiagramsPkg > UseCaseDiagrams >
UCD_AirSurfaceControlSysem. Double click on the diagram in the browser
to open.

In this case, the following use cases have been identified from the system
requirements:

• Start Up

• Shut Down

• Control Air Surfaces

• Manage Power

• Configure System

• Manage Data

• Update Status
Each of these is an important and complex system usage with several to
many requirements and interesting scenarios.

Using the tools in the use case diagram tool bar, create the use case
diagram shown in Figure 47.

Figure 47: System Use Cases

A (very) short description of the objectives of the use cases:

• Start Up: Manages the start up process, including cold and warm
states, and, in the case of cold start, the Power On Self Test (POST).

• Shut Down: Manages an orderly shut down of the system, including
zeroing the positions on all surfaces.

• Manage Power: Manages the electrical power delivered to the
system from the aircraft, including the selection of the power
source.

• Update Status: Periodically updates the AMS and Pilot Display as to
the operational state of the system, including statuses for all the

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 45

Case Study: System Requirements Definition and Analysis

control surfaces, the hydraulics, the electrical power, and
operational flight mode.

• Control Air Surfaces: manages the response to AMS commands for
control surface position changes, performs station keeping at the
commanded position, and identifies positional accuracy and timing
errors.

• Configure System: sets range limits for the control surfaces, range
and time accuracy limits, and allows for software upgrades.

• Manage Data: supports storage and download of stored operational
data, including fault and failure information.

In this case study, we will limit our discussion to the Control Air Surfaces
and Start Up uses cases only. Interested readers should feel free to model
the other use cases at their leisure.

7.2.1 Add use case mini-specification
Note: to use this description wizard, you will need to apply the
«HarmonySE» to the Rhapsody project (double click on the project name in
the browser and select the stereotype in the stereotype drop down list).

Let’s add a mini-specification to these two use cases. The SE Toolkit
provides a tool for this. Right-click the Start Up use case and select SE-
Toolkit > Import Description from RTF. This provides a standard template
which you can elaborate for the description fields of various kinds of model
elements. The default template includes places for a short explanation of
its purpose, description, security constraints, preconditions, post-
conditions, and invariants (assumptions).

Figure 48: Start Up Use Case Description

Add a similar description of the Control Air Surfaces use case.

Figure 49: Control Air Surfaces Use Case Description

7.2.2 Allocate requirements to the use cases

Each use case must be linked with the functional and quality of service
requirements it collectively represents. This can be done in multiple ways.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 46

Case Study: System Requirements Definition and Analysis

Let’s do one diagrammatically and one using the pre-defined Use Case Trace
Matrix Layout in that is predefined in the HarmonySE profile.

7.2.2.1 Adding Traces on a Use Case Diagram
Creating dependencies on a diagram is easy and it provides a nice visual
reference of the traced requirements.

 In the RequirementsAnalysisPkg > UseCaseDiagramsPkg, add a new
use case diagram.

 Name this diagram Start Up Use Case Requirements.
 Drag the use case Start Up on to it.
 Now, drag the appropriate requirements from the

RequirementsAnalysisPkg > RequirementsPkg on to the diagram
(All the requirements in the StartUpReqs package plus the
StateModeReq_1 from the StatesModesReqs package - see Figure
50).

Figure 50: Adding Use Case Trace relations diagrammatically – step 1

 Right click on the use case in the diagram and select SE Toolkit > Add
Dependencies > From Selected. This will open the Modeling Toolbox
dialog. (NOTE: Yes, the trace relation goes FROM the use case TO
the requirement!)

 Now select all the requirements (select the first requirement, then
click on the others one at a time with the control key depressed).

 Once all the requirements are selected, click on the Select Target
button in the Modeling Toolbox dialog.

 Next, select the HarmonySE profile from the Profile drop down list
on the diagram and the trace stereotype in the Stereotype drop
down list on the dialog.

The Modeling Toolbox dialog should now look like this:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 47

Case Study: System Requirements Definition and Analysis

 Click on the Create Dependency with Selected Stereotype button.

The relations may not show in the diagram. If not, while the diagram has
focus using the menu Layout > Complete Relations > All to show the
elaborated diagram. It should look like this:

Figure 51: Adding Use Case Trace relations diagrammatically – complete

7.2.2.2 Adding Traces using the Use Case Trace Matrix
The other approach is to do this in a matrix. The Harmony SE toolkit
provides such a matrix layout. In fact, the toolkit adds a layout for you in the
RequirementsAnalysisPkg when you used the SE Toolkit > Create Harmony
Project tool previously.

 Double-Click on the matrix view to open it up.
 Because there are many more requirements than use cases, click on

the Switch Rows and Columns tool option (normally located to the
right of the open view).

If you scroll through the matrix, you will see the trace relations we added in
the previous step for the Start Up use case.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 48

Case Study: System Requirements Definition and Analysis

Add the traces
 Trace all the functional requirements (with identifies FuncReq_0

through FuncReq_40) to the Control Air Surfaces use case. To do
this,

o In the row in the matrix labelled Control Air Surfaces
(assuming you previously toggled rows and columns), Select
all the corresponding cells

o Right click and select Add New > trace.
 Similarly add ErrorReq_0 through ErrorReq_36 in the same fashion.

You’ve now successfully traced from the Control Air Surfaces to the
relevant 76 requirements. A portion of the matrix is shown in Figure 52.

Figure 52: Portion of the Use Case - Requirements trace matrix

Let’s now analyze the two use cases to identify missing, incorrect,
inaccurate, or inconsistent requirements.

7.3 Analyze the Start Up Use Case

We’re going to analyze two use cases. The first, and simpler of the two, is
the Start Up use case. This use case is concerned with how the system goes
from off to ready to operate. Most of the behavior for this use case is
focused around the executing the Power On Self Test (POST) and managing
its outcomes. We will analyze this use case using the System Function Based
Approach from Figure 4. We’ll create an activity diagram to organize the
various actions (system functions) associated with the use case. From that
we’ll use the Harmony SE Toolkit to generate the scenarios. Then we’ll
construct an executable state machine that simulates the system functions
and the system interaction with the system actors as a means to verify the
quality and completeness of the requirements.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 49

Case Study: System Requirements Definition and Analysis

Figure 53: Detailed Workflow for System Function-Based Analysis

Let’s get started.

7.3.1 Create Use Case Functional Analysis Model Structure

First, we’ll set up the model structure using the SE Toolkit. On the use case
diagram or the browser, right-click the Start Up use case and select SE-
Toolkit > Create System Model From Use Case (Figure 54).

Figure 54: Create System Model from Use Case

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 50

Case Study: System Requirements Definition and Analysis

This tool creates a package called FunctionalAnalysisPkg > StartUpPkg and
then populates it with the appropriate blocks for the use case and actors,
creates the appropriate links and even creates a new internal block diagram
(IBD) showing the use case execution context. The
StartUpExecutionScopePkg also contains a new component named
StartUp_Sim for building the executable model (to come later). The fully
elaborated package structure for this functional analysis package is shown
in Figure 55.

Figure 55: Start Up Use Case Analysis Model Structure

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 51

Case Study: System Requirements Definition and Analysis

There are a couple of interesting things to note in this structure. First, the
“actor blocks” (i.e. blocks derived from the use case actors) are named with
‘aSU_’ prepended to the original actor name. These actor blocks represent
custom versions of the actor to support construction and execution of
specific use case simulations without affecting any other use case, even if
that other use case also uses the same system actor.

Secondly, while the tool creates a default IBD, it isn’t very pretty. This is due
to limitations in the Rhapsody tool API. You must open the diagram and
manually resize and reorient the elements to beautify the diagram. The IBD
resulting from this beautification effort is shown in Figure 118:

Figure 56: Beautified Use Case Execution Context IBD

The default interface block names may see a little long; you should feel free
to shorten them as you like.

7.3.2 Create the Activity Diagram
The requirements spell out what is required for the system start up:

• If the elapsed time since the last start was less than 5 minutes, go
directly to WARM state, ready to go directly to operational mode
when commanded, otherwise:

o Switch to battery power from whatever power source is
currently being used

o Move each control surface to its minimum and maximum
positions, verifying the accuracy and timing of the
movements

o Zero each control surface position, verifying the movement
accuracy and timing

o Verify the power is within specified limits
o Verify the hydraulic pressure being provided by the aircraft

hydraulic system is within limits and there are no internal
pressure losses

o Verify the integrity of the software
o If all the tests pass, then proceed to the WARM state;

otherwise do not.

The SE Toolkit has created an empty activity diagram for you to elaborate
the activity view. You can open it by navigating to FunctionalAnalysisPkg >
StartUpPkg > Use Cases > Start Up > StartUpBlackBoxView > Activities and
double clicking on activity_0. Here you can add activities, decisions and
flows from the diagram toolbar.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 52

Case Study: System Requirements Definition and Analysis

The high level activity diagram for this behavior is shown in Figure 57.
Because running the tests involves a large number of actions, the
Range_Surface_Test and Perform_BIT actions on Figure 57 are call behavior

actions, and there details are shown on other diagrams (Figure 58 and
Figure 59).

To add the call behavior actions on Figure 57, simply

 Add a regular action
 Name the action Range_Surface_Test
 Right-click on the action and select SE-Toolkit > Create Call

Behavior.
 Delete the original action you added.

Repeat this process to add a call behavior for Perform_BIT. Subsequently,
clicking on the fork icon in the action box will directly open the activity
diagram it now references. Now you can elaborate the behavior on those
referenced activity diagrams

A little bit about naming conventions
The two most common naming conventions for compound
names are to use upper case words separated with underscores
and to use what is called “camel case.” An example of the
former approach is Determine_Time_Since_Last_Restart. The
latter is the practice of writing names by removing the white
space between the words but making each new word upper
case, as in DetermineTimeSinceLastRestart.

Complicating the naming rule is the common practice of
beginning the names of types (such as blocks and use cases) with
upper case (such as ErrorReport) but the names of features of
types (value properties/attributes and operations) and instances
with lower case (such as myErrorReport or
ErrorReport.errorNumber).

Whichever you choose is fine, but you should be consistent.

Indicating input and output events to/from Actors
There are two ways to show inputs and output events on activity
diagrams. The standard UML/SysML way is to use Send Action
and Receive Event Action from the toolbar. This works fine but
the latter does not identify the source of the event. The
Harmony Profile adds the notion of an Actor Pin for an action.

To do this, add a normal action, right click and select SE-Toolkit >
Add Actor Pin. This will bring up a dialog where you can specify
the actor with a drop down list and the direction (in, out or
both). The actor pins are used in the automatic generation of
sequence diagrams from activity diagrams, which will be used
later.

See the different colors for the Decision and Merge nodes on the
activity diagams? This isn’t the default, but you can make it the so,
by adding a Merge node to the diagram, coloring and sizing it as you
like, then right-click on it and select Make/Restore Default… This will
open a dialog that allows you to make this the default format and
size for the element within the selected scope.

I set my scope to Project.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 53

Case Study: System Requirements Definition and Analysis

Figure 57: Start Up Use Case High Level Activity Diagram

.

Figure 58: Range Surface Test Activity

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 54

Case Study: System Requirements Definition and Analysis

Figure 59: Perform BIT Activity

7.3.3 Generate Scenarios from the Activity Diagram

The next step in this workflow is to generate scenarios. Fortunately, the SE
Toolkit has a tool that saves lots of time and effort. To use it, simply right-
click on the activity diagram and select SE-Toolkit > Generate Sequence
Diagrams.

The diagrams created in this way follow a single flow, so you will have to
provide guidance as to which path when multiple paths are available, such
as at decision points.

Note: although it is possible to run the Range Surface Tests for all the
surfaces, in practice it is enough to do a single one, but be sure to generate
both successful and unsuccessful test cases at all test case branch points.

When you select the tool, a modeling toolbox dialog pops up to allow you to
guide the process (Figure 60). In this first example, we’ll create a sequence
diagram that shows the flow for a warm restart.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 55

Case Study: System Requirements Definition and Analysis

Figure 60: Dialog for Generating Sequence Diagrams

For the tool to proceed, you must see if you need to apply design rules.
Because Rhapsody builds executable models, it is picky about naming. The
design rules allow the tool to force the names of the actions to conform to
the rules. If you select the Design Rules tab in the dialog, you’ll see that it
has identified some invalid naming of actions:

Figure 61: Applying Design Rules

Select Apply Design Rules and you can either Remove Illegal Characters or
Replace Illegal Characters with Underscores. If you select the former option,
the toolkit will remove the parentheses in the names of the actions. BTW,
be sure, under the Message Optons tab that the Use Operations instead of
Events option is NOT checked.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 56

Case Study: System Requirements Definition and Analysis

Now select the Generation tab and hit Collect Actions. The Toolkit will
proceed to the end of the activity OR until it reaches a branching decision.
The decisions will be shown via highlighting on the diagram and the
different options are shown in the Select Next Action list.

Figure 62: Selecting the path to take

Double click on the Enter_WARM_state option. Because there are no more
decisions to make, the Toolkit can finish the process and create the entire
sequence diagram (Figure 63).

Figure 63: Generated Sequence diagram for warm restart

Be aware that I made two changes to this diagram manually. It is common
to annotate and/or elaborate scenarios generated in this fashion. The
generated sequences provide most of what you need to capture, but we
expect that there will be a small about of manual update to them.

First, I added a comment on the left hand side of the diagram describing the
flow. Second, the toolkit replaced “illegal characters” in the condition box so
that it read

[Time_Since_Last_Restart__NORMAL_RESTART_TIME]

I edited that text to put the ‘<’ operator back in place.

[Time_Since_Last_Restart < NORMAL_RESTART_TIME]

Let’s do some more scenarios. We’ll need to take the else path when we
get to the [Time_Since_Last_Restart <
NORMAL_RESTART_TIME] decision. This will put us into the

Range_Surface_Test subactivity (Figure 58). Here there are 4 “interesting”

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 57

Case Study: System Requirements Definition and Analysis

decisions to make (found various errors or not). For our purposes, it is
enough to parse the large loop (decision at the bottom of Figure 58) once.
There are also six “interesting” scenarios from the Perform_BIT subactivity.
Ideally, each decision path would be taken in at least one scenario. To save
space in this document, we will do only three more.

1. Range surface and POST tests all pass
2. Range test fails minimum position test but passes all other tests
3. Maximum range test fails and SW integrity test fails

If the Modeling Toolbox isn’t already open, right-click again in the main
activity diagram and select SE-Toolkit > Generate Sequence Diagrams. Make
sure the design rules are set, and then click on Collect Actions. Double click
the Zero_Error_Count(else) path and continue to generate the sequence
diagrams.

Figure 64: Selecting the else path

For the current sequence diagram, select the else paths (no errors) until
you’re back at the main diagram, then double click on the noErrors path to
get to the WARM state. From there, there are no more decision points, so
the tool will complete the generation of the sequence diagram (Figure 65).

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 58

Case Study: System Requirements Definition and Analysis

Figure 65: Scenario 2: Cold Start All Tests Pass

Note that toolkit modifies the messages associated with the actor pins to
become events to or from that actor on the sequence diagram.

Generating the other cases is straight-forward. The scenario for case 2
“Minimum range test fails but all other tests pass is shown in Figure 66.

Figure 66: Scenario where minimum range test fails

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 59

Case Study: System Requirements Definition and Analysis

Lastly, we’ll generate the longest scenario. In this scenario, the maximum
position test fails and the SW integrity test fails as well (all other tests pass).
Because of the length of this scenario, it is shown in the next two figures,
Figure 67 and Figure 68.

Figure 67: Scenario multiple errors (part 1)

Figure 68: Scenario multiple errors (part 2)

Update the Interface Blocks to include the Events and Flows
Now that the scenarios are done, we can use the Ports and Interfaces tool
to add the events (generated along with the sequence diagram), to the
interface blocks. The toolkit created events for the messages between the
actor blocks and the use case block, using the actor pins as a guide. We will
have to modify them later to add data for them to carry but for now, we can
go ahead and add these to the actor blocks and the interface blocks.

In the browser, right click on the package StartUpBBScenariosPkg and select
SE-Toolkit > Ports and Interfaces > Create Ports and Interfaces. This will add
the events as directed features to the interfaces (Figure 69). Figure 70
shows the feaures added to the actor blocks during the earlier sequence
diagram generation.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 60

Case Study: System Requirements Definition and Analysis

Figure 69: Events added to Interface Blocks

Figure 70: Event Receptions added to the Actor Blocks

7.3.4 Create the Logical Data and Flow Model
The previous steps have identified some flows between the actors and the
system while executing the use case and added these as events. More are
likely to be identified as we proceed. It is important to note that while some
events are data-less, such as the evEnter_WARM_state and
evRequest_Hydraulic_Status. Others need to pass information, such as
evReport_Error and the poorly-named reqCheck_Hydraulic_Pressure. We
must create a logical data schema to describe this information and add this
information to the events, as appropriate.

The SE-Toolkit uses an automatic naming schema to name the events it
generates. The Check_Hydraulic_Pressure action is marked with an
incoming actor pin from the aSU_Aircraft_Hydraulics actor block. The

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 61

Case Study: System Requirements Definition and Analysis

toolkit assumes this must be a request but really it is a response from a
query. Let’s rename the event to herezaHydraulic_Pressure5. Do this in the
browser. The event is located in the StartUpInterfacesPkg. In the browser,
select the event and then click again to change the name (or alternatively,
double click and do this in the Features dialog for the event). While you’re
at it, change the name of the reqCheck_Power_Status to
herezaPower_Status event.

Rhapsody will retain all the relations to the various messages automatically.
If you look at the features of the interface blocks and the actor blocks, you
will see that the event receptions are renamed as well. Likewise, the
messages on the sequence diagrams are renamed. That’s one of the
advantages of using a modeling tool.

5 As is “here’s a Hydraulic Pressure”.

Figure 71: Renaming some events

Now let’s model the data.

When we created the functional analysis package structure for the Start Up
use case with the Generate System Model from Use Case tool, a subpackage
was created for this purpose. It is the StartUpTypesPkg package.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 62

Case Study: System Requirements Definition and Analysis

Right click on this package and select Add New > Diagrams > Block Definition
Diagram. Name this diagram Start Up Data Schema. We will enter our types
and blocks into this diagram.

We are going to want to see the value properties of the blocks. To do this
for the elements we are about to enter, Right click on the diagram and
select Display Options. Here, click on Compartment pane and the Customize
button to add EnumerationLiteral to the compartments displayed. Make
sure the All radio button is selected and hit OK. Now when blocks are
added, these visual properties will be used.

Let’s think about what information should be returned with an
evReport_Error event. It makes sense that the AMS would want to know
what error occurred, when it occurred and either which surface failed (if,
indeed, it was a surface fault), or which power source failed (if a power
fault). That gives us a block such as

Figure 72: Error Report Type

Let’s go about making this type. Let’s first define the types of the attributes
of the ErrorReport type.

We need to characterize the specific attribute types, such as ERROR_TYPE,
DATETIME_TYPE and POWERSOURCE_TYPE. The first and the last are best
represented as enumerated types. For our purpose, DATETIME_TYPE can be
represented as a string.

It is important to remember that we are trying to characterize the logical
properties of the data and flow – which is why we call this the logical data
and flow schema. We are not trying to define the final type that will be used
in the implementation (this is known as the physical data and flow schema
and is defined during the hand off to downstream engineering).

Let’s create the ERROR_TYPE type. In our new BDD, add a DataType
(alternatively, you can use a ValueType) element from the toolbar and name
it ERROR_TYPE. Double click on it to open its Features dialog and in the
General window pane, set its Kind to Enumeration. Then click on the Literals
pane and enter the following values:

Figure 73: ERROR_TYPE

The ERROR_TYPE element on the diagram will now look like this:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 63

Case Study: System Requirements Definition and Analysis

Figure 74: Display of ERROR_TYPE

Similarly, update the POWERSOURCE _TYPE with the following literals:

Figure 75: POWERSOURCE_TYPE

Add a new DataType or ValueType and name it DATETIME_TYPE. In its
feature dialog, select Typedef. In the Details window pane, define the base
type as RhpString.

Figure 76: Defining the DATETIME_TYPE as a string

We are now ready to create the Error_Report type per se. Add a new block
to the diagram and name it Error_Report. Double click on the block and
click on the window pane Value Properties. Add each of the following
values, using the Type drop down list to select the appropriate types we just
created:

Figure 77: ErrorReport block

We have requirements about keeping a list of identified errors, so add an
Error_Log block that is composed of zero-or-more (“*”) Error_Reports.

Other message carry power and hydraulic status, so let’s add blocks for
those as well. In this case, we’re using only predefined types for the
attributes, but some of them can be found by navigating to the SysML
profile SIDefinitions package:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 64

Case Study: System Requirements Definition and Analysis

Figure 78: SysML Profile SIDefinitions Package

Using the tool facilities we’ve already used, add the Power_Status and
Hydraulic_Status blocks to the diagram:

Figure 79: PowerStatus and HydraulicStatus

Note that we assigned the default values to the value properties. This is just
good practice and it means that we know the starting conditions when we
start simulating. We can do this either on the Value Properties tab of the
block Features dialog or on the General tab for the Features dialog for the
individual value properties.

Lastly, we also have some requirements about storing test results, so define
that as well. When completed, the diagram should look something like
Figure 80.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 65

Case Study: System Requirements Definition and Analysis

Figure 80: Start Up Use Case Logical Data Schema

I like to use the «Usage» dependency between the composite blocks and
the type definitions for the attributes, since I find this makes the
information more comprehensible. It is, however, optional.

We’ve now defined the type of interest in this use case (we may find more
later but we’ll add those as we discover their need). Let’s now update the
events so that they can pass along that information.

Adding parameters to events is easy in Rhapsody. Open the browser to the
StartUpInterfacesPkg and click on the plus sign on the events to view the
list.

Figure 81: Start Up Use Case events

To add parameters to the evReport_Error event, double click on that event
to open its Features dialog and click on the Arguments pane. Here, add an
argument err of type Error_Report.

Figure 82: Adding err Argument to evError_Report

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 66

Case Study: System Requirements Definition and Analysis

Using similar methods, add an argument ps of type Power_Status to event
hereza_Power_Status, hs of type Hydraulic_Status to event
hereza_Hydraulic_Pressure and source to event evRequest_Power_Status.
The browser listing of the events should now look like this:

Figure 83: Events updated with arguments

If you want to know more about passing data with events, see Section 12:
Appendix: Passing Data Around in Rhapsody for C++ on page 235.

7.3.5 Create the Safety Analysis
Note: this section is optional. If you never create high-reliability, safety
critical, or security-sensitive systems, feel free to skip this section and go on
to Section 7.3.6.

Another important source of quality of service requirements are safety
requirements. To that end, we will perform a safety analysis of the
functional and quality of service requirements on a use base basis.

Installing the Rhapsody Dependability Profile
We will use the Rhapsody Dependability (formerly, the “FTA Profile”). This
profile doesn’t ship with Rhapsody, so you’ll have to download it from
Merlin’s Cave, where it is part of the Dependability Profile:
http://merlinscave.info/Merlins_Cave/Models/Entries/2017/3/3_Dependab
ility_Analysis_Profile.html.

(If you prefer to work in a third party tool, that’s fine as well. We’ll continue
this section assuming you’re using the Dependability profile.)

Once you download the zip file, place it in the Rhapsody Share/Profiles
directory (the same place from which you got the Harmony SE profile) and
then unzip it. The proper directories will be created. Then add the
Dependability profile in the same way that you added the Harmony SE
profile. Inside the FunctionalAnalysisPkg > StartUpPkg add a new package
StartUpSafetyPkg package (the SE Toolkit may have already added this
package for you). This package will hold all our safety analysis for the use
case.

Too many entries in the type drop down list?
When you select the Type drop down list, you often get a (very)
long list of types from which to choose and finding the one you’re
looking for can be hard.

So here’s a Pro Tip:
Start typing the name of the type you’re looking for and Rhapsody
will shortened the displayed list to just those types that match the
partially filled out name.

http://merlinscave.info/Merlins_Cave/Models/Entries/2017/3/3_Dependability_Analysis_Profile.html
http://merlinscave.info/Merlins_Cave/Models/Entries/2017/3/3_Dependability_Analysis_Profile.html

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 67

Case Study: System Requirements Definition and Analysis

Doing the Safety Analysis
Let’s think about the hazards related to this use case. A hazard is a
condition that leads to an accident, loss, or incident of concern. In this use
case, one hazard is “allowing the pilot to proceed with operations even
though the control surfaces cannot be properly controlled.“ For short, let’s
call this Unable to Control Surface.

Let’s be a bit more specific by identifying special cases of this:

• Unable to accurately achieve desired position

• Unable to achieve position within required timeframe

• Unable to power the system

• Unable to move surface

• Operating with faulty software

Any of these conditions could result in the manifestation of the hazard
condition. These “sub-conditions” are called resulting conditions, because
the result from more primitive underlying conditions, events, and faults.

In the context of this use case we’re only concerned about safety issues that
occur due to or resulting from starting the system up. We are not concerned
here about using the system operationally – we’ll talk about those concerns
when we analyze the Control Air Surfaces use case later.

Given that scope, with what functionality must we be concerned? Basically,
we must test the system to ensure it is ready to begin operations, and
prevent it from going operational if not. This is the basis for the definition of
the Power On Self Test (POST) functionality. Clearly, the authors of the
requirements were thinking about safety when they identified the need for
the POST. Our job in this safety analysis is to ensure that those
requirements are complete, accurate, and correct with respect to the
maintenance of system safety.

Each of the identified resulting conditions that can lead to the hazard are
the result of more primitive faults. In this case, these basic faults might be
things like:

• Hydraulic pressure failure or leak

• Hydraulic overpressure

• Insufficient or intermittent electrical power

• Fault at the site of the control surface itself causing inability to
move accurately enough or fast enough

• Previous installation of invalid software

An FTA diagram graphically represents the logical relations between events
and conditions (such as faults) with outcomes (such as resulting conditions
or hazards). The logic flow is how we causally connect the elements, and the
logical operators (AND, OR, NOT, etc) are how we combine them.

Since we have a number of tests, the way to arrive at the hazardous
situation is for BOTH the underlying fault to occur AND the test for that fault
fails positively (that is – it gives a positive result (test passed) when the
result should have been negative).

Let’s create a new FTA diagram to capture our safety analysis. Right click on
the StartupSafetyPkg package and select Add New > Safety Analysis Profile
> FTA Diagram (Figure 84). Name the diagram Start Up FTA.

Note: At the time of this writing, there is an “idiosyncrasy” in the way
Rhapsody uses some properties in its API. For this reason, the
background of some of the iconic images in FTA diagrams will be red.
If you change the type of the project to an Dependability Profile type,
then that issue is resolved. We recommend that when you’re working
in the Dependability profile, you change the type of the project to
Dependability Profile and when you’re doing other things in SysML,
you change the project back to a SysML project.

Changing the project type is easy. In the browser, right click on the
project name and select Change To > Dependability Profile. To change
it back, select Change To > SysML.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 68

Case Study: System Requirements Definition and Analysis

Figure 84: Adding an FTA Diagram

Fill out the analysis in the new diagram by adding the hazards and resulting
conditions discussed previously, the logic operators, and the basic faults.
The result should look like Figure 85.

Figure 85: Start Up Use Case FTA Diagram

Figure 85 identifies two ways that the SW Integrity could be faulty. Either an
unvalidated software load was performed or the software was corrupted.
The existing requirement just calls for a software integrity check but doesn’t
specify what needed. Here, we need to be able to identify both basic faults.
This means with this safety analysis, we’ve identified the need for three new
requirements:

The software load shall provide a key that indicates it has been certified for
use.

The system shall verify the software load has been certified by checking the
verification key.

The software shall provide a means by which to detect software corruption
from initial load, such as a 32-bit CRC check over its contents.

These requirements must now be added into the requirements set in the
RequirementsAnalysisPkg > RequirementsPkg > ErrorReqs package and

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 69

Case Study: System Requirements Definition and Analysis

linked to the use case with the appropriate trace dependency relations to
the Start Up use case. Note that the Dependability profile has a stereotype
«SafetyRequirement» to mark such requirements if you like; it is available
when the project type is DependabilityProfile.

Specifying the Safety Metadata
The diagram is a great aid in understanding, but you also need to specify the
underlying safety metadata. All the fault and hazard elements have tags to
specify this information.

Here’s a quick list of the metadata you can specify for the safety relevant
elements:

Safety Element Tag Description

Hazard Severity How bad is an incident resulting from
manifestation of this hazard

Probability How likely is the accident to manifest?

Risk The products of Severity * Probability

Safety Integrity Level The level of safety assurance needed –
both system- and standard-specific.

Fault Tolerance Time How long can a fault be tolerated before
the hazard manifests into an incident?

Fault Tolerance Time
Unit

The time unit for Fault Tolerance Time

Basic Fault
Undeveloped Fault
Resulting
Condition

Probability How likely is the fault to occur?

MTBF Time Units The time units for MTBF

MTBF The Mean Time Between Failure

Action Taken What does the system do to detect,
correct or respond to the fault?

Cause The underlying cause factor resulting in
the fault

Current Controls What is in place now to mitigate or control
the effect of the fault?

Detection Mechanism How the system detects when the fault
has occurred?

Effect The real-world outcome(s) should the
fault occur

Failure Mode The mode or ways in which a system or
element might fail

System Function A behavior of a system which is atomic at
a system black box level

Safety Element Tag Description

Recommended Action What are recommendations for additional
behaviors for fault control?

Responsible Party Which engineer, role, or party is
responsible to address the fault?

Risk Priority The product of likelihood, severity,
criticality and detectability

Severity How bad are the outcomes from this
fault?

Fault Source Fault Mechanism How does the fault happen?

Normal Event
Required Condition

Probability Likelihood of occurrence

Safety Measure Fault Detection Time How long to detect the fault after it
occurs?

Fault Time Units Time units for fault detection and action
times

Fault Action Time Once a fault action is initiated, how long
until it is complete?

Safety Mechanism How does the safety control work to
mitigate risk?

SIL Safety Integrity Level – this is safety
standard-specific

Hazardous Event Probability Likelihood of occurrence

ASIL Automotive Safety Integrity Level – this is
standard to the ISO 26262 standard

ASIL Controllability How well can the fault event be
mitigated?

ASIL Prob Exposure Likelihood of exposure of the system to
the fault

ASIL Severity How bad is an event resulting from
manifestation of this hazardous event?

Effect of Failure Outcome of the fault

Figure 86: Safety and Reliability Metadata

We can fill in some of this metadata later. For now, let’s fill out the fault
tree analysis.

By the way, after you’re done with the safety analysis, don’t forget to
change the project back to a SysML project by right clicking on the project
name at the top of the browser and selecting Change To > SysML.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 70

Case Study: System Requirements Definition and Analysis

7.3.6 Create the Use Case State Machine and Execute Model
Next, we want to construct an executable version of the use case model so
that we can make sure that the requirements result in the outcomes we
want and expect. To do this, we will construct a state machine that takes
inputs from the actor blocks, executes internal system functions, and sends
output to those actor blocks. This is a black box simulation so it neither
reflects the actual internal design nor actually performs the internal system
functions needed to actually do anything “real”. Our goal is to cast the
informally stated textual requirements into the formal language of state
machines and run various event sequences through to ensure that we have
a correct and complete set of requirements. If we discover inadequacies in
the requirements, we update the requirements and our model, and repeat.
Again, the state machine used here is just a statement of the requirements in
a more formal language, not a specification of internal design.

 By the way, did you remember to change the project back to a
SysML project?

Create the State Machine
Correctly constructing complex state machines is hard. Therefore, we will
construct this state machine in three phases (“nanocycles” in Harmony-
speak). Each phase will be executed before moving on. This incremental
construction of potentially complex state machines is highly recommended.

Ideally, a complex state machine should be constructed by representing a
small set of requirements and executing it after no more than an hour of

A Note about Simulation Fidelity
Simulation can be done at different levels of detail, known as
“fidelity”. These simulation levels have both benefits and costs.

A low-fidelity simulation can be done by executing the data
machine with no event parameters and keeping the data model and
the behavioral model separate. This approach was taken for
“Harmony Classic” and can still be used, if desired. This level of
fidelity does allow the verification of the control flow of the use
case but not the correctness of the data model. While this simplifies
the work to get the simulation running, you still have to add the
data elements to the interfaces later, because they are a very
important part of the specification.

A medium-fidelity simulation models the logical data passed by the
events. It’s a bit more work to get the simulation working but the
executing state machine relies on the actual logical interfaces, so
this verifies, through execution, the correctness of these logical
interfaces and the data they support. This is the level of fidelity we
will use in this Deskbook.

In contrast, a high-fidelity simulation also models the internal
behaviors and algorithms. This is useful in architecture and design,
but less so in requirements analysis. This is level of fidelity requires
the most work on the part of the engineer but allows for the
effectiveness of design decisions to be ascertained.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 71

Case Study: System Requirements Definition and Analysis

development. Only after that simple state machine verifiably works should
the engineer move on to elaborating the state machine with more
requirements. In reality, a state machine of this complexity would probably
be constructed with 6-10 iterations but we will only show three here to
conserve space. Again, the recommended workflow is simple and iterative:

• Model a few requirements in the state machine
o Get this model to compile and run
o Verify that it is correct so far

• Repeat until done

Phase 1: Overall state machine
In the browser, navigate to the use case block at FunctionalAnalysisPkg >
StartUpPkg > Blocks, right click on the block Uc_StartUp, and select Add
New > Diagrams > Statechart. Then create the following state machine
(Figure 87):

Figure 87: Start Up Use Case State Machine Phase 1

Notice that we added a new event evBegin_Startup (we did this for
simulation control reasons, so we should stereotype it as «nonNormative»).
We defined a state OFF and the event evBegin_Startup invokes a transition
to get things started. This will end up coming from the aSU_AMS actor block
(sitting in for the AMS actor). The event evBegin_Startup must be manually
added to the interface block iUc_StartUp_aSU_AMS as a directed feature
with the direction of provided.

One easy way to do this is to select the event in the browser (it’s in the
StartUpPkg > Events list) and drag it with the control key pressed to name in
the browser of the iUc_StartUp_aSU_AMS interface. Then a dialog will pop
up asking if you want to add an event reception for this event to the
interface block.

Click on Yes. Then double click on the event reception in the interface block
to add the stereotype directedFeature.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 72

Case Study: System Requirements Definition and Analysis

Since the default direction is provided, that’s all we need to do.

The other event on the diagram evRequest_Enable is located in the nested
StartUpInterfacesPkg. The easy way to find it is to, when entering the name
of the event, type a few letters, such as “req” and then press Control-Space
to bring up the intellisense editor. If the desired event isn’t shown, double
click on the Select option that pops up and navigate the mini-browser to fine
the desired event and click on OK.

To enter the Send Action pseudostates on the diagram, add the Send
pseudostate on the diagram and double click on it. Then you can fill out the
Target and Event fields from the drop down lists.

Figure 88: Filling in the details for a Send action

There are a number of minor things we need to do to get this to compile
and execute.

Two values are referenced in a guard in Figure 87. time_since_last_reset
will need to be defined (and initialized) as a value property (attribute) of the
Uc_StartUp block. The other value, NORMAL_RESTART_TIME, we will
define as a constant.

There is the use of a function no_errors() that must be added as an
operation to the Uc_StartUp block.

After that, we’ll need to add state behavior to the actors, to send and
receive the events during the simulation.

Let’s begin by adding the value property time_since_last_reset. In the
browser, right click the Uc_StartUp block and select Add New > Blocks >
Value Property. Give it the name time_since_last_reset. The default type
(int) is ok. Since most of the time we want to execute the start up tests, let’s
set it to a large value, 100,000. Double click on the timeSinceLastReset
value property6 in the browser and enter this value as the Initial Value. Click
on OK.

6 Attributes in UML are known as Value Properties in SysML. Sometimes what you
expect to be a value property will appear as a attribute.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 73

Case Study: System Requirements Definition and Analysis

Figure 89: Setting the initial value of an attribute

To define the constant NORMAL_RESTART_TIME, right-click on the nested
StartUpTypePkg, and select Add New > Blocks > DataType. Double click on
the type to open the features dialog and type in the name of the value.
Make sure the Kind is Language.

Click on the Declaration tab and type
 #define %s 10000

This value is less than the true value (5 minutes) as 10,000 represents only
10 seconds (timeout units in Rhapsody are milliseconds). The actual value is
a bit cumbersome to use in simulations, so we’ll employ this shorter value.
To get a warm restart we only must set the time_since_last_reset to less
than 10,000. The use of named constants like this makes the model more
readable and easier to customize for different simulation effects.

Adding the operation no_errors() is likewise easy. Let’s do this by
1. Adding an error_count attribute/value property and initializing it to zero
2. As we add errors during tests (we’ll start doing this in nanocycle phase 2),
we’ll augment this value
3. no_errors() will return TRUE if the value of error_count is zero.

First, let’s add error_count as an integer value. Follow the same procedure
we used for time_since_last_reset but instead give it an initial value of 0.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 74

Case Study: System Requirements Definition and Analysis

Now, right click on Uc_StartUp > operations in the browser and select Add
New > Operation. Type in the name noError and hit the ENTER key. Then
double click on the operation to open its features dialog.

In the General pane, set the return type to RhpBoolean.

Click on the Implementation pane and type in the implementation code.

Be sure to use double equals sign (“==”) as the operator.

This is all we need to do to the Uc_StartUp block for simulation. We still
must “instrument the actor blocks” to support the simulation. That means
that the actor blocks must be able to send the events through the correct
ports and must be able to receive the events from the use case block. To
simulate the the initial use case block state machine (Figure 87), we must
instrument the aSU_Aircraft_Power and aSU_AMS actors to accept and
receive the events generated by the use case state machine. We need not

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 75

Case Study: System Requirements Definition and Analysis

do anything (yet) with the aSU_Aircraft_Hydraulics as it isn’t used (it will be
added in Phase 3 of building out this use case state machine).

First, let’s do the aSU_Aircraft_Power, as this is simple:

Figure 90: Initial state machine for aSU_Aircraft_Power

This allows us to show the message sent from the system to select the
power source. Note that we used the intellisense feature (ctrl-space) follow
by Select > StartUpInterfacesPkg > Events to find and select the event
already present in that package. We could have just typed it in as well but in
general it is better to select when the event already exists to avoid
accidently misspelling and creating a whole new event.

The aSU_AMS actor block state machine is a little more complex.

Figure 91: Initial state machine for aSU_AMS

Look at the transition event signatures on the state machine such as

evEnter_WARM_state/ std::cout << "WARM!" << std::endl;

The action (the part of the event signature following the “/”) is optional.
Note, by the way, that the std:: preface for the cout and endl applicators
is required by some compliers (such as Cygwin) but cannot be added in
other (such as some versions of the Microsoft C++ compiler). The action list
shown just sends the text out to the standard output window for inspection
when the event is received. To receive the event, you must minimally have a
transition with the triggering event on it; the following action is optional but
helpful in debugging.

Adding the behavior to the actor blocks allows us to see the events flowing
between the use case and actor blocks during simulation. It also means that
we can control execution directly by stimulating the actors.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 76

Case Study: System Requirements Definition and Analysis

We are now ready to run this initial state machine. It doesn’t do any actual
tests yet, but we’ll add that behavior in Phase 2 and 3.

Make sure that the simulation toolbar has the (toolkit – generated)
component selected.

Navigate to the StartUpSim component in the browser; it’s located in the
StartUpPkg > StartUpExecutionScopePkg. Double click to open and make
sure that the right elements to include are selected in the Scope tab.

Figure 92: Start Up component execution scope

In particular, note that the StartUpSafetyPkg is NOT included in the scope
but all the other packages within the StartUpPkg are.

Now, verify the configuration is set up for your compiler and for animation:

Figure 93: StartUpSim component configuration

In the case here, I’m using the Cygwin compiler but it must be set up for
your particular environment. In any case, you want the Instrumentation
mode set to Animation.

To compile and run the model at this point, just click on the
Generate/Make/Run button (highlighted in green on the simulation toolbar.
If you’ve make mistakes entering information, the system will stop and
identify the error to fix. Don’t worry if you’ve made a mistake. It is so
normal that I’m surprised when my compilation succeeds on the first try!
The good news is that Rhapsody makes it easy to locate and repair the
errors.

Once the system in in simulation mode, you’ll see the animation toolbar:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 77

Case Study: System Requirements Definition and Analysis

Click on the Run Step tool (third button from the left). This initializes the
simulation and the state machine. Let’s add an animated sequence diagram
to watch the simulation run.

Select Tools > Animated Sequence Diagram. Then select one of the diagrams
we created previously as the template and click OK.

This should open up the diagram and display the current states of the
elements.

Now, let’s just let the simulation run. Click on the Go button on the
Animation toolbar (second button from the left)7.

Nothing happens because it’s waiting for you to kick things off with an
event. On the animated sequence diagram, right-click the aSU_AMS lifeline
and select Generate Event. On the opened Events dialog, select the
startSystem event, and click Generate.

7 If you don’t see the State Marks, you can enable the Features Dialog by double-
cliicking on the project at the top of the browser, selecting the Properties Pane,
then View > All, navigating to SequenceDiagram > General > ShowAnimStateMark
and selecting the checkbox. Seeing the states is optional but useful.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 78

Case Study: System Requirements Definition and Analysis

At this point, we expect the system to run through the SurfaceRangeTesting
and PerformBIT states, and eventually end up in the WARM_STATE. And
that’s what you should see (Figure 94)

Figure 94: Running the simulation

At this point, using the Events Dialog, send the goOperational event to the
aSU_AMS actor block. The system should end up in the OPERATING_STATE
and the state changes should show up on both the sequence diagram and
the standard output window. Alternatively, you can open a Features dialog
on the animated instance to see its current values.

The sequence diagram looks a bit messy because it marks the arrival of sent
events when they are actually processed by the receiving element.
However, the SE Toolkit has a great tool to clean this up.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 79

Case Study: System Requirements Definition and Analysis

Complete the simulation by pressing the Stop button (red square). Then
click anywhere in the generated sequence diagram and select SE Toolkit >
Straighten Messages. Now with a little bit of moving messages up to
remove white space, your diagram should look like Figure 95.

Figure 95: Completed first simulation

To run the other case (warm restart), we’ll have to change the values and
recompile (in a little bit, I’ll show you another way to do this). Stop the
simulation. Edit the default value of the time_since_last_reset to be a small
number, say “10”, and now the other main path will be taken. Do this to
generate the following sequence diagram:

Figure 96: Simulation warm restart

Let’s do a final simulation, one where the errors are detected. This is an
easy case to do. In this case, stop the simulation, change the default value of
time_since_last_reset back to it’s original 100,000 value and change the
default of error_count to 1 (thus no_errors() will return FALSE and the other
state machine path will be taken). Then compile and simulate to generate
the final sequence diagram of this phase.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 80

Case Study: System Requirements Definition and Analysis

Figure 97: Simulation of error flow

So far, setting values is done by changing the model and recompiling. This is
a little tedious. Rhapsody provides a number of ways to change values
during run time, including the Webify feature, panel diagrams, or simply
adding special events for the purpose of changing values to run specific test
cases (something we’ll do in Phase 2)8.

Before we move on, be sure to set the default value of error_count back to
0.

Phase 2: Add movement tests
We’ve had a successful first simulation run, but we didn’t model all the
requirements. Specifically, the use case block states SurfaceRangeTesting
and PerformingBIT didn’t actually do anything. In this phase, we’ll add a
submachine to the SurfaceRangeTestings state to model those
requirements.

8 There are many short but useful videos on YouTube on the use of these features.
You might start here to search for video content of interest:
https://www.youtube.com/watch?v=zODaYlqL1_A&list=PL1122E405F2CC4EE5

Open the state machine for the use case block Uc_StartUp. Right click on
the state SurfaceRangeTestings and select Create Sub-Statechart. This will
create another state machine diagram which is logically a part of its parent.
This is a good way to manage large, complex state machines. Select the
SurfaceRangeTestings state on the newly created diagram and drag a
corner to make it large. Everything you do on this diagram must go inside
that composite state. We will base this state behavior on the activity
diagram specification we made at the start of this use case analysis (Figure
58). It will look a bit different because this is a state machine and not an
activity diagram (and we want it to actually execute), but it’s lineage should
be obvious.

Figure 98: Surface Range Testings Submachine

Note that error_found is set to the NOT (“!”) of
Verify_Position_And_Timeliness().

https://www.youtube.com/watch?v=zODaYlqL1_A&list=PL1122E405F2CC4EE5

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 81

Case Study: System Requirements Definition and Analysis

Figure 98 is the state machine equivalent of activity diagram in Figure 58.
To do this, we’ve used eight operations that will need some implementation
for the simulation:

• Select_First_Surface()

• Command_To_Minimum_Position(surfaceID);

• Verify_Position_And_Timeliness(surfaceID);

• Store_Error();

• Command_To_Maximum_Position(surfaceID);

• Zero_Control_Surface(surfaceID);

• Select_Next_Control_Surface();

• Are_There_More_Surfaces(surfaceID);

and three value properties:

• surfaceID (of type int) (holds the number of the surface of current
interest)

• error_found (of type RhpBoolean) (holds whether errors have been
found)

• pos_ok (of type RhpBoolean and a default value of TRUE) (holds
whether the surface correctly achieved commanded position)

The operations were added to the use case block Uc_StartUp during the
creation of the sequence diagrams from the activity diagram; the value
properties must be added as new elements. Let’s deal with the value
properties first. Using the same method we used to add
time_since_last_reset and error_count in Phase 1, add these two new
variables, giving surfaceID a default value of 0 and error_found a default
value of FALSE.

Adding the operation implementations is similarly easy.

• Select_First_Surface()
set the implementation to
 surfaceID = 0;

• Command_To_Minimum_Position(surfaceID);
No implementation needed to support the simulation at this time.
Add an argument sID, of type int but you needn’t do anything with
it.

• Verify_Position_And_Timeliness(surfaceID);
This should return a RhpBoolean. Add an argument sID, of type int
but you needn’t do anything with it. The implementation can simply
be
 return pos_ok;

• Store_Error();
No implementation necessary.

• Command_To_Maximum_Position(surfaceID);
No implementation needed to support the simulation at this time.
Add an argument sID, of type int but you needn’t do anything with
it.

• Zero_Control_Surface(surfaceID);
No implementation needed to support the simulation at this time.
Add an argument sID, of type int but you needn’t do anything with
it.

• Select_Next_Control_Surface();
Set to return an int value and add the following implementation:
 return surfaceID +1;

• Are_There_More_Surfaces();
This is a new operation (it was missed in the scenario creation), so it
must be added to the use case block. This must return an
RhpBoolean. Add the following implementation:
 return (surface ID == 0);

Again, we’re trying to support the black box view; we don’t really care
exactly how things happen inside the system, so we don’t have to actually
move surfaces around and check them. We just have to simulate what that
looks like from an external perspective. That’s what this simulation does.

This is set up to run the test for only the first surfaceID. If you want to run
multiple surfaces, then change the implementation of
Are_There_More_Surfaces() to return FALSE as soon as you’ve done the
desired number of surfaces. In the implementation provided, it only returns
TRUE if the surfaceID is zero. As soon as it is augmented by the operation
Select_Next_Control_Surface(), then it will return FALSE.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 82

Case Study: System Requirements Definition and Analysis

The more interesting part is we have to add values to send to the aSU_AMS
actor block via the evReport_Event. You may remember that this event
takes an argument err of type Error_Report (see Figure 80).

Let’s add another value property named my_error of type Error_Report to
the use case block Uc_StartUp. We will update the specific fields of this
attribute when we send the error report to the aSU_AMS. In the Send
Actions of Figure 98, add &my_error to the parameter list9.

Figure 99: Defining attribute my_error

9 The & operator is interpreted as “the address of the value property named
my_error.” See Section 12 for details.

Figure 100: Adding parameter my_error to Send Action

This results in an updated state machine for the use case block. Note that
not only do the send actions have parameters for the event being sent,
we’ve also added actions to set up values to identify the errors detected.

Figure 101: Uc_StartUp state machine updated with event parameters

The next figure shows a close up of the event paramers in use:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 83

Case Study: System Requirements Definition and Analysis

Figure 102: setting up my_error values

The only remaining thing to do before we can run this is to update the
aSU_AMS state machine to receive the evReport_Error event.

Figure 103: Updated state machine of aSU_AMS

Let’s now run two simulations. The first will find no errors. That should
compile and run as-is. The second will require a small tweak.

A quick note: it sometimes happens that Rhapsody doesn’t quite get
the generated dependencies correct. If Figure 101 compile fails with
errors accessing the err parameter of the evError_Report, you
might need to go into the browser and add a «Usage» dependency
from the actor block aSU_AMS to the Error_Report block in the
StartUpTypes package.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 84

Case Study: System Requirements Definition and Analysis

Figure 104: Start Up with surface range tests passed (Phase 2)

Now, let’s do the same simulation with the surface ranging tests failed. Stop
the execution and edit the pos_ok value property of the Uc_StartUp block
so that its default value is FALSE. Now, recompile and run.

The standard output window should look like this:

The scenario result should indicate the system ending in the FAILED state.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 85

Case Study: System Requirements Definition and Analysis

Figure 105: Start Up with surface range tests failed (Phase 2)

Don’t forget to change the value of posOk value property back to its default
value of TRUE.

Phase 3: Add power, hydraulic, and SW integrity tests
This nanocycle iteration of the analysis of the Start Up use case adds the
remaining requirements into the mix.

First, let’s add the state behavior for the Uc_StartUp block for these tests.
Open the use case block main state machine diagram, right click on the
PerformingBIT state and select Create Sub-Statechart.

Just as we added details for the surface ranging tests in the submachine for
SurfaceRangingTesting state in Phase 2, we’ll add the tests for power,
hydraulics, and software integrity into the submachine for the
PerformingBIT state.

Figure 106: Submachine for PerformingBIT state

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 86

Case Study: System Requirements Definition and Analysis

Be sure to include the paramers for the Check_Power_Status and
Check_Hydraulic_Status operations, as shown in Figure 106.

In the process of elaborating this state machine, we’ve added three Boolean
variables to the Uc_StartUp block (the last one will be used shortly):

• sw_ok (default TRUE)

• hydraulics_ok (default TRUE)

• power_ok (default TRUE)

• sw_fault (default FALSE)

Go ahead and add them to the Uc_StartUp use case block with the specified
default values.

The state machine uses another three operations to the block as well:

• Check_SW_Integrity()

• Check_Hydraulic_Pressure(h: HydraulicStatus);

• Check_Power_Status(p: PowerStatus)

Be aware that the SE Toolkit has previously added these functions when we
parsed the activity diagram to create the scenarios. Nevertheless, we must
still add parameters and implementation.

In the browser, double click on the Check_SW_Integrity operation to open
its Features dialog. In the General pane, change the return type from void to
RhpBoolean. In the implementation pane, add the implementation

 return ! sw_fault;

(be sure use to include the NOT (“!”).).

Then add sw_fault as a value property (or attribute) of type RhpBoolean to
the use case block Uc_StartUp, and give it a default of FALSE. Having this as
an internal variable allows us an easy way to simulate cases where this test
passes or fails.

Next, update the Check_Hydraulic_Pressure operation. In the General tab,
make sure it returns an RhpBoolean value. In the Arguments pane, add an
argument h of type Hydraulic_Status. Note that Rhapsody will
automatically pass a pointer to the type10. Now add the following to the
Implementation tab:

 return ! h->getHas_faults();

Similarly, update the Check_Power_Status function to return an
RhpBoolean, add an argument p of type Power_Status, and add the
implementation:

 return ! p->getHas_faults();

Now let’s update the actor blocks.

The aSU_Aircraft_Power and aSU_Aircraft_Hydraulics blocks are really
pretty simple. Add the follow state machines to these blocks (don’t forget
they are located in the nested package StartUpActorPkg.

Figure 107: aSE_Aircraft_Power state machine

10 Again, see Section 12 for more details on parameter passing.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 87

Case Study: System Requirements Definition and Analysis

Figure 108: aSU_Aircraft_Hydraulics state machine

Ok, hold on. It’s not quite that simple. These state machines send events
herezaPowerStatus11 and herezaHydraulicStatus, both of which pass data.
We’ll need to create local attributes of type Power_Status and
Hydraulic_Status and pass the values along with the events.

Right click on the actor block aSU_Aircraft_Power and select Add New >
Value Property. Name this attribute p_status. Double click on this to open
the Features dialog. In the General pane of the dialog, choose the
<<Select>> option in the drop down list and navigate to the
StartUpTypesPkg to select the Power_Status block as the type.

11 “hereza” as in “here is a … “

Figure 109: Selecting a type from the StartUpTypesPkg

At run-time, we want to be able to provide status that is either good or bad.
We’ll do this by elaborating the actor block state machine. This means that
we can, at run-time, easily send either value during a simulation.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 88

Case Study: System Requirements Definition and Analysis

Figure 110: Setting power status values during simulation

Figure 110 shows how we do this. We’ve added setFault and clearFault
events to set appropriate values for the p_status attribute. And we updated
the Send action for herezaPower_Status to pass the value “&p_status”
(read as “the address of the value named p_status”).

We must now do the equivalent thing for the hydraulic status. This will
require similar modifications to the state machine for the block
aSU_Aircraft_Hydraulics, although we will add a value property named
h_Status (of type Hydraulic_Status) to the actor block.

Figure 111: Setting hydraulic status values during simulation

Let’s now run the case in which all tests pass12.

12 In the actor blocks, we could use the automatic accessor and mutator operations
but we’re now directly accessing attributes. If you haven’t already done this, you
can change the Rhapsody settings to allow this by right-clicking on the project in the
browser going to the Properties Pane, select View All, and going to the topic
CG_CPP > Attribute > Visibility. Here you have a drop down list. The default visibility
is set to protected, but you can select fromAttribute.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 89

Case Study: System Requirements Definition and Analysis

Figure 112: All tests pass (Phase 3)

Figure 112 shows the successful start up of the system with all tests
modeled and passing. I removed some of the state condition marks on the
generated sequence diagram to shorten it a bit.

Let’s together do one more scenario. In this scenario, we’ll start the system
running, but before we signal the system to proceed (by generating the
startSystem event), we’ll set the hydraulic system to have an error. We
ll do this by sending the event setFault to the aSE_Aircraft_Hydraulics actor
block after we start the system. We want to ensure that the system
properly detects the error and reports it to the AMS.

Run the simulation by clicking on the Go button on the animation toolbar. If
you don’t have an animated sequence diagram open to capture the flow,
open one with the Tools > Animated Sequence Diagram menu option,
selecting one of the sequence diagrams in the FunctionalAnalysisPkg >
StartUpPkg > StartUpBBScenariosPkg package.

Right click on the :aSU_Aircraft_Hydraulics lifeline on the animated
sequence diagram and select Generate Event. In the drop down box, select
the setFault event and click on Generate. Then, in the Generate Event
dialog box, select the aSU_AMS object and generate the event startSystem.
It should generate something like Figure 113. Note that I added the System
Border lifeline so that the scenario shows the user-entered events. The
resulting scenario is shown in Figure 114. This figure has also been edited a
bit to remove some condition marks and comments were added.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 90

Case Study: System Requirements Definition and Analysis

Figure 113: Entering the setFaults event to simulate error

Figure 114: Cold Start Up with hydraulic test failure

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 91

Case Study: System Requirements Definition and Analysis

Now, on your own, generate the sequence diagrams for the case where the
SW integrity fails and one for when the Power System fails.

We have now completed the black box analysis of the Start up use case. We
did this using an incremental approach following the system function-based
approach outlined in Figure 53. We have traceability from the use case to
the requirements, but we have not added more detailed traces from the use
case block value properties, event receptions, and operations to the
requirements.

Let’s now move on to the second use case we will study.

7.4 Analyze the Control Air Surfaces Use Case
This use case is considerably more complex than the previous use case and
so its analysis will require correspondingly more detail.

This use case will be analyzed using the interaction-based (or scenario-
based) approach from Figure 4. A detailed look at the workflow is shown in
Figure 115.

Figure 115: Detailed Work Flow for Scenario-Based Use Case Analysis

7.4.1 Create Use Case Functional Analysis Model Structure
The SE-Toolkit provides a handy tool for the creation of the internal package
structure for the Control Air Surfaces use case analysis within the
FunctionalAnalysisPkg package. Right-click on the use case in the browser
and select SE-Toolkit > Create System Model from Use Case (Figure 116).

In a fully formed systems engineering model, all normative model
elements have descriptions and all elements have trace relations. If a
value property, an event reception, and two operations all trace to a
single requirement, then you should add these relations.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 92

Case Study: System Requirements Definition and Analysis

Figure 116: Using the Create System Model from Use Case tool

Similar to our use of this tool for the Start Up use case, the tool creates a
package called ControlAirSurfacesPkg and then populates it with the
appropriate blocks for the use case and actors, creates the appropriate links
and even creates a new internal block diagram (IBD) showing the use case
execution context. The ControlAirSurfaceExecutionScopePkg also contains
a new component named Control_Air_SurfacesSim for building the
executable model (to come later). The fully elaborated package structure for
this functional analysis package is shown in Figure 117.

Figure 117: ControlAirSurfacePkg structure

The IBD created by the toolkit and subsequently beautified manually is
shown in Figure 118.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 93

Case Study: System Requirements Definition and Analysis

Figure 118: Beautified Control Air Surfaces Use Case Execution Context IBD

7.4.2 Create Scenarios

Since we are using the Scenario-based use case analysis strategy from Figure
4, the next thing to do is start creating scenarios of interest. This strategy is
appropriate when

• working with non-technical stakeholders to identify or explore the
requirements

• the use case is primary interaction-based, that is, the focus of the
use case is on the interaction of the system and its actors rather
than on internal functionality

The SE Toolkit provides a tool for creating new scenarios that share a
common lifeline structure. If you used the Create System Model From Use
Case tool previously, then the SE Toolkit already created an activity view

under the use case (which it moved to its own package in the
FunctionalAnalysisPkg package). Right-click the Control Air
SurfacesBlackBoxView activity diagram under the use case Activity Views,
and select SE-Toolkit > Create Scenario. This diagram should look something
like Figure 119.

Figure 119: Created Scenario Diagram

Note that it has a template comment for you to elaborate information to
help readers understand the scenario you are about to enter.

Creating Good Scenarios: Best Practices
Almost everybody asks at this point “How do I know when I am done?” After
all, there are an infinite set of possible scenarios if you consider all
variations of sequence, timing, values, responses, and iterations. There are
several different answers to this question which are essentially equivalent:

• When every requirement allocated to the use case is expressed in at
least one scenario

• When all “interestingly different” flows have been captured

• When every path and action on defining activity diagrams or state
machines are represented

• When all the normal path, or “sunny day” scenarios are captured
AND all the exceptional, or “rainy day” scenarios are captured

We call such as set of scenarios, the minimal spanning set, as it fully
represents all the requirements of the use case.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 94

Case Study: System Requirements Definition and Analysis

Recommendations

 The point of scenarios is not to show internal functionality as much
as to show the interaction of the elements of interest. Thus,
messages between the use case and the actors will be modeled as
events (possibly carrying data) or flows. “Messages to self” in the
use case lifeline represent the execution of system functions.

 For sequences in which the flow is identical but the actual values
passed are different, it is enough to show a single scenario, but you
can add comments or constraints that show the range of values or
events that can participate. If the flows are different because the
values differ, then this warrants a new scenario.

 Start with the sunny day scenarios and once normal functionality is
established and understood, add rainy day scenarios.

 As you create the scenarios, you identify requirements that are
missing, incorrect, incomplete, or inaccurate. At that point, add the
new requirements into your textual requirements, allocate them to
the use case, and express them in one or more scenarios.

 Use events for discrete messages between the actors and the use
case and operations for system functions

 Use flows for continuous values.

• Most commonly, flows are only shown in the sequences at
the point at which the value changes

• For continuous flows, stereotype the flow as «continuous»
possibly within a continuous interaction fragment. Note:
you may have to right-click and check Show Stereotype on
the Display Options of the flows to see the stereotype after
you’ve added it.

 Most sequence diagram operators – such as loop, optional, and

alternative – are just a means by which multiple scenarios can be
represented on a single diagram. We recommend not nesting
interaction operators more than three levels deep or you risk
creating unreadable sequence diagrams.

Creating the First Sunny Day Scenario

Open the diagram you just created (if it’s not now open) and add the
description text to the comment to the upper left hand corner:

Use Case: Control Air Surfaces

Scenario: Scenario 1

Description:

Normal operation, no faults.

Preconditions:

System has passed self-tests without error. System

is in an Inactive condition (WARM state).

Post-conditions:

After cooling, the system goes to Inactive

condition.

Rename the diagram Control Air Surface Scenario 1. Draw the flows as
shown in Figure 120

Figure 120: Control Air Surfaces Scenario 1

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 95

Case Study: System Requirements Definition and Analysis

The scenario shows the recommended descriptive comment in the upper
left hand corner13 and the flows. The scenario starts out showing that the
aircraft power and hydraulics continuously providing energy and pressure.
Since they don’t vary in the scenario, showing these flow at the top of the
sequence is fine. Note that this is not the «continuous» provided by the
SysML profile (which only applies to ObjectNode, Pin, State, and Transition);
rather this is the one provided in the Harmony SE Profile.

When the AMS decides some or all of the control surface positions should
change, it sends an evUpdate_Positions(positions) message. The use case
then executes the Move_To(positions) system function and then responds
with its current status. The data elements positions and current_status are
identified and used here but are not detailed. We will detail them in the
logical data and flow schema.

These activities continue until the AMS disables the movement. This is
shown with the loop interaction operator. At that point, the use case enters
a Cooling period. After the cooling period is over, the system becomes
Inactive and notifies the AMS. The Cooling period is necessary to support
rapid restarts by the pilot (via the AMS), should that become necessary.

Creating the Second Sunny Day Scenario

The next sunny day scenario elaborates the first scenario. The system goes
operational, as before, but then is re-enabled during the cooling period.

13 Some people prefer to add this information in the description field of the features
dialog of the diagram. I prefer this because of its visibility. Either is ok.

To make this scenario shorter, we will abstract the parallel region of normal
operation into a separate sequence diagram and then reference on the
main scenario. To do this, complete the following steps:

 Create a new sequence diagram as before and name it Control Air
Surface Normal Operation Fragment.

 Add descriptive text to the comment:
Scenario: Fragment of normal

operations for Control Air Surface use

case

Description:

Just shows normal flow while moving

control surfaces

Preconditions:

System has entered normal control of

air surfaces

Post-condition:

System is in the process of

terminating normal control behavior

Invariants:

No errors are found

You should now have a diagram named Control Air Surface Normal
Operation Fragment that looks like Figure 121:

Note that I often define stereotypes is likely to be used
multiple places in the model, so I add a package at the
system level called CommonPkg and added those
stereotype there. In this case, the stereotype is provided by
the Harmony SE Profile.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 96

Case Study: System Requirements Definition and Analysis

Figure 121: Referenced Interaction Fragment

Now we can use this to build the second sunny day scenario.
 Create a new sequence diagram and name it Control Air Surface UC

Scenario 2
 Fill out the sequence diagram as shown.

o To add the reference to the normal operation fragment, add
an Interaction Occurrence from the toolbar. Once placed,
double click and select Control Air Surface Normal
Operation Fragment from the list of possible sequence
diagrams

o Notice the use of the CanTm() (cancelled timeout) message
following the first Cooling condition. That’s to indicate the
system timing was interrupted by an arriving
eventer_Operational_State message.

Figure 122: Control Air Surfaces UC Scenario 2

For the 3rd scenario, let’s try to start the use case up after the system has
failed its power on self test (as detailed in the Start Up use case analysis).
Repeat the scenario creation procedure as before to create the Control Air
Surface UC Scenario 3 sequence diagram.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 97

Case Study: System Requirements Definition and Analysis

Figure 123: Control Air Surface Scenario 3

For our final scenario in this example, let’s consider what should happen if
an accuracy or position error occurs in the critical flight control surfaces
when commanded to a new position. Both timing and accuracy errors are
treated the same, so it is enough to show a single scenario for both with a
constraint identifying the conditions that are consistent with the scenario.
In addition, sufficiently severe errors in power or hydraulic pressure can also
result in the system shutting down.

To show this scenario, we’ve used an interaction fragment called Control Air
Surface Unflyable Operation Fragment. First, here’s the main scenario.

Figure 124: Control Air Surfaces Scenario 4 main

The detail for the actual error handling and detection is shown in Figure
125.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 98

Case Study: System Requirements Definition and Analysis

Figure 125: Unflyable Interaction Fragment

At this point, you may autorealize the messages on the created sequence
diagrams and run the SE Toolkit > Ports and Interfaces > Create Ports and
Interfaces tool to add the event receptions and operations to the actor and
use case blocks. This is the outcome, as shown in the browser:

Figure 126: Interface details added for Control Air Surfaces Use Case

7.4.3 Creating the Logical Data and Flow Schema
There are many more scenarios that could be added. We’ll stop here in
interest of keeping the Deskbook short. Now we can proceed to the next
step in the process, which will be to create the logical data and flow schema
(which we will just call the “data schema” for short) for the values and flows
we’ve identified. The data schema will be placed in the

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 99

Case Study: System Requirements Definition and Analysis

FunctionalAnalysisPkg > ControlAirSurfacesPkg >
ControlAirSurfacesTypesPkg package. This package will contain block
definition diagrams (BDDs) showing the schema as well as the types and
their relations. Note that we are not identifying types internal to the system
at this point, but rather focused on the types that must be exchanged via
the interfaces defined for the use case block.

What data and flows can you identify from the scenarios we’ve identified?
The most obvious one is the data to set the positions of the control surfaces
that comes from the AMS (or in this case, the aCAS_AMS actor block) used
in the message evUpdate_Positions() and Move_To() system function in
Figure 120 and Figure 121. Also note the response of the evUpdate_Status()
message in response to that. What information should that pass back to the
AMS?

In discussion with the AMS stakeholders, we discover that they would like
to set all positions on every evUpdate_Positions() message, even if the
position hasn’t changed. Further, they stated that they would like the
following information back in the evUpdate_Status() message:

• For each control surface, its current commanded and measured
position, time when the measurement was taken, and the time
necessary to achieve that position from receipt of the movement
command

• For each failed control surface, its time of failure and whether the
control surface is currently operational or failed.

• The overall system state, such as operational, degraded, cooling,
warm, off, etc.

This new understanding of the needs of the AMS stakeholders should result
in new requirements. Indeed, this is one of the primary objectives of doing
the use case functional analysis – identify missing requirements. Thus, we
will add the following requirements to the requirements database and
allocate them to the current use case (this occurs in the Generate/Update
System Requirements task in the workflow shown in Figure 3). These new
requirements are:

In response to a movement command from the AMS, the

system shall respond with a status message that

provides the operational status for each control

surface as well as the overall system operational

state.

The operational status reported to the AMS for each

control surface shall include its current commanded

position, its current measured position, the time

of measurement, and the time required to enact the

movement command for that control surface.

Add these as functional requirements in the RequirementsAnalysisPkg >
RequirementsPkg > FunctionalReqs package. I named these requirements
FuncReq100 and FuncReq101. Be sure to add trace links from the Control
Air Surface use case to these requirements.

Figure 127: Adding trace links from new requirements to use case

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 100

Case Study: System Requirements Definition and Analysis

Note that this status information is likely related to the Update Status use
case, which periodically updates both the AMS and Pilot Display on a
periodic basis. We expect that the Update Status use case will also have to
send updates on the outcomes of periodic tests on hydraulics and power as
well. These additional messages are not a part of this (the Control Air
Surfaces) use case, so we can ignore them for now. When the
Update_Status use case is analysed in a subsequent iteration, those
additional needs will need to be merged together.

The data schema for the commanded positions and status placed are shown
in Figure 128.

Figure 128: Control Air Surfaces Use Case Data Schema

CAS_Surface_Positions contains an array of the IDs and positions for all the
surfaces. This data structure will be used later when we construct the
executable state machine for the use case block as the means by which the
aCAS_AMS actor sends commands to the use case block. The constant
NUMBER_OF_SURFACES is defined as

and the CAS_SurfaceID type is an enumerated type listing all of the control
surfaces.

What about surfaces that have trim tabs or extensible surfaces? These will
be modeled as having unique surfaceIDs and so can be separately
referenced.

The other interesting use of types is the use of «qualified» stereotype (from
the HarmonySE profile) which adds the tags of accuracy (how close the
measured value is to its true value) and precision (number of valid
significant digits). These are important aspects of the specification and will
drive downstream technology and design decisions. In this case, the
requirements state:

The precision of the commanded values shall be +/-

0.1 degrees of angle or +/- .1 cm of distance. The

range of accuracy of commanded and measured

positions achieved shall be +/- 0.5 degrees or

angle of 0.5 cm of distance.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 101

Case Study: System Requirements Definition and Analysis

So the precision tags of measured_position and commanded_position
attributes will be set to “+/- 0.1 degrees or cm”. The accuracy tag for these
attributes will be set to “+/- 0.05 degrees or cm.”

We are not now interested in the bit mapping of the exact types that will be
used in the developed system (the “physical data schema”) but rather its
logical properties. This is why this is called the “logical data schema”.
Physical data schema will be specified in the Handoff workflow.

7.4.4 Safety Analysis for Control Air Surfaces Use Case

As before, the approach we will take is to identify the hazards presented by
the use case and create a fault tree analysis for each. In this case, there is
only a single hazard we will consider: Unable to Control Surfaces. Right
click on the ControlAirSurfacesSafetyPkg package in the browser and add a
new FTA diagram. Name this diagram FTA for Unable to Control Attitude.
As before, switch the project to the Dependability profile and back to SysML
when this work is done.

Using the tools in the FTA diagram toolbar (Hazard Condition, Required
Condition, Transfer Operator, Logic Flow, AND operator, and OR operator),
draw the following FTA diagram.

Figure 129: FTA Diagram for Unable to Control Attitude

The transfer operators refer to analyses on other diagrams that logically
feeds into this diagram. Let’s create those other diagrams now.

In the browser, right-click FunctionalAnalysisPkg > ControlAirSurfacesPkg >
ControlAirSurfacesSafetyPkg > FTADiagrams and select Add New FTA
Diagram. Name this diagram Movement Too Slow FTA. Before we elaborate
the diagram, let’s link it to the proper transfer operator. In the first FTA
diagram, right-click the transfer operator Movement too slow and select
Add New -> Hyperlink. Click on the Target Name radio button to show the
name of the master FTA diagram and use the drop down list to select that
original FTA diagram from the list. Click OK and then Click OK again to forge
the link.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 102

Case Study: System Requirements Definition and Analysis

Figure 130: Linking FTA diagrams with transfer operators

Now, when you right-click on the transfer operator, there will be an option
to select Hyperlink > Movement Too Slow FTA. Use that hyperlink now to
open and navigate to the empty FTA diagram.

At the top of this diagram add a new transfer operator and name it
Movement Too Slow Outcome. Repeat the hyperlink steps above to link
this operator with the master diagram FTA for Unable To Control Attitude.
We now have bi-directional hyperlink navigation between the two
diagrams. We will do the same for the other three FTA to come to a have a
linked set14.

Now fill out the rest of the diagram as shown in Figure 131.

14 You can accomplish the same thing using Resulting Condition operators as well.
This is normally used for reusable causality “subroutines” of small interactions
resulting in a condition that will be reused in many FTAs while Transfer operators
are normally used in the decomposition of a single FTA.

Figure 131: Movement Too Slow FTA

The way to interpret Figure 131 is that an outcome of Movement Too Slow
can result any of from independent conditions:

1. The system is using hydraulics for movement AND (either the input
hydraulic pressure is too low OR the system has a hydraulic leak OR
there is a fault in determining the actual movement command), OR

2. The system is using an electric motor for movement AND (there is a
fault in either the electrical power system OR in the motor itself OR
there is a fault in determining the actual movement command), OR

3. Something is obstructing the free movement of the control surface
OR there is a fault in the mechanical linkage of the surface to the
moving force, OR

4. The system was delayed in processing the command

These ORed conditions that can manifest a hazard are commonly known as
cut-sets. The purpose in doing this analysis is to identify where safety
control measure should be added to improve the safety of the system.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 103

Case Study: System Requirements Definition and Analysis

To create the next few diagrams, you can reuse fault elements, such as
Hydraulic Input Pressure Low by dragging them from the browser onto a
new diagram. Remember, however, you must not reuse the logical
operators (AND, OR, NOT, NAND, NOR, XOR, or Transfer); these operators
have identity and if you attempt to reuse them, while the diagrams with
look ok, you will mess up the causality relations.

Using a similar approach, create the next three diagrams and link them bi-
directionally with hyperlinks to the original FTA For Unable to Control
Attitude diagram.

Figure 132:Movement Inaccurate FTA

Figure 133: Unable to Station keep FTA

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 104

Case Study: System Requirements Definition and Analysis

Figure 134: Cannot Process Movement Command FTA

The next step is to use the FTA diagram to reason about the safety and
reliability of the system; especially the what, when and where of the use of
safety control measures. For the sake of brevity, we will only update one of
the five FTA diagrams we just created. In a real system design, you would
perform this work for all FTAs.

All safety control measures either make the hazard condition less likely or
less severe. The easiest to model is the former; this approach leads to the
identification of ANDing conditions for the fault logic flows. They are named
such because both, the original fault AND the fail of the safety control
measure must occur, in order to manifest a fault. The likelihood of two
independent faults is the product of the likelihood of each separate fault. So
if the likelihood of fault A occurring is 10% (0.10) and the likelihood of the
safety measure failing is 5% (0.05), then the likelihood of both occurring is
0.5% (0.005). The identification of the need for safety measures then
results in safety requirements which are added to the requirements
specification and allocated to the use case under analysis.

In the case of this system, there are certainly opportunities to add safety
measures. Let’s consider each of the ORed conditions in Figure 132
(Movement Inaccurate) separately. If we make each of the ORed conditions
less likely, we improve the system safety with respect to their underlying
fault conditions. To improve readability, we’ll create a separate diagram to
analyze each ORed condition rather than create a (much) larger single
diagram.

First, let’s consider the Hydraulic Fault Resulting Condition. In this case, the
system is relying on the aircraft hydraulics for pressure and then distributing
that pressure internally to move some of the control surfaces. Due to
weight limitations (separate analysis, not shown here), we cannot create a
fully redundant hydraulic system, so we decide that it is enough to detect

A hint for resizing elements (especially the logic operators)
on the FTA diagrams – hold the SHIFT key down while
resizing to maintain the same aspect ratio.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 105

Case Study: System Requirements Definition and Analysis

that low input pressure or internal leaks and report them to the AMS. The
other Basic Fault is that the hydraulic command for movement is incorrect
to achieve the desired position. Add the new Basic Faults, logic operators,
Safety Requirements, and traceToReqs relations to the model. Figure 135
shows the resulting FTA.

Figure 135: Hydraulic Fault Safety Measures FTA

We can see that we’ve (indirectly) added safety measures because the new
Basic Faults (indicated with the red dots overlaid onto the Basic Fault15)
refer to what happens when those safety measures fail. You can also see
that we’ve added new safety requirements with appropriate trace links:

15 I’m not recommending putting red dots on the icons – this is just to show them in
this Deskbook.

• The system shall be able to detect hydraulic leaks

that result in a significant reduction in the

ability to move control surfaces.

• The system shall report a hydraulic low input

pressure fault to the AMS

• System fault report messages shall be send

reliably to the AMS, using up to 10 retry attempts

if delivery cannot be verified.

• The system shall detect if the input hydraulic

pressure from the aircraft is below the acceptable

threshold.

• All commands to move systems hydraulically shall

be verified that given the input pressure is

adequate to result in the desired movement.

• All hydraulically controlled surfaces shall have a

readable configuration that specifies the pressure

required to move the surface within appropriate

movement parameters.

These requirements must be added to the requirements specification. In the
RequirementsAnalysisPkg > RequirementsPkg add a new package named
SafetyReqs and add them there. Add trace links to the Control Air Surfaces
use case. This is most easily done in the
AirSurfaceControlSystemUseCaseRequirementsMatrix in the
RequirementsAnalysisPkg package. The identification of the safety
measures and corresponding requirements is the point of doing this safety
analysis within the use case functional analysis.

Next, let’s apply the same reasoning to the Resulting Condition of Electrical
Fault (Figure 136).

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 106

Case Study: System Requirements Definition and Analysis

Figure 136: Electrical Fault Safety Measures

This work has resulted in several more requirements that will be added to
the specification and linked to the use case.

Now let’s look at the condition of Control Surface Configuration Fault. In
this case, we’ll add safety measures to verify the command by returning the
command value, once set, to the Maintainer actor for verification. We’ll
also protect the configuration data by storing it redundantly, and check that
the configuration data is not corrupted prior to its use. If found to be
corrupted, the corresponding control surface is marked as disabled, and the
AMS is notified. That results in the FTA shown in Figure 137:

Figure 137: Control Surface Configuration Fault Safety measures

Movement Command Error is considered a basic fault but really is that the
command from the AMS was corrupted, referenced an invalid Control
Surface ID, or commanded a position that was out of its range (as
determined by the configuration for that control surface). As for Surface
fault, that refers to mechanical damage to the control surface itself. In this
case, we increase safety by improving the reliability of the control surface.
We’ll handle that by specifying the MTBF of the control surface materials
and provide a specification of resistance to impact force. This results in an
update to Figure 132. The result is shown in Figure 138.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 107

Case Study: System Requirements Definition and Analysis

Figure 138: Movement Command Error Safety Measures FTA

Lastly, for the Surface Movement Inhibited Resulting Condition we have
decided that proper maintenance should identify and repair these concerns
adequately, so no new requirements are necessary.

As a result of the fault tree analysis, we have identified a number of safety
concerns and identified a total of 22 new safety requirements which are
added to the requirements specification and allocated to the Control Air
Surfaces use case. These should be placed in the RequirementsPkg, traced
to the Control Air Surfaces use case, modeled in (new) scenarios and will
be represented in the state machine (coming up next).

7.4.5 Create the Control Air Surfaces Use Case State Machine (and
execute it too!)

The next step in the process workflow (Figure 115) is to construct the state
machine. The best way to construct such a state machine is incrementally.
Although the process flow in Figure 115 shows the state machine being
created and then in the next step being executed, actual practice has shown
that it is best to construct the state machine in a series of small steps and
use execution at each step to ensure that it is right so far before adding
more state machine elements. This is such an important idea, let’s call it out
in a side note:

In this example, we will just show the state machine in multiple stages:

1. Command received results in movement of a set of control surfaces
2. Commanded movement is out of range
3. Movement is inaccurate or too slow
4. Faults are detected at run-time in specific surfaces

We’ll start with a simple sunny day case and get that state machine running
(simulated, of course). Then, we’ll progressively add more error states,
conditions, and events. At each stage, we’ll add state behavior to model
some more requirements.

7.4.5.1 Stage 1: Sunny day control surface movement

Let’s add a state machine to the use case block Uc_ControlAirSurfaces.
Figure 139 shows the state machine. It looks trivially easy – so, it should be
a snap to get it to run.

The best way to construct a possibly complex state machine
is in a series of small steps – called nanocycles – wherein the
state machine correctness is verified at the end of each step.
These steps typically take between 10 and 60 minutes to
complete.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 108

Case Study: System Requirements Definition and Analysis

Figure 139: Control Air Surfaces use case state machine step 1

It turns out that it’s not quite so trivially easy. The event
evUpdate_Positions passes the set of surface command positions using the
CAS_Surface_Positions data structure shown in Figure 128. So we’ll have to
add the parameter to the event and write a small number of functions to
manipulate that data in order to get the execution working.

The act of drawing the event on the state machine creates the event. To add
the parameter to the event, locate the event in the browser at
FunctionalAnalysisPkg > ControlAirSurfacePkg >
ControlAirSurfacesInterfacePkg. Double click on the evUpdate_Pos event
to open its Features dialog. On the Arguments tab, add an argument sp. Use
the type pull down list followed by the Select option to select its type
CAS_Surface_Positions.

We need to add some actions to support getting and setting these
attributes. Because the multiplicity of the composition relation between the
CAS_Surface_Positions block and the CAS_Surface_Position block (shown
in Figure 128) is more than one and fixed, Rhapsody generates an array to
hold the values. This is suitable for our purposes (simulation).

We will define three operations to access the individual elements of the
array:

• getSurface_Position(id: CAS_SurfaceID): CAS_Surface_Postion

• setSurface_Position(id: CAS_SurfaceID, pos:int)

• setSurfaceID(id:CAS_SurfaceID): void

The next three figures provide the implementation of those operations:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 109

Case Study: System Requirements Definition and Analysis

These operations allow an element with a pointer to a
CAS_Surface_Positions instance to access individual surface position values.

Now, we will “instrument the actor” by adding state machine behavior to
the aCAS_AMS actor block, so that it sends the event (along with values for
the sp argument) to the use case block.

First, let’s add four value properties to the actor block, named zero,
positionSet1, positionSet2, positionSet3. Each of these should be of type
CAS_SurfacePositions. Then create the state machine for the aCAS_AMS
actor block. We will add new events that we will use to drive the simulation,
evZero, evPos1, evPos2, and evPos3. Each will cause a transition to a Send
Event that sends the evUpdate_Positions with the appropriate argument, to
the port pUc_ControlAirSurfaces. At run time, this port will be connected to
a corresponding port on the use case block, so it will receive these events
and arguments to act on.

For example, the evZero event will active the Send Action with the event
evMovement carrying the data &zero to the port pUc_ControlAirSurfaces:

Figure 140: Adding parameters to the Send Action invoked by the evZero event

We’ll repeat this for the other three events, each sending a different
attribute. When complete, the state machine for the actor block should look
like Figure 141.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 110

Case Study: System Requirements Definition and Analysis

Figure 141: aCMS_AMS State Machine step 1

Note that we use “&” before the parameter name in Figure 140 because by
default Rhapsody sends complex structures as a pointer, so we must pass
the address of the attribute to get to its values.

To complete the work on the actor block, we should assign values to the
control surface positions that we’re going to send to the use case block.
We’ll do that in the setUpPositions() operation shown in Figure 141.

In the browser, right click on the aCAS_AMS actor block and select Add New
-> Operation. Name this operation Setup_Positions. On the implementation
tab of the features dialog, add the following implementation:

// set up the positions sets up to the Right_Inboard_Aileron (first 10

surfaces)

zero.setSurface_Position(Left_Ground_Spoiler, 0);

zero.setSurfaceID(Left_Ground_Spoiler);

zero.setSurface_Position(Right_Ground_Spoiler, 0);

zero.setSurfaceID(Right_Ground_Spoiler);

zero.setSurface_Position(Left_Flight_Spoiler, 0);

zero.setSurfaceID(Left_Flight_Spoiler);

zero.setSurface_Position(Right_Flight_Spoiler, 0);

zero.setSurfaceID(Right_Flight_Spoiler);

zero.setSurface_Position(Upper_Rudder, 0);

zero.setSurfaceID(Upper_Rudder);

zero.setSurface_Position(Lower_Rudder, 0);

zero.setSurfaceID(Lower_Rudder);

zero.setSurface_Position(Lower_Rudder, 0);

zero.setSurfaceID(Left_Elevator);

zero.setSurface_Position(Left_Elevator, 0);

zero.setSurfaceID(Right_Elevator);

zero.setSurface_Position(Right_Elevator, 0);

zero.setSurfaceID(Left_Inboard_Aileron);

zero.setSurface_Position(Left_Inboard_Aileron, 0);

zero.setSurfaceID(Right_Inboard_Aileron);

zero.setSurface_Position(Right_Inboard_Aileron, 0);

// set up postionsSet1

position_set1.setSurface_Position(Left_Ground_Spoiler, 1);

position_set1.setSurfaceID(Left_Ground_Spoiler);

position_set1.setSurface_Position(Right_Ground_Spoiler, 2);

position_set1.setSurfaceID(Right_Ground_Spoiler);

position_set1.setSurface_Position(Left_Flight_Spoiler, 3);

position_set1.setSurfaceID(Left_Flight_Spoiler);

position_set1.setSurface_Position(Right_Flight_Spoiler, 4);

position_set1.setSurfaceID(Right_Flight_Spoiler);

position_set1.setSurface_Position(Upper_Rudder, 5);

position_set1.setSurfaceID(Upper_Rudder);

position_set1.setSurface_Position(Lower_Rudder, 6);

position_set1.setSurfaceID(Lower_Rudder);

position_set1.setSurfaceID(Left_Elevator);

position_set1.setSurface_Position(Left_Elevator, 7);

position_set1.setSurfaceID(Right_Elevator);

position_set1.setSurface_Position(Right_Elevator, 8);

position_set1.setSurfaceID(Left_Inboard_Aileron);

position_set1.setSurface_Position(Left_Inboard_Aileron, 9);

position_set1.setSurfaceID(Right_Inboard_Aileron);

position_set1.setSurface_Position(Right_Inboard_Aileron, 10);

// now for postionSet2

position_set2.setSurface_Position(Left_Ground_Spoiler, -1);

position_set2.setSurfaceID(Left_Ground_Spoiler);

position_set2.setSurface_Position(Right_Ground_Spoiler, -2);

position_set2.setSurfaceID(Right_Ground_Spoiler);

position_set2.setSurface_Position(Left_Flight_Spoiler, -3);

position_set2.setSurfaceID(Left_Flight_Spoiler);

position_set2.setSurface_Position(Right_Flight_Spoiler, -4);

position_set2.setSurfaceID(Right_Flight_Spoiler);

position_set2.setSurface_Position(Upper_Rudder, -5);

position_set2.setSurfaceID(Upper_Rudder);

position_set2.setSurface_Position(Lower_Rudder, -6);

position_set2.setSurfaceID(Lower_Rudder);

position_set2.setSurfaceID(Left_Elevator);

position_set2.setSurface_Position(Left_Elevator, -7);

position_set2.setSurfaceID(Right_Elevator);

position_set2.setSurface_Position(Right_Elevator, -8);

position_set2.setSurfaceID(Left_Inboard_Aileron);

position_set2.setSurface_Position(Left_Inboard_Aileron, -9);

position_set2.setSurfaceID(Right_Inboard_Aileron);

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 111

Case Study: System Requirements Definition and Analysis

position_set2.setSurface_Position(Right_Inboard_Aileron, -10);

// and some out of range values for position_set3

position_set3.setSurface_Position(Left_Ground_Spoiler, 100);

position_set3.setSurfaceID(Left_Ground_Spoiler);

position_set3.setSurface_Position(Right_Ground_Spoiler, 45);

position_set3.setSurfaceID(Right_Ground_Spoiler);

position_set3.setSurface_Position(Left_Flight_Spoiler, -100);

position_set3.setSurfaceID(Left_Flight_Spoiler);

position_set3.setSurface_Position(Right_Flight_Spoiler, -50);

position_set3.setSurfaceID(Right_Flight_Spoiler);

position_set3.setSurface_Position(Upper_Rudder, 47);

position_set3.setSurfaceID(Upper_Rudder);

position_set3.setSurface_Position(Lower_Rudder, -60);

position_set3.setSurfaceID(Lower_Rudder);

position_set3.setSurfaceID(Left_Elevator);

position_set3.setSurface_Position(Left_Elevator, -33);

position_set3.setSurfaceID(Right_Elevator);

position_set3.setSurface_Position(Right_Elevator, -92);

position_set3.setSurfaceID(Left_Inboard_Aileron);

position_set3.setSurface_Position(Left_Inboard_Aileron, 150);

position_set3.setSurfaceID(Right_Inboard_Aileron);

position_set3.setSurface_Position(Right_Inboard_Aileron, -1500);

This implementation only sets the ids and position values for the first 10
surfaces. If you want to be more complete and set all 36, feel free to do so.

The last thing we need to create before we can run the model is to
implement the Move_To(params->sp) operation used in Figure 139.

To do this implementation, we will create smaller functions to assist.
Move_To () will call Set_Position() for each surface. Set_Position(), in turn,
sets a local attribute position_set (of type CAS_Surface_Positions) with the
passed values. For debugging, we’ll also print the values out to standard
output so that we can visually see what’s going on.

1. Create the position_set attribute

In the browser, right click on the use case block Uc_ControlAirSurfaces and
select Add New -> Value Property. Name the attribute position_set and
specify its type as CAS_Surface_Positions. This attribute will hold the
positions of the surfaces.

2. Create the Move_To operation
In the browser, right click on the use case block Uc_ControlAirSurfaces and
select Add New -> Operation. Name the operation Move_To. In the
aguments tab of the operation features dialog, add an argument positions.
Double click on the argument name to open its Features dialog. In this
Features dialog, deselect the Use Existing Type checkbox and type in:
CAS_SurfacePositions* as the declaration (don’t omit the trailing ‘*’ which
identifies the element as a pointer to a type):

Click OK to return to the operation features dialog. In the implementation
tab of the Move_To features dialog, enter the following implementation:

Rhapsody uses the slightly odd params syntax to pass event
arguments. To reference a value passed as an argument in
an event, Rhapsody creates a struct called params and
makes all the pass arguments fields of that struct. See
Section Appendix: Passing Data Around in Rhapsody for
C++12 for more details on this.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 112

Case Study: System Requirements Definition and Analysis

Since the image is a bit small, here is the implementation a bit larger:

// update local copy (for later simulated behavior)

Set_Position(Left_Ground_Spoiler, positions->

 getSurface_Position(Left_Ground_Spoiler).getCommanded_position());

Set_Position(Right_Ground_Spoiler, positions->

 getSurface_Position(Right_Ground_Spoiler).getCommanded_position());

Set_Position(Left_Flight_Spoiler, positions->

 getSurface_Position(Left_Flight_Spoiler).getCommanded_position());

Set_Position(Right_Flight_Spoiler, positions->

 getSurface_Position(Right_Ground_Spoiler).getCommanded_position());

Set_Position(Upper_Rudder, positions->

 getSurface_Position(Upper_Rudder).getCommanded_position());

Set_Position(Lower_Rudder, positions->

 getSurface_Position(Lower_Rudder).getCommanded_position());

Set_Position(Left_Elevator, positions->

 getSurface_Position(Left_Elevator).getCommanded_position());

Set_Position(Right_Elevator, positions->

 getSurface_Position(Right_Elevator).getCommanded_position());

Set_Position(Left_Inboard_Aileron, positions->

 getSurface_Position(Left_Inboard_Aileron).getCommanded_position());

Set_Position(Right_Inboard_Aileron, positions->

 getSurface_Position(Right_Inboard_Aileron).getCommanded_position());

Print_Line();

This operation calls Set_Position for each (of the first 10) positions and then
finishes with a call to Print_Line() to send an extra line feed to standard
output.

3. Create Set_Position operation

This and the Print_Pos operation are here to assist in the control and
visualization of the simulation. As such, they do not represent requirements.
The HarmonySE profile contains a stereotype to mark such elements:

«nonNormative». It indicates elements that do not represent a part of a
specification per se and so do not represent requirements or design. All
such elements should be so marked.

Repeat the previous procedure for adding a new operation to the
Uc_ControlAirSurfaces block. This type, name the operation Set_Position
and give it two parameters. The first, id, is of type CAS_SurfaceID. The
second, pos (of type int) is the position value to set.

In the implementation tab, add the implementation:

4. Add the Print_Pos operation
This operation is meant to print the values for debugging. As before, add the
new operation to the use case block and give it the same parameter list as
the Set_Position() function. For implementation, just add the following:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 113

Case Study: System Requirements Definition and Analysis

std::cout << "Surface " << id << " at position " << pos << std::endl;

I’m implementing this model with the Cygwin compiler. It requires the std::
prefix on cout and endl applicators. If you’re using another compiler, such as
older versions of Microsoft Visual C++, you might need to use the line
without the prefix:

cout << "Surface " << id << " at position " << pos << endl;

5. Add the Print_Line operation

This is a very simple function that just adds a blank line between sets of
outputs. Add the new operation as before but don’t give it any arguments.
Specify the implementation as

std::cout << std::endl;

We are now ready to run!

Running the model
If you’ve entered all the model correctly so far, and Rhapsody is correctly
configured to operate with your compiler, clicking on the GMR
(Generate/Make/Run) button (or Simulate) button with generate code the
model code, run the compiler and linker to generate an executable, and
then run that executable.

Run the model and click on the Go Idle on the Execution control toolbar of
Rhapsody. We’ll now open three debugging windows in Rhapsody so we can
view the execution. The instance statecharts for the running instances of
the Uc_ControlAirSurfaces and aCAS_AMS blocks, and an animated
sequence diagram.

To open the instance statecharts, in the browser, navigate to those blocks.
In each you should see an Instances group under the block. Click on the ‘+’
to see the instances and then right click on the instance and select Open
Instance Statechart for each. Rhapsody has a useful filter for the browser
under such circumstances. When a model is simulating, Rhapsody provides
an Animation Browser Filter to show only elements related to the
simulation.

To create an animated sequence diagram, click on the Rhapsody Tools menu
and select Animated Sequence Diagram. Rhapsody will present you with a
mini-browser to select the sequence diagram to use as a basis. Select one of
the sequence diagrams we’ve created earlier.

I recommend you open an event insertion window. To do this, you can click
on the event generator button on the execution toolbar.

Now arrange the windows how you like. I prefer an arrangements such as
Figure 142.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 114

Case Study: System Requirements Definition and Analysis

Figure 142: Running Step 1

In the event generator dialog, select the prtAMS instance (it may be at the
bottom of the list of instances created). Select an event to run, say evPos3
and click on Generate. If the model is not now running, you can click on
either the Go or Go Idle buttons to step the model through the processing of
the event. Rhapsody will run the model and show you the current and last
states of the state machines, the messages on the sequence diagram, and
the output sent to your computer’s standard output.

Figure 143: Event processing

You can explore the model execution by sending the events in different
orders to satisfy yourself that it is properly representing the requirements
you’ve modeled.

This may seem like a lot of work but most of the simulation support work is
done and we can spend more mental focus on adding the remaining
requirements.

There are more requirements to add, so we’ll do some more nanocycle
iterations:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 115

Case Study: System Requirements Definition and Analysis

Step 1: Receive movement command and enact it in simplest case
(complete)
Step 2: Validate command ranges
Step 3: Validate resulting movement and timing
Step 4: Handling requirements about warm and cold restarts
Step 5: Manage “flyable” operational state with surface faults

Step 2: Validate command and validate resulting movement and timing

Adding the requirements around validating the commands is
straightforward but requires a number of small additions to the model.
=

• We’ll use the CAS_Surface_Position value properties low_range,
high_range, and measured_position.

• To CAS_Surface_Positions, we’ll add an operation to set the surface
ranges for individual surfaces

and we’ll add an isInRange(): RhpBoolean function to see if a
commanded position is between the low and high range limit for a
particular surface

• To the Uc_ControlAirSurfaces use case block, we’ll add an
Initialize_Surfaces operation to set the values of the surfaces. This
operation will be invoked when we start the state behavior.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 116

Case Study: System Requirements Definition and Analysis

• We’ll also update the use case block operation setPosition to check
the range before assigning the value, and issue an error message if
not

You’ll notice that this function calls a new operation called
Print_Error in the use case block as well to send that information to
standard output:

• If you recall, the actor block aCAS_AMS is already set up with zero,
position_set1, position_set2 and position_set3 surface position
sets. All but position_set3 have in-range values but position_set3

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 117

Case Study: System Requirements Definition and Analysis

has out of range values. We can now run the model and send the
events evPos2 and evPos3 to the actor to ensure that good values
pass and bad values are detected.

• We must also update the state machine for the aCAS_AMS actor
block to receive the event evRangeError, which passes the surface
ID and the commanded value.

• Next, edit the event evRangeError to add the parameters (the event
will be in the ControlAirSurfacesActorPkg package:

• And, finally, we add the event evRangeError to the interface
iUc_ControlAirSurfaces_aCAS_AMS

Notice that the evUpdate_Positions event is provided while the
evRangeError event is required. This is done in a couple of steps

o First, in the Features dialog for the event, add the
stereotype directedFeature to the event.

o Next, in the features dialog for the
iUc_ControlAirSurfaces_CAS_AMS interface block
operations tab, set the direction of the event flow in the
Feature Direction field.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 118

Case Study: System Requirements Definition and Analysis

o In the features dialog for the Uc_ControlAirSurfaces use
case block, make sure the evUpdate_Positions event is
provided

o Finally, in the actor block CAS_AMS, set the direction for
the evRangeError to be provided (remember, it is required
in the interface, and this is the conjugated end of the
connection).

We won’t model the movement of the surface itself since requirements are
not about how something is achieved but rather what must be achieved.
For our purpose, it is enough to ensure results that are in or out of range

Having trouble getting your objects to communicate?
Sometimes, the model compiles and runs but messages sent
from one object to another don’t seem to arrive. Things to
check:

• Is the event in the interface?

• Is the event or call stereotyped as a directedFeature?

• Are the ports marked as behavioral?

• Is the event direction provided where it will be
processed?

• Is the event in the interface block provided for the
unconjugated end if acted on by that instance?

• Is the event in the interface block required for the
conjugated end if acted on by that instance?

• Is there link between the ports on the different
instances?

• Are you sure you’re looking at the right instances?
There may be multiple instances of a block.

• Try going to the folder that has the generated code and
object files (a subdirectory of your model folder) for the
configuration you’re using, delete all the code and
object files there and completely regenerate.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 119

Case Study: System Requirements Definition and Analysis

and ensure that the externally visible behavior (such as reporting errors)
meets both our needs and the requirements.

We’ll need to add some behavior to set up these configuration values for
the purpose of simulation support even though that behavior is actually part
of the Configure System use case. Because we are adding it just to support
simulation, we’ll label it with the «nonNormative» stereotype from the
HarmonySE profile to indicate that this isn’t a requirement here but is just
here to facilitate the simulation.

Now we can run the simulation. Let’s send evPos2 followed by evPos3 to
the actor block. The standard output window should look like this

You can see that the first set of values worked fine, while the second set
resulted in errors, just as expected.

Step 3: Ensure Accuracy and Timing
Remember that we’re not really interested in moving the surfaces here. We
are focused on ensuring that the requirements are complete, consistent,
accurate, and correct (and capturing the logical interfaces). Requirements
focus on externally visible aspects of the system such as when behavior
works correctly or incorrectly that this results in proper externally visible
outcomes. For example, we have requirements about the accuracy and
timing of position movement and if these are violated, the system is
expected to notify the AMS actor of this fault. That interaction should be
captured in our requirements model even though we’re not actually
designing the movement of the surfaces.

To simulate this, we need to add structure and behavior to the use case
block to represent the measured position and the time required to
complete the movement. Those properties will need to be added to the
CAS_Surface_Position block. We’ll also need to add an operation to the
CAS_Surface_Positions block to get that information from each surface.

You can see that we’ve added a measured_position value. This will simulate
the position actually achieved. The commanded_position value holds the
commanded position.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 120

Case Study: System Requirements Definition and Analysis

Note that we used the Second unit type from the SysML profile model
library. To set the value property to be of this type, in the features dialog for
the value property time_to_achieve_position, in the Type drop down list,
click on Select and navigate to Profiles > SysML > SIDDefinitions >
BaseSIUnits.

These movements may take some time, so we’ll modify the use case block
state machine to check the positions once they’re done.

I used a timeout to drive the transition although arguably it should be driven
by the completion of the movement. However, I’m not trying to design the
internal system functionality, but rather to provide the appearance of doing
so to the actors. The timeout is a very simple means to disconnect setting
the positions from subsequently checking the outcomes.

The normal behavior of Set_Positions sets the value commanded_position
of the surface (and really, would normally set measured_position to the
same value). The Check_Movement operation must check the acquired
position against the commanded position as well as check the timing of the
movement.

We also need to add the Check_Position operation to the
Uc_ControlAirSurfaces use case block. This takes a single parameter, the
surface id:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 121

Case Study: System Requirements Definition and Analysis

The implementation – if too small to read – is:

// checks the position and timing for an individual surface

// only sends a message if if finds a problem

if (!Is_Equal(position_set.getSurface_Position(id).getCommanded_position(),

 position_set.getSurface_Position(id).getMeasured_position(), 1)) {

 // send error message about accuracy

 OUT_PORT(paCAS_AMS)->GEN(evPositionError(id,

position_set.getSurface_Position(id).getMeasured_position()));

 Print_Error("Accuracy error", id);

};

if (position_set.getSurface_Position(id).get_time_to_achieve_position() > 3.0) {

 // send error message about timing

 OUT_PORT(paCAS_AMS)->GEN(evTimingError(id,

position_set.getSurface_Position(id).getTime_to_achieve_position()));

 Print_Error("Timing error", id);

};

To compare two values, let’s add an Is_Equal operation to the use case
block that accepts three RhpReal parameters (a, b, and tolerance), and
returns TRUE if the difference between the first two values is less than the
tolerance:

 return abs (a-b) <= tolerance;

So if the tolerance is, say 1 and we have a commanded position of 18 and a
measured position of 19, the values would be said to be equal.

We must also update the aCAS_AMS actor block state machine to receive
the evPositionError and evTimingError events:

The Check_Movement operation will also have to check the timing. The
attribute time_to_achieve_position will be generally be set to a passing
value, but we want the ability to set it to a failing value when necessary.

The last thing we must do is set the values of measured_position and
time_to_achieve_position for the surfaces. We’ll do this by modifying the
Uc_ControlAirSurfaces use case block. Nominally, we’ll just set the
measured position to be the same as the commanded position and the time
to a short value, such as 0.25s. We also want to generate position and
timing errors, so we’ll add new values in the use case block: position_error
(of type int) and timing_error (of type Second or double). We’ll modify
Set_Position to add these values to measured_position and
time_to_achieve_position, respectively. When we’re running, we can

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 122

Case Study: System Requirements Definition and Analysis

change these values and thereby simulate error conditions. These
attributes are only here to support the simulation per se and not represent
requirements. Therefore they are non-normative and are stereotyped as
such.

The updated Uc_ControlAirSurfaces::Set_Position operation now looks like
this:

We also add setMeasured_Position and setTime_to_achieve_position
operations to the CAS_SurfacePositions block (note the argument lists):

We can modify the values of attributes as we run the model, but let’s add
events to the use case block state machine to set both position and timing
errors to make the simulation a little easier:

The event used above to set and remove error conditions should be
sterepotyped as nonNormative.

You must add the arguments to the events evPositionError and
evTimingError.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 123

Case Study: System Requirements Definition and Analysis

Don’t forget to add the events evPositionError and evTimingError to the
interface iUc_ControlAirSurfaces_aCAS_AMS and make them directed
features (direction: required), as we did for the evRangeError event (not all
event receptions are shown):

Let’s now compile and run the simulation with the following case:

• Actor block pos1 sent (by sending the evPos1 event to the actor
block instance)

• set position error and send actor block pos1

• Reset position error, add timing error, and send actor block pos1

The sequence diagram for that interaction is quite long, so here is the text
send to standard output:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 124

Case Study: System Requirements Definition and Analysis

Here’s what part of the sequence diagram looks like for the case when
position errors are created, beginning with the call to Check_Movement:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 125

Case Study: System Requirements Definition and Analysis

If you’ve been entering the events using the event generation tool, you can
also do with via a panel diagram. In this case, create a panel diagram and
add push buttons as shown in the diagram:

These push buttons are bound to the event receptors of the block instances.
If you want to create this diagram to assist in driving the simulation, be sure
to select the instances in the FunctionalAnalysisPkg > ControlAirSurfacesPkg
> ControlAirSurfacesExecutionScopePkg > Parts area of the model. You can
get there by double clicking on the push button and navigating to the
desired part and selecting the event reception.

Step 4: Handling requirements about warm and cold restarts
 There are some requirements about warm and cold restarts such as

The system shall not automatically perform minimum, maximum, and zero
position tests during a restart, where “restart” is defined to be starting up
within 5 minutes after being enabled, or being operational. Rationale: this is
to allow in-flight restarts safely.

and

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 126

Case Study: System Requirements Definition and Analysis

The system can be commanded into a restart mode from the OFF_STATE by
the Attitude Management System. In addition, the system may be explicitly
commanded into restart from other operational modes with an independent
command from the AMS, however, this command must be verified by
soliciting and receiving a pilot override instruction. An exception to this is if
the plane is not Weight on Wheels (WoW); in this case, the restart shall not
require an independent pilot confirmation.

In this next nanocycle, let’s add this behavior. Note that the actual
execution of the start tests is the subject of the (previously analyzed) Start
Up use case. For that reason, the tests will not be modelled here. What will
be modelled is a placeholder for them. That placeholder is an example of a
small, but important, overlap between use cases.

Here is the updated state machine for the Uc_ControlAirSurfaces use case
block:

We’ll need to provide some behavior for the No_Faults and Wow
operations used in the state machine, and defined within the use case block.
We’ll also define the constant NORMAL_RESTART_INTERVAL , which is

nominally 5 minutes (we’ll set it to a shorter value, such as 10s for the
purpose of simulation). In the ControlAirSurfacePkg >
ControlAirSurfacesTypesPkg, add the following type by right clicking on the
package and selecting Add New -> Blocks > DataType. Name this type
NORMAL_RESTART_INTERVAL. Then double click on it, ensure that the Kind
is Language, and its declaration to be

#define %s 10000

This will give the timeout on the state machine a 10 second interval,
suitable for simulation.

We’ll define a RhpBoolen type attribute in the use case block named
weightOnWheels and give it a default value of FALSE. (We can change it
later during simulation if desired).

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 127

Case Study: System Requirements Definition and Analysis

We’ll do the same kind of thing for the No_Faults operation. Define an
attribute for the use case block named fault_count of type int and then
define the function No_Faults to return TRUE if that value is zero.

The corresponding updated aCAS_AMS state machine must be able to
generate the evStartUp, evEnable, and evDisable events.

We also need to add the ability of the aCAS_PilotDisplay to generate the
evPilotConfirmation and evPilotRejection events:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 128

Case Study: System Requirements Definition and Analysis

We will need to add the evStartUp, evEnable, and evDisable receptions to
the use case block and the interface as provided directedFeatures. We must
also add the evPilotConfirmation and evPilotRejection events to the
iUc_ControlAirSurfaces_aCAS_Pilot_Display interface block in the
ControlAirSurfacesPkg, again as a provided directedFeature. Be sure to add
the directedFeature stereotype to the event reception in the use case block
as well.

Finally, we’ll update the panel diagram to help use drive the simulation.

The weight_on_wheels, position_error, timing_error and fault_count value
properties are bound to the text box controls on the panel diagram.

We’ve added some interesting flows here, such as

1. Normal flow to get to operational mode (Waiting_For_Command
state) with no errors, then back of the off state.

2. Error flow where we go to Failed state because power on self tests
failed.

3. Warm restart within the warm restart interval
4. Directly running from Off with Pilot Confirmation
5. Directly running from Off with weight on wheels (aircraft on the

ground)

We’ll look at a few of these. You are encouraged to execute remainder of
them to fully explore the requirements.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 129

Case Study: System Requirements Definition and Analysis

Here’s the simulation run of the first flow:

You can see that the 10s timeout occurred after we entered the Cooling
state. So the model run as expected.

The second flow is when the power on self tests (POST) fail; in this case,
control should proceed to the Failed state. To execute this flow, run the
model and use the panel diagram to set the value of fault_count to a non-
zero value (such as 3). Then send the evStart event followed by the
evEnable event.

Want to see the states in your sequence diagrams?
Double click on the project, select the Properties tab, select View
All, then set the SequenceDiagram > Systems Modeling (tab) >
ModShowAnimStateMark checkbox.

Want to see to see horizontal messages in your sequence
diagrams?

You may notice that asynchronous events are displayed as angled
lines. This is because they show when the events were actually
send and received. This can make the sequence diagrams less
readable. You can fix this by saving the animated sequence
diagram (trying to close it will result in a popup asking you if you
want to save the diagram). Then reopen the diagram, right click
in the diagram and select SE-Tookit > Straighten Messages.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 130

Case Study: System Requirements Definition and Analysis

Flow 3 is generated by going through the normal start up sequence
(evStartUp followed by evEnable with faultCount set to 0), sending an
evDisable event followed by an evEnable event in less than the
NORMAL_RESTART_INTERVAL.

The fourth flow entails trying to go directly to operational mode while on
the ground, and thus not requiring pilot confirmation. After starting the
simulation, use the panel diagram to ensure that the value of
weight_on_wheels is 0 (FALSE) and then send the evStart event.

Scenario 5 is shown below in the state machine with the last state, then last
transition path, and the currernt state hightlighed. In this case, the model is
run and the value of weight_on_wheels is set before the evEnable event is
sent. Since the value of weight_on_wheels is TRUE, the
Waiting_For_Command state is achieved.

Trouble setting values with the Panel Diagram?
When using text box to set values on the Panel diagram,
Rhapsody calls the mutator operation for the attribute. If code
generation for attributes uses smart generation, then these
operations are sometimes not be created. You can force them to
be created by double clicking on the project, going to the
Properties tab, selecting View All, then setting CPP_CG >
Attribute > MutatorGenerate to Always.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 131

Case Study: System Requirements Definition and Analysis

Step 5: Manage “flyable” operational state with surface faults
 This last nanocycle step for this use case analysis adds in the requirements
for determining if the system is flyable with one or more surface faults.

As we start to analyze this, we discover that what is considered a “Flyable
set” of surfaces isn’t identified. These are missing requirements. As systems
engineers, we need to talk with the subject matter experts of the airframe
to discover those requirements. For the purpose of discussion, they
responded to our solicitation with the following three new requirements,
which we will enter into our model and then allocate to the use case:

The minimal flyable surface set (MFSS) shall be defined to be

• Either the upper or lower rudder, AND

• Either the inboard ailerons or outboard ailerons on both sides of the
plane, AND

• the elevators.

Faults in the control surfaces shall result in messages sent to the AMS and
Pilot Display.

If the system becomes unflyable, it shall transition to a FAILSAFE state,
requiring a complete system boot for recovery.

We’ll need to update the Uc_ControlAirSurface use case block to be able to
identify and evaluate problems using the criteria specified and add tracea
from the use case to those new requirements.

To model the faults, we’ll add a fault condition to each control surface; that
is we’ll add a has_fault value property (type RpyBoolean, default value
FALSE) to the CAS_Surface_Position block, and a getFault_Status operation
to the CAS_SurfacePositions block to easily get the fault status of any

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 132

Case Study: System Requirements Definition and Analysis

surface. These blocks are, as you no doubt remember, located in the
ControlAirSurfacesTypesPkg package.

For simulation purposes, we’ll also add a non-normative function to the
CAS_SurfacePositions block to set the fault status of any surface, called
setFaultStatus. It will take two parameters, an id (of type CAS_SurfaceID)
and a faultValue (of type RpyBoolean).

Next, let’s update the actors to receive the evFault event. Note that the
after adding the event to the actors, you’ll have to edit the event in the
browser to add the is_flyable (of type RHPBoolean) argument to the event.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 133

Case Study: System Requirements Definition and Analysis

Now, let’s update the state machine for Uc_ControlAirSurfaces to add the
behavior to manage these faults and send the evFault event.

The additions to the state machine are concentrated in the bottom left-
hand corner:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 134

Case Study: System Requirements Definition and Analysis

So, if the system is in the Waiting_For_Command state and it receives an
internal evSurfaceFault event, it checks if the remaining surfaces are a
flyable set with a call to Is_Flyable() to see if the remaining surfaces are in
the flyable set. If the guard

[Is_Flyable()]

returns FALSE, then the system proceeds to the FAILSAFE state. From there,
the system only accepts the evDisable event to enter into the Off state. If
the guard returns true, then the system transitions back to the
Waiting_For_Command state.

The implementation of the Is_Flyable operation basically checks the entire
set of surfaces to ensure that a flyable set is still operations.

The contents of the implementation field are shown below to make them a
bit easier to read:

bool elevatorsOk =

!(position_set.getFault_Status(Left_Elevator) ||

position_set.getFault_Status(Right_Elevator));

bool ruddersOk = !(position_set.getFault_Status(Upper_Rudder)

&&

 position_set.getFault_Status(Lower_Rudder));

bool aileronsOk = !(

(position_set.getFault_Status(Left_Inboard_Aileron) ||

 position_set.getFault_Status(Right_Inboard_Aileron)) &&

(position_set.getFault_Status(Left_Outboard_Aileron) ||

 position_set.getFault_Status(Right_Outboard_Aileron)));

return elevatorsOk && ruddersOk && aileronsOk;

Especially note the not operators (“!”) in the code.

Let’s add some internal transitions to the WaitingForCommand state to add
and remove faults:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 135

Case Study: System Requirements Definition and Analysis

The implementation of the operations Insert_Flyable_Faults,
Insert_Unflyable_Faults, and removeFaults for the Uc_ControlAirSurfaces
block is straightforward:

The first operation, Insert_Flyable_Faults, adds a fault to the lower rudder
and the Left_Inboard_Aileron – this still leaves a flyable set. The second
operation, Insert_Unflyable_Faults, sets faults to both the inboard and
outboard aileron on the left side – an unflyable situation. The
Remove_Faults operation just sets the fault status of these surfaces to
FALSE. Finally, the setFault_Status operation of the CAS_Surface_Positions
block sets the fault in the specified control surface.

As before, don’t forget to add the evFault event to the interface blocks (and
the actor blocks) as a directedFeature required in the interface and offered
in the actor blocks. Although we’ve been adding this by manually editing the
interface block, there is another way: Create a new sequence diagram with
that sends the event evFault from the use case to the actor blocks. The
easiest way to do that is to copy one of the existing sequence diagrams in
the ControlAirSurfacesBBScenariosPkg package, remove all the messages
from it and add the events to the appropriate lifelines, thusly:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 136

Case Study: System Requirements Definition and Analysis

Now, right click on white space in the diagram and select SE-Toolkit > Port
and Interfaces > Create Ports and Interfaces. This will add the event to the
interfaces.

Lastly, we can update the Panel Diagram so that we can generate the
evSurfaceFault event. As before, we recommend all the events that use the
interface should be dragged to the ControlAirSurfaceInterfacesPkg.

Let’s run a few scenarios for this iteration of this use case analysis model.
Run the simulation to get to the Waiting_For_Command state, then

1. Set flyable faults and generate the evSurfaceFault event
2. Set unflyable faults and generate the evSurfaceFault event

Here is the outcome:

At this point, we’ve completed the functional analysis of the two use cases
Start Up and Control Air Surfaces. The former was analyzed using a flow-
based workflow with an activity diagram; then we derived sequence
diagrams from that and created ports and interfaces to support simulation.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 137

Case Study: System Requirements Definition and Analysis

We also did some safety analysis. Finally, we created and executed the state
machine for the use case allowing us to simulate the requirements model to
identify and correct requirements defects and omissions.

The latter use case was analyzed with a scenario-based approach. We
started with sequence diagrams, then did a data model, safety analysis and
a few iterations of state machine creation and execution.

Now we’re ready to look towards architecture. We’ll start with some
architectural analysis of alternatives.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 138

Case Study: Architectural Analysis

8 Case Study: Architectural Analysis

The purpose of architectural analysis is many-fold but in this section we
focus solely on the analysis of alternatives; that is, we will analyze different
architectural or technology choices to determine the best choice for the
needs of the specific system under development. This is also known as
trade study analysis. The workflow for architectural analysis was shown
previous in Figure 5 and Figure 6.

In this section we well apply this process to create an optimized architecture
for our system, understanding that the architecture is incomplete because
we have only considered two of the use cases in this iteration. Some of
these steps will be assisted with the SE Toolkit automation functions. It is
important to understand that there are other, even more rigorous ways to
support the evaluation of alternatives. These include the use of Rhapsody’s
parametric constraint evaluator (PCE) profile. We will be applying a slightly
simplified method that is practical and, for most purposes, rigorous enough
to meet the need.

8.1 Identify Key System Functions
As we pointed out in Section 4.2 on page 16, key system functions are
system functions that are important, architectural, and subject to
optimization. A system function that is important but neither architectural
nor subject to optimization need not be analyzed for trade offs. To be
optimizable, in this case, means the selection of a different architectural
structure or different technology can result in significant benefit. For
example, if you want to provide motive force for a robot arm, should you
use pneumatics, hydraulics, or an electrical motor? All have pros and cons,
and a trade study can select which is best for the given system given its
requirements, contraints, and usage context. However, technology choices
that only affect a single engineering domain (such as electronics design)
should be deferred and made by the relevant downstream engineering
team. It is particularly important to use trade studies when the impact of a

technical selection is manifest across multiple engineering disciplines or
across multiple subsystem teams.

This can be subtle. For example, requiring functionality be done in a certain
way in software may greatly impact the need for available memory and
computational resources, affecting the electrical architecture. The
communications media among subsystem is another source of multi-
disciplinary concerns. Internal communication bus selection is an electronics
decision but impacts software performance and throughput and well as
cable management, a mechanical concern.

How to find System Functions
System functions show as actions performed by the system on activity
and/or state diagrams or as services invoked on sequence diagrams. In the
latter case, they are usually manifested as “messages to self” on the use
case lifeline.

This use cases we examined require the following kinds of system functions:

• control of surface movement

• measurement of surface movement position

• measurement of surface movement timing

• error date storage

• checking power status

• checking hydraulic status

• checking software integrity

• communicating with the aircraft AMS, Pilot Display, Power, and
Hydraulic systems (presumably they have an already defined
interface).

In this case, we will focus on the movement of the control surface. Mostly,
this is done through the application of hydraulic force provided by the
aircraft hydraulic system. The basic schematic is shown in Figure 144. The
hydraulic pressure results in a positive movement of the control surface
mediated through the movement of a piston and a connecting element.
Negative movement is performed by changing the position of the selector
switch and applying pressure.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 139

Case Study: Architectural Analysis

Figure 144: Simplified hydraulic schematic

However several of the control surfaces have trim tabs. These are smaller
control surfaces that are used to fine tune the aerodynamic effect of the
control surface. We’ve called them out as independent surfaces but they
are really subcomponents of the basic control surface.

Figure 145: Control Surface with Trim Tab

In addition, some control surfaces extend forward and retract backwards.
While the primary motive force (hydraulics) has been determined for the
primary control surface, how the trim tab and extension/retraction
mechanism works is not yet decided. This will be the focus of our trade
study.

8.2 Define Candidate Solutions
In this case we will consider two different methods for moving the trim tabs
and extension of the surface:

• Hydraulic force

• Electric motor

• Self-contained electrohydaulic unit for each control surface

The first case will require additional fluid cabling and hydraulic actuators.
Schematically, that solution looks something like Figure 146 for trim tab
control and Figure 147 for exension and retraction.

Figure 146: Hydraulic control of trim tab

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 140

Case Study: Architectural Analysis

Figure 147: Hydraulic control of extension/retraction

Remember that a control surface, optionally, has either a trim tab or extend
and retract, but never both.

The second case will involve installing small electric motors near each
control surface and some small additional cabling for electric power (note
that power and communications cabling is already required to support
measurement of movement).

Figure 148: Electric motor control of trim tab

Figure 149: Electric motor control of extension/retraction

The third solution is to use off-the-shelf self-contained electrohydraulic
units at each control surface trim tab and extension point.

Figure 150: Electrohydraulic Actuator

In use, it is placed much as is the motor in Figure 148 and Figure 149.

We can model these solutions are different subclasses of the generic system
functions. To do this:

 In the DesignSynthesis::ArchitecturalAnalysisPkg package create a
new package; TrimControlTradeStudy.

 In the new package, add a new block definition diagram named
Trim Control Alternatives.

 On this diagram, add new blocks:
o PositionControl
o TrimControl
o HydraulicTrimControl
o ElectricTrimControl
o ElectriHydraulicTrimControl

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 141

Case Study: Architectural Analysis

o Extensioncontrol
o HydraulicExtensionControl
o ElectricExtensioncontrol
o ElectroHydraulicExtensionControl

 The PositionControl block has two operations that are aspects of
this: Add

o moveTo(x: int)
o zero()
o ValidateCommand(x: int)

 Add the generalization relations, as in Figure 151

Generalization means “is a kind of”, so this relationship is important as
these different technical solutions are specific realizations of the more
generic system functions PositionControl.

Figure 151: Modeling the candidate solutions

Note that in Figure 151, we used the display options to show inherited
operations (indicated with the “^” symbol). This is optional, but we believe
that it adds clarity in this circumstance.

It is important to note that these proposed solutions might differ in
important qualities of service, including safety, reliability, and security. The
proposed solutions and their quantified properties should take these
aspects into account (they can even be direct assessment critieria). This
means that in real life, the solutions must subjected to dependability
analysis as a part of the analysis of alternatives.

8.3 Architectural Trade Study: Define Assessment
Criteria

The key to selecting one technical solution over another is the identification
of the assessment criteria. Good assessment criteria allow us to distinguish
between good and better solutions in how they effect important,
measureable properties of the system. In our case, there are five
assessment criteria:

• Accuracy

• Weight

• Reliability

• Parts Cost

• Maintenance Cost

Add these to the PositionControl block as attributes (of type float or
double), and then in the browser, select all attributes and Change To an
moe. moe is a new metaclass (in Rhapsody, a “New Term Stereotype”)
defined in the HarmonySE profile. It brings along a tag called weight.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 142

Case Study: Architectural Analysis

Figure 152: Changing an attribute to an moe

If you’ve turned the display options of the attributes/value properties on in
the diagram for the PositionControl block, it should now look like this:

Figure 153: PositionControl with moes added

8.4 Architectural Trade Study: Assign Weights to
Criteria

We will assign these MOE values that indicate the degree to which each of
the specific solutions optimizes that property. We will scale these so that
they are in the range of 1 to 10. We will assign the weights of each MOE to
identify its relative importance. The weights will be normalized so that they
sum up to 1.00.

These MOEs, like any attribute, are inherited in all the specialized subclasses
of PositionControl. That means that each subclass will have all the MOEs,
but will not inherit default values nor values of the weight tag. We will
assign the default values for each of the subclasses to provide the
information as to the degree to which that specific technical solution
optimizes that MOE. The weights won’t change in the subclass hierarchy;
however, since the values of the tags are not inherited, the SE Toolkit
provides a tool to copy these values down to the subclasses.

Let’s assign the weights first.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 143

Case Study: Architectural Analysis

The weighting value is an assessment of the relative importance of that
specific criterion to the overall “goodness” of the solution. The higher the
weight, the more crucial it is. Normalization (so that the sum of all weights
equals 1.00) is a common method use do ensure reasonable relative
weighting factors. In this case we’ll make the following assignments

• Accuracy: 0.30

• Weight: 0.20

• Reliability: 0.25

• Parts Cost: 0.10

• Maintenance Cost: 0.15

To assign these, double click on each MOE in the browser, go to the Tags
pane and assign the value:

Figure 154 shows the MOE weighting factors on the diagram. To see this,
drag the MOEs from the browser, and then right click on each, select Display
Options, go to the Compartments pane and click on the Customize button.
There you can add the compartment to show the tags.

Figure 154: Showing moe weights

To copy these down to the children, right click the PositionControl block
and select SE-Toolkit > TradeStudies > Copy MOEs to Children. In this, slightly
unusual case, you’ll have to repeat the procedure for the TrimControl and
ExtensionControl blocks, as this helper only works with the immediate
children of a block. If you now inspect those subclasses, such as
ElectricTimControl, you will see that it also has the set of MOEs with the
correct values assigned to the weights.

8.5 Architectural Trade Study: Define Utility Curve for
Each Criterion

The utility curve computes a “goodness” score based on a quantitative value
associated with the solution. The utility curve can be any shape but, by far,
those most common is the “linear utility curve.” This curve is a straight line
defined by two points. The first point for this MOE is the worst candidate
solution being considered has a utility value of 0 while the best candidate
being considered has a value to 10. Given these two points, (worst, 0) and
(best, 10), a line can be constructed going through both. This is the linear
utility curve.

The equation for a line, given two points (x1, y1) and (x2, y2) is simply

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 144

Case Study: Architectural Analysis

𝑦 =
𝑦2 − 𝑦1

(𝑥2 − 𝑥1)
𝑥 + 𝑏

We have special conditions, such (worst, 0) and (best, 10) on the line. This
simplifies the utility curve to

𝑚𝑜𝑒 =
10

𝑏𝑒𝑠𝑡 − 𝑤𝑜𝑟𝑠𝑡
𝐶𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑉𝑎𝑙𝑢𝑒 + 𝑏

And

𝑏 = −
10

𝑏𝑒𝑠𝑡 − 𝑤𝑜𝑟𝑠𝑡
𝑤𝑜𝑟𝑠𝑡

Where

• best is the value of the criterion for the best candidate solution

• worst is the value of the criterion for the worst candidate solution

For example, let’s consider a system where our criterion is throughput,
measured in messages per second. The worst candidate under
consideration has a throughput of 17,000 messages/second and the best
candidate has a throughput of 100,000 messages/second. Applying our last
two equations provides a solution of

𝑚𝑜𝑒 =
𝑇ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡

8300
− 170/83

A third candidate solution, that has a throughput of 70,000 message per
second would then have a computed MOE score of 6.3855.

Note: There are lots of other ways to construct utility curves for trade study
analysis. Interested parties are encouraged to look up references for specific
methods.

The next step is to construct the equations for each MOE using this
approach. For the purpose of this example, assume the following sets of
values are true for the set of criteria. In actual practice, this data would

come from lab measurement, manufactured specs, historical data, or
estimation.

Table 1: Trade Study Criterion Values

Solution/moe Accuracy
(mm)

Weight
(kg)

Reliability
(mtbf hrs)

Parts
cost ($)

Main.
Cost ($)

Hydraulic 5 72 4000 800 2000

Electric 1 24 3200 550 2700

Electrohydraulic 2 69 3500 760 2100

Using the method outlined above results in the following set of equations:

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦𝑀𝑂𝐸 = −
5

2
𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 +

25

2

𝑤𝑒𝑖𝑔ℎ𝑡𝑀𝑂𝐸 = −
5

24
𝑤𝑒𝑖𝑔ℎ𝑡 + 15

𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑀𝑂𝐸 =
𝑟𝑒𝑙𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦

80
− 40

𝑝𝑎𝑟𝑡𝐶𝑜𝑠𝑡𝑀𝑂𝐸 = −
𝑝𝑎𝑟𝑡𝑠𝐶𝑜𝑠𝑡

25
+ 32

𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝐶𝑜𝑠𝑡𝑀𝑂𝐸 = −
𝑚𝑎𝑖𝑛𝑡𝑒𝑛𝑎𝑛𝑐𝑒𝐶𝑜𝑠𝑡

70
+

270

7

8.6 Architectural Trade Study: Assign MOEs to
Candidate Solutions

The equations for MOEs can be captured in SysML parametric diagrams.

 In the browser, right click on the TrimControlTradeStudy package
and select Add New > Diagrams > Parametric Diagram. Name this
diagram, Trim Control Trade Study Parametrics.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 145

Case Study: Architectural Analysis

 Drag the PositionControl block onto the diagram, then drag each of
its MOEs to inside the PositionControl block on the diagram.

 Add a ConstraintProperty from the toolbar onto the diagram. Name
this ConstraintProperty TrimControlMOEs. Size this box to be the
same height at the PositionControl block.

 Add ConstraintParameters to the left edge of the constraint
property:

o accuracy
o weight
o reliability
o partsCost
o maintenanceCost

 Add a BindingConnector between each constraint parameter and
the corresponding attribute in the PositionControl block.

 Using the technique outlined above, add the equation for each
computed MOE, as constraints in the TrimControlMOEs constraint
property.

o accuracyMOE
o weightMOE
o reliabilityMOE
o partCostMOE
o maintenanceCostMOE

 Now add a ConstraintParameter for each of these computed MOEs
with the same name as in the previous step

 Add a new ConstraintProperty named
TrimControlObjectiveFunction and add constraint parameters that
match the ones in the previous step

 Connect the matching constraint parameters between the two
ConstraintProperties with binding connectors

 Add the objective function as a constraint, computing the objective
function as the weighted sum of the property times its weighting
factor (stored in the weight tag)

Note, you can make the constraints visible by right clicking on the
ConstraintProperty and selecting Display Options. Then go to the
Components pane and click Customize, and add Constraints to the list.

Once you’re done, you shound have a diagram that looks like Figure 155.

Figure 155: Parametric diagram for trade study analysis

Rhapsody provides a Parametric Constraint Evaluator (PCE) profile that
connects to third-party mathematical computational engines to perform the
calculations for the three solutions. However, we will do a slightly simpler
approach using the facilities of the SE Toolkit. It will use Microsoft Excel as
the computational engine for evaluation of the constraints.

Build a Solution Architecture Diagram
First, let’s build a Solution Architecture Diagram. This is a block definition
diagram that shows the alternative solutions.

 In the TrimControlTradeStudy package, add a new Block Definition
Diagram. Name this diagram Trim Control Solution Architecture.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 146

Case Study: Architectural Analysis

 Add blocks representing the alternative solution architectures
o Block HydraulicTrimControlSolution
o Block ElectricTrimControlSolution
o Block ElectroHydraulicTimeControlSolution

 Drag the six solution blocks onto the diagram from the browser
o HydraulicTrimControl
o HydraulicExtensionControl
o ElectricTrimControl
o ElectricExtensionControl

 Make the appropriate composition relations among the blocks
o HydraulicTrimControlSolution is composed of

HydraulicTrimControl and HydraulicExtensionControl
o ElectricTrimControlSolution is composed of

ElectricTrimControl and ElectricExtensionControl
o ElectroHydraulicTrimControlSolution is composed of

ElectroHydraulicTrimControl and
ElectroHydraulicExtensionControl

 Compute the MOE value by applying the MOE equations to the
values from Table 1 of the appropriate solutions

o Assigning the values for the best and worst scores is easy:
it’s either 0 or 10, because that’s how we defined the linear
utility function. To determine the scores are between the
best and worst, you’ll have to solve the equations above.

o For example, to determine the value of the MOE Accuracy
of the Electrohydraulic Trim Control solution, take the
value of the accuracy of the solution from Table 1 (2),
compute the MOE by using the accuracyMOE equation, and
assign the result (7.5) to the value of the Accuracy MOE in
the ElectrohydraulicTrimControl and
ElectroHydraulicExtensionControl blocks.

Your diagram should look something like Figure 156.

Figure 156: Trim Control Solution Architecture

8.7 Architectural Trade Study: Determine Solution

Construct an Option Analysis Diagram
Next, make another block definition diagram in the same package named
Trim Control Option Analysis. Drag the three potential solution
architecture blocks on to it: HydraulicTrimControlSolution,
ElectricTrimControlSolution and ElectrohydraulicTrimControlSolution.

This diagram is very simple and provides a context for the SE-Toolkit to do
the analysis:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 147

Case Study: Architectural Analysis

Figure 157: Trim Control Option Analysis Diagram

Right click in this diagram and select SE-Toolkit > Trade Studies > Perform
Trade Analysis. The toolkit will create a new Controlled File named Trim
Control Option Analysis_TradeStudy.xls. Double-clicking this file will open
it in Excel and show you the trade analysis with the computation of the
objective function performed by Excel:

HydraulicTrim
ControlSolution

ElectricTrim
ControlSolution

ElectroHydraulicTrim
ControlSolution

 weight value WV value WV value WV

PositionControl.Accuracy 0.3 0 0 10 3 7.5 2.25

PositionControl.Reliability 0.25 10 2.5 0 0 3.75 0.9375

PositionControl.Weight 0.2 0 0 10 2 0.625 0.125

PositionControl.PartsCost 0.1 0 0 10 1 1.6 0.16

PositionControl.MaintenanceCost 0.15 10 1.5 0 0 8.57 1.2855

 4 6 4.758

Figure 158: Computation of the objective function

By this analysis, the electric motor solution is our best choice, since it has an
objective function value of 6., versus 4 for the purely hydraulic solution and
4.758 for the self-contained electrohydraulic units.

8.8 Merge Solutions into System Architecture
Because this is the first iteration, we don’t have an existing subsystem
architecture into which to insert the results of our trade study. When we get
to architectural design (next), we will insert the solution where it makes
sense. In some cases, the solution at this point is obvious as we’ve identified
a subsystem. However, in this case, we’ve identified a subcomponent of one
or more subsystems, so we will defer the merging the solution into the
architecture until we’ve identified where it should go.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 148

Case Study: Architectural Design

9 Case Study: Architectural Design

In architectural design, we will

• Identify the subsystems

• Allocate requirements and use cases to subsystems

• Define the interfaces and flows between the subsystems

• Derive subsystem requirements

• Update the logical data schema

• Update the dependability analysis

• Create the system verification plan

The workflow for the Architectural Design activity is shown in Figure 10 back
on page 19. We won’t explore some of these tasks to save space, including
Develop Control Laws and Analyze Dependability. We will do at least some
of the work associated with all the other activities and tasks from Figure 10.

The first thing we’ll do is to merge in the features from the various use case
blocks

9.1 Identify Subsystems
A subsystem is a large-scale architectural element that

▪ Meets a common set of requirements (coherence)
▪ Contains elements that interact strongly (tight coupling)
▪ Contains elements that interact weakly with other subsystem

(independence)
▪ Hide internal structure and implementation detail (encapsulation)
▪ Provides or requires well defined sets of services (interfaces)
▪ Typically, developed by a single team (common developers)
▪ Usually contains aspects from multiple engineering disciplines

(interdisciplinary)

Good subsystems are

▪ Coherent (together provide a small number of purposes)

▪ Internally tightly coupled
▪ Externally loosely coupled (with other subsystems and their

components)
▪ Collaborative in the architecture with via a small number of well

defined interfaces

In thinking about this system, it is clear that we need several different kinds
of structures to provide sets of coherent services. We’ll start by creating a
block definition diagram showing our basic idea for the architecture.

 In the DesignSynthesisPkg > ArchitecturalDesignPkg, add a new
block definition diagram. Name this diagram ACES System
Structure.

 Add a system block named ACES (if one does not already exist)
 Add the following subsystems as blocks

o ACES_Management
o ACES_Hydraulics
o ACES_Power
o ACES_ControlSurface
o ACES_ControlSurfaceWithTrim
o ACES_ControlSurfaceRetracting

Connect the first four to the ACES system block with composition relations
and make the last two blocks subclasses of the ACES_Control_Surface block.
See Figure 159.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 149

Case Study: Architectural Design

Figure 159: Subsystem composition architecture

This architecture takes advantage of the similarities between the three
kinds of control surfaces – simple control surfaces, control surfaces that also
have trim tabs, and control surfaces that retract and extend.

We now need to create packages for each of the subsystems. Fortunately,
there’s an SE Toolkit feature for that. Right click the ACES block on the
diagram and select SE-Toolkit > Architecture Tools > Create Sub Packages.
This wizard will mark the subsystems with the stereotype «Subsystem»,
moves the block to its package, and adds a tag isSubsystem with the value
TRUE (used later in the hand off workflow).

Figure 160: Added subsystem packages

9.1.1 Merge functional analysis
Note: before you apply the SE-Toolkit feature you’ll want to set the
properties for the SE Toolkit to Clone Events and Merge Types. To do this,
select the project in the browser, double click to open the Features dialog,
go to the Properties tab, View the SE-Toolkit properties and click the
checkboxes as shown.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 150

Case Study: Architectural Design

In this step, the features of the use case blocks are merged into the system
block so they can be allocated into the appropriate subsystems. The SE
Toolkit provides a tool to do that. Right click on the ACES block in the
browser or on the diagram and select SE-Toolkit > Architectural Tools >
Merge Functional Analysis. This tool will collect up the attributes and
services from the various use case blocks in the functional analysis package
and add them to the ACES block.

Figure 161: Merge Functional Analysis tool

The tool may report finding errors; these are usually because the tool
already added in a feature of the same name from some other use case
block. This is an indication that you should look at the merged feature to
make sure that it properly merges the features from all relevant use case
blocks.

Issues with Merging Functional Analysis
When you merge from multiple use cases there are several cases that must
be considered:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 151

Case Study: Architectural Design

1. The semantic feature is unique to one use case
2. The semantic feature occurs in exactly the same form in multiple

use case
3. The semantic feature has different names but is meant to be the

same feature
4. The feature has the same name in different use cases but intended

to be semantically distinct
5. The feature occurs in multiple use cases but is different in form

a. Same name, different properties
b. Different name, different properties but nevertheless still

describes the same feature

The term properties, in this context means things like the argument list
order, type and naming for operations and event receptions, service type
(operation, event reception, triggered operation reception), or type (if an
attribute or value property), and the value of any stereotype tags that might
indicate subrange or qualities of service.

Cases 1 and 2 are the easiest. Simply add the feature to the system block.
However, care must be given to ensure that when you think you have case 2
you do not actually have a case 4.

The other cases are more difficult and require human intervention.

Case 3. This often occurs because different use case developers are likely
specify an event, service, or datum using a different name while referring to
the same system feature. One might imagine on use case developer using
an event name Move_To(x,surfacename) while another use case that also
requires movement to use goto(surface, position) or even
commandAllPositions(p: PositionSet). Semantically, the intent of all of
these is the same even though the names and parameter lists are different.
Human intervention is required to identify this and merge them into a single
service in the system block.

Case 4. This occurs less often, but even if you have a naming guideline to
use names expressive of intent, it does occur frequently enough. An event
such as configure might refer to the setting of minimum and maximum

positions of a specific control surface or uploading a new software image.
Such errors are harder to identify and require a thorough review of the
application in the different use cases.

Case 5a. The use of the same semantic service might require different
parameters depending on its actual use. For example evError, in one
context might have to return the location of the error (for system
diagnostics and repair), or the severity of the error (for operational decision
making), or the date and time of occurrence (for maintenance purposes).
One solution is to merge all these needs together into a single service,
knowing that in some contexts not all information may be relevant. Another
solution is to create different services that carry the data they need based
on the context of their use.

Case 5b. This is a variant of Case 5a and is even more difficult to detect,
since the name and properties of the service are different. To detect this
requires a solid understanding of the relevant source use case analyses.

Beyond these general issues, there are some issues in older versions of the
toolkit. The toolkit clones types and events – assuming you set the checkbox
in the properties dialog for the SE Toolkit as mentioned before – but older
versions may not always resolve references to the cloned elements. For
example, the use case model refers to an event

 evUpdatePositions(CAS_Surface_Positions* sp)

The current version of the toolkit properly clones the event and updates the
event reception but may not update the type of the parameter sp. It should
refer to the cloned type CAS_Surface_Positions in the InterfacesPkg >
MergedInterfacesPkg > UcControlAirSurfacesDataTypesPkg but instead
refers back to the original copy of the block in the FunctionalAnalysisPkg >
ControlAirSurfacesPkg > ControlAirSurfacesTypesPkg.

This limitation also applies not only to the parameters of event arguments,
but also to the types of value properties of cloned blocks and parts of
cloned blocks. For example, cloned block CAS_Status has a property called
status of type CAS_SystemOperationalState. Although the latter type was

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 152

Case Study: Architectural Design

cloned, the status value property may not be updated to refer to the cloned
copy.

Bottom line: not all references to types (including blocks) may be properly
updated to refer to the cloned version. You’ll have to manually review each
one to ensure that it properly refers to a type in the InterfacesPkg and not
in the FunctionalAnalysisPkg and update where necessary. The toolkit will
get you started but there may still be some work to be done.

What to do about it
The upshot of this is to understand that the merge of information from
different use cases to the system block can never, in principle, be a
completely automated process. The SE Toolkit gets you started, but you
must still examine and analyze the result to ensure the intent from each use
case is preserved in the system block.

The best way to do this is a review of each use case feature set, state
machine, and interfaces and how each was merged into the system block.
Ideally the system architect and a member from each use case team is
present in the review of the merged features set. It is best to complete this
review and update before moving on to the allocation of the features to the
subsystems.

Completing the Merge of Functional Analysis into the Architecture

The SE-Toolkit Merge Functional Analysis tool gets the process started. The
tool does the following things for you automatically:

• Copies the attributes/value properties and operations (of all types)
from each of the use case blocks in the FunctionalAnalysisPkg to
the identified system block

• Copies all types from the functional analysis use case nested types
packages into the InterfacesPkg > DataTypePkg into subpackages
organized by use case

• Updates the parameter lists of the copies system block functions to
refer to the copied types

We must now manually complete this merge activity. This is a matter of
walking through all the copied elements, updating the names (since they
were all name-mangled with the use case name), and merging their
semantics, as appropriate. For example, a evMovementCommand(p:
CAS_PositionSet) and evMove(surfaceID, position), perhaps this becomes a
single evMovement(p: PositionSet) operation, where we’ve merged the
functionality, and changed the names to remove the use case-specific
adornments.

Older Toolkit Version
In addition, you should look at the location of each referenced type to be
sure that it refers to a type in the InterfacesPkg and not one in the
FunctionalAnalysisPkg. For example, if you see

We recommend ongoing reviews between use case teams,
to identify and resolve such issues. These “alignment
reviews” take place periodically during the parallel
development of the multple use cases (and therefore
precedes the architectural merge). This will resolve the
simpler issues of conflict between the use case teams. Issues
like differences in parameter lists of system functions and
data structures are harder because these differences are
“out of scope” of the use cases.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 153

Case Study: Architectural Design

You should change it to

Similarly, for this:

Change it to this:

Change this:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 154

Case Study: Architectural Design

to this:

And change this:

to this:

Repeat for all references to types in the cloned operations, event
receptions, blocks, and types in the InterfacesPkg and nested packages.

Merging Similar Features
There are other things to merge as well. For example, the two use cases
refer to the type of Surface_ID differently. The Start Up use case used an int
while the Control Air Surfaces use case used an enumerated type named
CAS_SurfaceID. So any reference to a surface id in an operation, reception,
block or type in the InterfacesPkg > MergedInterfacesPkg > Uc_StartUpxxx
packages should be changed from an int to the CAS_SurfaceID.

It also makes sense to remove the CAS_ prefix used for the use case
features since now we’re in the merged architecture. For example,
CAS_SurfaceID should become SurfaceID. If you change the type name
Rhapsody will update all the references that use it for you.

The two use cases also define a date-time type (DATETIME_TYPE and
CAS_TimeDateType), two error types (ERROR_TYPE and CAS_ERROR_TYPE)
and the restart time intervals (NORMAL_RESTART_TIME and
NORMAL_RESTART_INTERVAL). Each should be resolved to a single type
used by all relevant cloned elements, and the unused one should be deleted
from the InterfacesPkg. Since the tookit adds a dependency, drag the
dependency from the type to-be-deleted to the type-to-be-retained. In this
case, I used the CAS_ versions of all the types. That is, I copied all the
dependencies; I changed all the references to the DATETIME_TYPE to the
CAS_TimeDateType; I copied all the enumeration literals from the
ERROR_TYPE to the CAS_ERROR_TYPE; I removed
NORMAL_RESTART_TIME but kept NORMAL_RESTART_INTERVAL. I then
went through the blocks and types in the InterfacesPkg nested packages
and removed all the CAS_ prefixes.

I also made a pass to identify any merged features of the ACES block and
events in the DesignSynthesisPkg that were there to support simulation,
such as the insertion or removal of error conditions. To all these, I added the
stereotype «nonNormative». If desired, you can remove any merged
features stereotyped «nonNormative», since they were just used to

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 155

Case Study: Architectural Design

facilitate simulation. If you think they will continue to be helpful, however,
feel free to keep them.

With the two use cases defined, the merge results in the following
attributes and operation copied from the use cases to the ACES block:

Figure 162: Result of Merge Functional Analysis

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 156

Case Study: Architectural Design

I then moved all the blocks and types from the packages nested within the
InterfacesPkg to the InterfacesPkg > DataTypesPkg package. This results in
the following structure and set of types and events:

Figure 163: Merged Types and Events

9.1.2 Allocate merged features to subsystem architecture
So all these attributes/value properties and operations/event receptions
identified in the functional analysis are merged into the ACES system block.
What should you do with them next?

These features must be allocated to the subsystems. Many of these features
can be directly allocated to a single subsystem but others must be
decomposed into subparts which are then allocated. The SE toolkit
Allocation Wizard can help out with this task.

Right click on the ACES block and select SE-Toolkit > Allocation > Allocation
Wizard (Figure 164).

Figure 164: Allocation Wizard

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 157

Case Study: Architectural Design

 This wizard allows you to allocate attributes, operations and events to
different subsystems. The different block features are available as tabs at
the bottom of the dialog. The various subsystems are available in a drop
down list at the top. By the time you’re done, all attributes and event
receptions should be allocated and most operations. Some operations may
result in a set of operations scattered across multiple subsystems and so it
may be inappropriate to directly allocate them. For such operations, the

Harmony SE profile provides the stereotype «DecomposedOperation». For
such operations, add the stereotype by right clicking the operation in the
browser and selecting Set Stereotype > DecomposedOperation. The
allocation wizard will ignore these – meaning that you will have to do the
decomposition yourself. Note that some elements may be allocated to
more than one subsystem.

The next few figures show the allocations to the ACES_Management
subsystem. Naturally, elements are allocated to the other subsytems as
well. Note that in Figure 166 that some operations remain unallocated. In
this case, these are «nonNormative» operations that are there only to
support simulation and execution of the functional use case model. Later
versions of the SE Toolkit may opt to not even put such elements so in the
allocation list.

Figure 165: Allocation of attributes to ACES_Management subsystem

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 158

Case Study: Architectural Design

Figure 166: Allocation of operations to ACES_Management subsystem

Figure 167: Allocation of events to ACES_Management subsystem

Remember that these aren’t all the features that will be allocated to the
subsystems; these are only the ones carried over from the use case analysis.
As we detail the allocations, we will add additional features to the
subsystems by creating white box sequence diagrams.

9.2 Allocate Requirements to Subsystems
Use cases each represent a coherent but limited set of requirements,
whereas the system must, in principle, represent all such requirements (at
least the ones represented in the current iteration). Requirements must be
allocated down into the subsystems that implement them. Some
requirements may indeed, be directly allocated to a specific subsystem.
Many requirements really specify collective subsystem behavior and so
must be decomposed into derived requirements that can be allocated to a
given subsystem. Requirements diagrams are a good place to show both
the decomposition into derived requirements and their allocation.

9.2.1 Creating Derived Requirements
Since we will be creating derived requirements for the purpose of allocating
to subsystems, let’s provide a place to put them. Create a
SubsystemReqsPkg package nested inside RequirementsAnalysisPkg >
RequirementsPkg (see Figure 168). This package will hold the requirements
diagrams for the derivation of the subsystem requirements as well as those
requirements themselves.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 159

Case Study: Architectural Design

Figure 168: Package for Subsystem Requirements

We’ll take this in a couple of phases. First, let’s determine which
requirements cannot be allocated and must be decomposed into derived
requirements. We can represent those derived requirements on diagrams
or in a table we construct for that purpose.

The easiest way to create the derived requirements is on requirements
diagrams16. The next several figures show system level requirements and
the requirements derived from them.

16 Unless your requirements are being held in a DOORS NG respository; in that case,
you’ll have to do the derivation work in the DOORS NG tool.

Derivation or Derive Requirement?
Both Derivation and Derive Requirements appear on the Rhapsody
Requirements Diagram. The first is provided by Rhapsody as pre-
defined stereotype and the latter is defined as a part of the SysML
standard. Which should you use? The short answer is “It really
doesn’t matter but you should be consistent in your model.” Both
are New Terms (metaclasses) of Dependency and are used for the
same purpose.

We will use Derivation relation (which shows as «derive» on the
diagrams) in this Deskbook.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 160

Case Study: Architectural Design

Figure 169: Derived Requirements

Figure 170: Derived Requirements

Figure 171: Derived Requirements

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 161

Case Study: Architectural Design

Figure 172: Derived Requirements

Figure 173: Derived Requirements

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 162

Case Study: Architectural Design

Figure 174: Derived Requirements

Figure 175: Derived Requirements

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 163

Case Study: Architectural Design

Figure 176: Derived Requirements

Showing the Derived Requirements
The derivations are best created diagrammatically, but they are perhaps
best viewed in tabular format. To do this I first create a table layout
providing the information I want, and then create a table view from that
layout.

Creating the Table Layout
The table view we want includes the name of the derived requirement, the
text of its specification, and the name of the requirement from which it is
derived. To do this we’ll create a new table layout using context patterns.

• Right click on the CommonPkg in the browser and select Add New >
View and Layouts > TableLayout.

• Name this table layout Derive Reqs Relations Table Layout.

• Click on the Columns pane of the Features dialog

• Click on the Advanced Options button

• Add the following context pattern

• Add the following column definitions on the Columns pane

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 164

Case Study: Architectural Design

• Click on OK.

Creating the Table View
Creating a table view from this layout is easy.

• Right click on the table layout just created

• Select Create View

• Name this view Derive Requirements Relations

• The scope can be the entire model or limited to the
RequirementsAnalysisPkg.

That table is shown below in Table 2.

 Table 2: Derived Requirements Table (partial)

The complete table, formatted in Word, is shown in Section 13.1.

This table provides a useful view because it shows the derived
requirements,their specifications, and from whence they came.

The basic rule of requirements traceability to the subsystem is that each
requirement that traces to a use case must be allocated to a subsystem
UNLESS it is decomposed into derived requirements. That means we need a
way to easily identify those system requirements that are decomposed. For

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 165

Case Study: Architectural Design

this reason, the Harmony SE Profile contains the
«DecomposedRequirement» stereotype. This stereotype applies only to
requirements and has the tag hasDerivedRequirements (which defaults to
TRUE) to mark such requirements.

Now go through all the requirements in the right hand column of Table 2
and apply the «DecomposedRequirement» stereotype.

9.2.2 Performing the allocation of requirements
All system requirements traced to use cases must either be directly
allocated to the subsystems or have the requirements derived from it so
allocated. It is also recommended, as previously mentioned, to trace to
system features modeling the use cases and architecture – including event
receptions, operations (system functions), value properties, types, states,
transitions, actions (also system functions), subsystems and their features,
and relations. In this step, we will perform the allocation to the subsystems.

Similar to the creation of the derived requirements, the allocation of
requirements to subsystems can be done diagrammatically or in matrices.

To do the allocation diagrammatically, for each use case, create at least one
requirements diagram in the DesignSynthesisPkg > ArchitecturalDesignPkg
package. There may be more than one if you have many requirements for
the use case. Next, on each such diagram, drag the requirements allocated
to this use case onto this diagram. Finally, drag the set of subsystem blocks
onto the diagram and start adding the Allocate relations from the
subsystem to the appropriate requirements. At the end, there should be no
requirement traced to a use case that is not also allocated to a subsystem
unless it is decomposed into derived subsystem level requirements. Figure
177 shows an example.

Figure 177: Allocation of Requirements to Power Subsystem

Using the Block-Requirement Allocation Matrix
In the DesignSynthesisPkg > ArchitecturalDesignPkg package add a Matrix
View and name it Subsystem Requirements Allocation Matrix. Open its
Features dialog and set its layout to the Subsystem Requirements
Allocation Matrix Layout provided by the Harmony SE Profile. Set the From
Scope to the ArchitecturalDesignPkg and the To Scope to the
RequirementsPkg.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 166

Case Study: Architectural Design

Click on Ok. Now you can double click on the matrix view in the browser
and open it up. I recommend you click on Switch Rows and Columns in the
Matrix toolbar because there are many more requirements than there are
subsystems.

A portion of this matrix (with rows and columns switched) is shown below:

Figure 178: Portion of the Subsystem Requirements Allocation Matrix

Now you can work in this matrix view to set the allocation relations by
selecting one or more cells, right click and select Add New > Allocation to
populate the cell.

Review the allocation matrix

Once this is done, walk through the matrix to look at all the rows (assuming
you switched rows and columns n the view, otherwise look for empty
columns). Each row corresponds to a requirement; is that requirement
marked with the «DecomposedRequirement» stereotype? If not, be sure to
allocate it (or decompose it into derived requirements)17.

To show the allocations here, we’ll build up a subsystem-requirements
allocation table.

The Subsystem Requirements Table Layout uses the following context
pattern and columns:

17 Tip: This can also be done by exporting the matrix to a CSV file (using the export
tool on the drawing toolbar), loading it in Microsoft Excel, and using the COUNTA
function to count the non-empty cells in the columns.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 167

Case Study: Architectural Design

Figure 179: Subsystem Requirement Allocation Table Layout options

A portion of this table is shown below:

Table 3: Subsystem Requirement Allocation Table (partial)

See the entire table, formatted in Word, in Section 13.2.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 168

Case Study: Architectural Design

9.3 Allocate Use Cases to Subsystems
For subsystems with few requirements, it is not necessary to create
subsystem level use cases. However, most subsystem have a large number
of requirements, and the same benefits that use cases provide for
organizing and managing system requirements also apply at the subsystem
level.

It is important to note that system use cases are almost never allocated to a
single subsystem. They must always be decomposed into smaller
“subsystem-level” use cases that can be so allocated.

There are two different approaches to allocating use cases to subsystems
(Figure 11, page 20). The “top-down” approach works at the use case level,
using the «include» relation as a kind of logical containment of subsystem
level use cases. These subsystem level use cases are then either allocated
directly to subsystems or further decomposed until they can be. The
“bottom up” approach allocates actions (system functions) from the use
case white box activity diagram or sequence diagrams to subsystems that
represent the subsystems. These derived diagrams are called white-box
diagrams because they expose the subsystem architecture as either swim
lanes in activity diagrams or lifelines in sequence diagrams.

In general, larger systems are more easily developed with the top down
approach while smaller systems are more easily developed with the bottom
up approach. Nevertheless, both workflows are effective, and which
approach you take is, to some degree, a matter of personal preference.

In our pedagogical approach in this Deskbook, we’ll taken two approaches
to analyze use cases. The first used the activity-based approach. That
approach lends itself well to the bottom up approach. We will use the
bottom-up approach for the analysis of the Start Up use case and the top-
down approach for the Control Air Surfaces use case.

Again, if you only allocated a few requirements to a subsystem (say, less
than 20), it may not make any sense to define subsystem level use cases.

9.3.1 Bottom-Up Approach: Start Up Use Case
This is an approach favored by many systems engineers. In this case, we will
create white box sequence diagrams (sequence diagrams that include
subsystems as lifelines) to perform the allocations rather than create white
box activity diagrams.

9.3.1.1 But what about White Box Activity Diagrams?
The use of white box activity diagrams to show and aid in the allocation of
system properties was a prominent feature of “Harmony Classic.” While it
has some positive aspects (notably, it’s highly visual), it has some serious
drawbacks, which is why we no longer recommend it. Specifically:

• In Harmony Classic, the state machine is the “source of truth”.
The activity diagram shows the primary flows not not all the detail.
Rarely are all requirements (especially edge cases and exception
handling) are represented in the activity diagram. To use white box
activity diagrams for allocation, you would have to add these
missing functions and flows to the activity diagram so that all use
case requirements are represented.

• You don’t verify the activity diagram.
You verify the state machine so the state machine is the “source of
truth”. There is both additional work and a possibility of introducing
errors by manually backfilling the activity diagram as you discover
requirements issues during the development and verification of the
state machine.
The reason to build the state machine is to create a precise and
verifiable statement of the requirements for the use case. If you
prefer to work only with the activity diagram (a reasonable thing,
after all), then you would be better served using the full “Flow
Based Approach” using full, executable activity diagrams as shown
on the left side of Figure 4.

• You have potentially conflicting “sources of truth”.
If both the activity diagram and state machine are treated as
equivalent sources of truth, if they are in conflict, which is deemed
to be correct?

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 169

Case Study: Architectural Design

Having said that, the discussion below shows you what it would look like, if
you to proceed in this fashion.

The allocation of these actions is done by duplicating the use case activity
diagram, adding swim lanes representing the subsystems, and dragging the
actions to the appropriate swim lane. The SE Toolkit will help us along the
way automating aspects of different steps.

 Right click on the activity diagram FunctionalAnalysisPkg >
StartUpPkg > Use Cases > StartUp > Activity Views > Start
UpBlackBoxView and select SE-Toolkit > Create White Box Activity
View. This action create a copy of the black box activity diagram
with which we can work.

 Add a swimlane from to the newly created Start UpWhiteBoxView >
activity_0, Start UpWhiteBoxView > RangeSurfaceTest, and Start
UpWhiteBoxView > PerformBIT activity diagrams.

o In the main activity diagram (activity_0), leave the two call
activities (RangeSurfaceTest and PerformBIT) outside the
swimlane frame, since their allocations will be shown on
their respective diagrams.

Each of these diagrams with have different swim lanes because they use
different subsystems.

Activity_0 activity diagram is the overall behavior

 To this diagram add 2 swim lanes, one for the ACES_Management
subsystem and the other for the ACES_Power subsystem. To
associate the swim lane with the subsystem, you can drag the
subsystem block to the top of the swimlane or you can go through
the Features dialog:

o Double click on the swim lane to get the Features dialog.
o In the Represents drop down list, use select to navigate the

the appropriate subsystem, noting that the previous toolkit
action moved the subsystem blocks into their own nested
packages:

Figure 180: Associating swim lanes with subsystems

 Move the Select_Battery_As_Source action to the ACES_Power

swimlane and all the other actions in the frame to the
ACES_Management swimlane.

The resulting diagram should look like Figure 181.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 170

Case Study: Architectural Design

Figure 181: White Box Activity Diagram for Start Up Use Case (main diagram)

We must repeat this allocation for the activity diagrams referenced by the
call activities in Figure 181.

For the Range Surface Test activity, you can see that we derived the need
for some additional actions during the allocation process. This is includes
actions such as Goto_Minimum_Position,
Get_Position_and_Movement_Time, and
Compare_Position_and_Timeliness.

Figure 182: White Box Activity Diagram for Range Surface Test

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 171

Case Study: Architectural Design

Figure 183: White Box Activity Diagram for Perform BIT

From here, you can proceed to use the SE Toolkit to create sequence
diagrams, ports and interfaces, as discussed in the next section.

As you can see, this approach is straightforward. In Rhapsody 8.2 and later,
placement of an action in a swim lane that represents a block creates an
inferred allocation relationship.

9.3.1.2 Derivation of White Box Sequence Diagrams
The above section shows how you can use white box activity diagrams to do
allocations. Nevertheless because of the concerns discussed in the previous
section, we will perform this task using white box sequence diagrams
instead.

The method to create and use white box scenarios is straight-forward.

 Create a package in DesignSynthesisPkg > ArchitecturalDesignPkg
named WBScenariosPkg. Inside this package, add a package for
every use case (to hold the white box versions of those scenarios),
named <use case>WBScenariosPkg, such as
StartUpWBScenariosPkg and ControlAirSurfacesWBScenariosPkg.

 For each use case in the included in the iteration:
a. For each sequence diagram in the use case:

i. Copy (not move) the sequence diagram to its
appropriate package in the DesignSynthesisPkg >
ArchitecturalDesignPkg > WBScenariosPkg.
Dragging with the control key pressed is an easy
way to do this.

ii. Remove (not delete from model!) the comment
describing the scenario from the diagram and
replace it with a brand new one describing the
white box version

iii. Retarget each local use case actor block lifeline with
the actual system actor (for example
aSU_Aircraft_Power would be replaced with the
Aircraft_Power actor). To do this, double click on
the lifeline and in the Realization drop down list,
select the appropriate actor (usually at the top of
the list) and press OK.

iv. Add the set of subsystems to the new sequence
diagram (this can be done by right clicking on the
sequence diagram and selecting SE Toolkit > Add
Subsystems).

v. For messages from the actors to the use case block:
change target of messages to the appropriate
subsystem

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 172

Case Study: Architectural Design

vi. From messages from the use case block to the
actor: change the source of outgoing messages to
one of the subsystems

vii. Elaborate the collaboration by adding messages
among the subsystems, generally starting with the
subsystem receiving the incoming actor message
and terminating with subsystem sending the
outgoing message to the actor

viii. Verify, via review, that the messages align with the
allocations you made in Section 9.1.2.

ix. Once complete, then realize the messages on the
sequence diagram by right clicking on the diagram
and selecting Auto Realize All Elements.

By realizing the messages on the sequence diagrams, those messages will
create operations or event receptions on those subsystems. These will
serve as the basis for defining the ports and interfaces among the
subsystems in the next step.

Let’s do this for the sequence diagrams in the Start Up use case.

Creating the package for the white box sequence diagrams ends up with a
structure that looks like this (note that I manually appended “ WB” to the
name of each copied sequence diagram):

Figure 184: Start Up Use Case White Box Scenarios

As we move messages, the left or right arrow keys are useful for moving
selected messages to the left or right lifelines.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 173

Case Study: Architectural Design

A couple of guidelines for message refactoring in the white box sequence
diagrams.

• “Messages to Self” can be either operation calls (synchronous) or
events (asynchronous)

• Messages between subsystem should be events (asynchronous)

• It’s ok to refine the messages so they make more sense in the
context of defining services provided by subsystems. For example
Command_To_Minimum_Position(sID) from the black box
sequence diagram operation call might translate to a set of
messages such as Req_Minimum_Position(sID) followed by
Command_To_Position(sID, pos) and Updated_Position(sID, pos,
timing) sent from the control surface back to the
ACES_Management subsystem.

• It is important to remember that a life line on a sequence diagram
corresponds to a singular instance at run-time. This is particularly
relevant to our situation since we have 36 control surfaces. If you
wanted to show the complete sequence for all surfaces, you’d have
to show 36 different life lines for the control surface instances. We’ll
address that issue by only including a single lifeline in our scenarios
generally.

• Once all messages are moved to the subsystems, then the now-
unused use case life line may be removed.

• Update the (copied) diagram comment to reflect the white box
content of the sequence diagram

In this section, we will create white box versions of all the non-animated
sequence diagrams shown in Figure 184.

The first black box sequence diagram to be so transformed is Figure 63,
“Generated Sequence diagram for warm restart”. Note that the messages
are moved to the subsystems. The subsystem lifelines are colored for ease
of identification.

Figure 185: Start Up Use Case Scenario 1

The next figure is the white box version of Figure 65 “Cold Start All Tests
Pass”.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 174

Case Study: Architectural Design

Figure 186: Start Up Use Case White Box Scenario 2

The referenced interaction fragment in Figure 186 is shown in Figure 187.

Figure 187: POST tests ONLY pass WB Interaction Fragment

Figure 188 shows a single error in the minimum position test. It is the white
box equivalent of Figure 66.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 175

Case Study: Architectural Design

Figure 188: Start Up Use Case Scenario 3

The next figure (last in this sequence) shows multiple errors, including an
error achieving the maximum position of a control surface and an error in
the software component of the power system. Since we’re using interaction
operators to show multiple paths, it is very similar to the previous figure but
refences a different interaction fragment.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 176

Case Study: Architectural Design

Figure 189: Start Up Use Case Scenario 4

The referenced interaction fragment shows the SW Integrity test for the
Power Subsystem fail (Figure 190).

Figure 190: SW Integrity Test Fails Interaction Fragment

Once you have created all the diagrams, be sure to right click in each
diagram and select Auto Realize all elements.

9.3.1.3 Define Subsystem Ports and Interfaces
The next step is to use the defined messages between the sbsystems and
actors in the white box sequence diagrams to specify the interfaces.

 In the brower, right click on the WBScenariosPkg
 Select SE-Tookit > Ports and Interfaces > Create Ports and Interfaces

Recursive

This step creates ports between communicating elements (subsystems and
actors), creates interface blocks (if you’re using the agile form of the tool,

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 177

Case Study: Architectural Design

otherwise it will create interfaces) and populates them with the events sent
between them, as shown in Figure 189.

What the toolkit doesn’t do is to copy in parameters into the messages, or
at least for the most part. So editing the event receptions to ensure they
have the proper parameters is a task that you must perform manually.

 Remove all «nonNormative» events (unless, for some reason, you
decide to keep them in the specification to the subsystem)

 Walk through the events in the InterfacesPkg to be sure all the
events have the proper parameters

The clones of the events from the functional analysis that had parameters
with also have parameters; however, the events we added between the
subsystems will not. Looking though the event list, I see the following events
that must be updated to include parameter lists:

Adding the parameters should result in an event list like this:

Another thing you may face (I always seem to) is to find misspellings of the
event names I want to send. What is evConfiguration in one sequence
diagram might become evConfiguriation in another. Such misspellings or
errors will need to be manually identified and repaired as well. At this
point, you should

 walk thorough the operations in the interface blocks, looking for
mistakes such as these:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 178

Case Study: Architectural Design

Lastly, if you drew any Messages between lifelines on your sequence
diagram that are not Event Messages, then the Create Ports and Interfaces
tool will ignore those and not add them to the interface blocks.

Figure 191: Create Ports and Interfaces Recursive outcome

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 179

Case Study: Architectural Design

9.3.1.4 Group Services Together into Use cases

By this point, we have:

• Identified subsytems

• Allocated operations and value properties to subsystems

• Allocated requirements to subsytems, including created subsystem-
level derived requirements

• Drawn white box sequences

• Created ports and interfaces

The next step is to define – where appropriate – subsystem-level use cases.

It would be quite unusual for two different approaches to be both taken to
allocating features to subsystems. In this Deskbook, we are doing so for
pedagogical reasons. The Start Up use case is being done bottom-up and
the (yet to come) Control Air Surfaces allocation will be done top-down.
Usually, only one of these approaches would be taken for a given system.

Nevertheless, we’ll try to show how this would work for the bottom-up
approach and later for the top-down approach.

For the bottom-up approach, let’s review what we’ve done so for in terms
of allocations. First, we took our merged functional analysis and used the
allocation wizard to allocate the features (attributes, operations, and
events) to various subsystems. Then we created white box sequence
diagrams to show how the allocated subsystems collaborate together to
realize the system level use case scenarios.

At this point, we’ve allocated quite a number of elements to the
subsystems. For example, the Figure 192 shows the model features
allocated to the ACES_Management subsystem.

Figure 192: Model features allocated to the ACES_Management subsystem

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 180

Case Study: Architectural Design

Note that we haven’t done the white box allocation for the Control Air
Surfaces use case yet, nor added features from the other (as yet
unanalyzed) use cases. You can see that it is already getting a bit complex.
Grouping these features up into use cases makes sense from an
organization point of view. On the other hand, very little is allocated to the
hydraulic system, so we may not even need to create subsystem level use
cases for that subsystem.

It’s time to create some subsystem-level use cases to organize the
requirements and features allocated to the ACES_Management subsystem.

 In the browser right-click on the DesignSynthesisPkg >
ArchitecturalDesignPkg > ACESDeompositionPkg >
ACES_ManagementPkg and select Add New > General Element >
Package.

 Name this package UseCasePkg.
 Right click on UseCasePkg and select Add New > Diagrams > Use

Case Diagram.
 Name this diagram ACES_Management Use Cases.

Now we must think about what use cases the subsystem must fulfill in order
to satisfy the allocated requirements (see Table 3) and features. Remember
all features and requirements allocated to the subsystem must (if we’re
defining subsystem use cases here) be further allocated to its use cases.

Now create the use case diagram for the subsystem as shown in Figure 193.
A few things to note about the diagram.

• The AMS actor is the original actor located in the project-level
ActorPkg package.

• The other actors are the peer subsystems
o aMS_Power18 represents the ACES_Power subsystem
o aMS_Hydraulics represents the ACES_Hydraulics subsystem
o aMS_Control_Surface represents ACES_ControlSurface

subsystem

18 The name of the subsystem is prefaces with “a” to indicate that it is being
considered as an actor in this context.

• These actors are stereotyped as «internal» to clearly differentiate
them from the system actors19.

• The use cases are stereotyped as «Subsystem» to indicate their
scope of concern.

Figure 193: ACES_Management Subsystem use cases

9.3.1.5 Allocation Requirements to the Subsystem Use Cases
The next step is to allocate the requirements allocated to the subsystem to
the use cases own by that subsystem. The easiest way to do that is to create

19 This is a stereotype I added to the CommonPkg package and it applies only to
Actors.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 181

Case Study: Architectural Design

a matrix that shows all the requirements allocated to the subsystem but
also shows the use cases. Then walk through those requirements, one by
one, and decide which subsystem use case it should be allocated to.

Such as matrix is a simple extension of the subsystem-requirements
allocation matrix. The first difference in the layout definition is that the
From element includes Block, Class and Use Case, rather than just Block and
Class. The second difference is that in the Cell Element Types both Allocation
and Trace are selected. The requirements are allocated to the susbsystem
but will be traced to the use case, although note that in both cases the
relation comes from the block or use case and ends on the requirement.
This matrix layout definition should be placed in the CommonPkg.

The view, placed in the package created to hold the ACES_Management
subsystem specification, uses the subsystem package as the From scope and
the RequirementsAnalysisPkg and the To scope.

The matrix view showing the allocation to the ACES_Management
subsystem and the trace to its use cases is shown below. Note the different
icons for the allocation and trace relation in the matrix. Also be aware that
the rows and columns are switched for the matrix.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 182

Case Study: Architectural Design

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 183

Case Study: Architectural Design

Figure 194: ACES_Management Use Cases Requirements Trace

9.3.2 Top-Down Approach: Control Air Surfaces Use Case
The top-down approach works by directly creating the subsystem-level use
cases directly from the system level use case. The «include» relation is used
for this. The subsystem level use cases represent coherent sets of
requirements and behaviors that apply to a single subsystem. Once
identified, the subsystem use cases are allocated to the subsystems and
they are then elaborated in the same fashion as the system use cases.

We recommend that there is one (or possibly more) diagram for each
system level use case’s decomposition to subsystem use cases. If the
diagram is not too complex, then the allocations to the subsystems may be
included on this diagram as well. Otherwise, simply create another view

(diagram or table) for the allocation. These diagrams and use cases need
some place to live so in the DesignSynthesisPkg > ArchitecturalDesignPkg
create a new package named SubsystemUseCasesPkg. The use case
diagrams that show the relations of the system and subsystem use cases will
live here but later the subsystem use cases themselves will be moved into
the packages that specify their owning subsystems. This package will also
hold the internal actors (representing the peer subsystems.

9.3.2.1 Decompose Use Cases
The Control Air Surfaces use case decomposition is shown in Figure 195.
There are a few noteworthy aspects to the diagram. First, the actors include
both the system actors (AMS and Pilot_Display) but also the internal actors,
which are stand-ins for the peer subsystems.

Figure 195: Decomposition of the Control Air Surface Use Case

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 184

Case Study: Architectural Design

Next, note that there are two directly included subsystem level use cases
derived from the Control Air Surfaces use case. The first is Coordinate
Surface Movement. The other is Move Control Surface. This latter use case
is stereotyped both «Subsystem» and «Abstract». This latter stereotype is
meant to indicate that the use case is really just a place holder and contains
no requirements or specification itself; rather it is there only to help
organize the use cases derived from it20.

These use cases, Rotate Control Surface, Rotate Trim Tab, and Extend
Control Surface are specializations of Move Control Surface. Why use this
intermediary use case when it doesn’t contain any actual requirements? The
reason is that each of these specialized use cases associates with three
internal actors: aManagementSubsystem, aHydraulics, and aPower.
Because of the way specialization works, each of the specialized subsystem
use cases inherits the relations to these actors, so that we don’t have to
draw these relations to each of the more specialize use cases. Esssentially, it
is being used as a “notational convenience.”

Each of these subsystem use cases is allocatable to a single subsystem. This
allocation is shown in the next diagram, Figure 196.

20 This stereptype applies to use cases only and is also put into the CommonPkg.

Figure 196: Allocation of subsystem use cases

Once these use cases are allocated to subsystems, they should be moved to
the packages holding the subsystem blocks. This allows each of these
packages to hold the specification of that subsystem. This organization will
be important later when we hand off these specifications to the subsystem
teams for further design and implementation. Be aware that the Move
Control Surfaces use case, being abstract, is not allocated and so can remain
in the SubsystemUseCasesPkg.

Now, for each subsystem, we draw one (or more) use case diagram to show
the set of use cases allocated to the subsystem, similar to Figure 193. Since
we’ve only done a little of the work, this diagram for the
ACES_ControlSurface will be a bit sparse. As we repeat this procedure with
other system level use cases, we’ll add other subsystem level use cases
here, such as Configure Movement, Perform Self Test, and so on which we

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 185

Case Study: Architectural Design

anticipate will be detailed later. This is shown in Figure 197. Some yet-to-be
identified use cases are shown, just to give you a hint of what might be
identified in further iterations. At this point, these other use case are
notional. Also note that the relations between Rotate Control Surface use
case and the actors are inherited because it is a specialization of Move
Control Surface use case.

Figure 197: ACES_ControlSurface Subsystem Use Cases

9.3.2.2 Allocate Requirements to the Subsystem Use Cases
Using the same matrix layout as in Section 9.3.1.5, we create a matrix view
of the requirements relevant to the ACES_ControlSurface subsystem.
The matrix view below shows the requirements allocated to the
ACES_ControlSurface subsystem and traced to its use cases (with Toggle
Empty Rows toggled off). Note the different iconic symbol in the cells

identifying the different relations (allocation to the subsystem and trace to
the use case).

Figure 198: Requirements traces to ACES_ControlSurface use cases

You should also note that a number of control surface requirements –
specifically those related to trim tabs and extension/retraction – are not
represented here because they are allocated to the

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 186

Case Study: Architectural Design

ACES_ControlSurfaceWithTrim and ACES_ControlSurfaceRetracting
subsystems, respectively.

9.3.2.3 Define Subsystem Use Case Analysis Context
Let’s continue our focus on the ACES_ControlSurfaces subsystem use case
Rotate Control Surface. Here we will define some scenarios for the use
case.

Before we do that, we’ll need to create a place to hold the functional
analysis of the subsystem use cases that require it.

 In the DesignSynthesisPkg > ArchitecturalDesignPkg >
ACESDecompositionPkg > ACES_ControlSurfacePkg create new
nested package, named FAPkg (for Functional Analysis Package).

 Inside of the new FAPkg, create a nested package for the analysis of
this specific use case, named RotateSurfacesPkg. It is in this
package that we will analysis this use case.

Figure 199: Package for analyzing the subsystem use case

Now we must add the use case context block diagram to this package, just
as we did for the system use cases. Although in this case, we’ll need to do it
manually as the toolkit won’t help us here. Be sure that when you specify
the ports that you check the Behavior (all) and the Conjugated (actor blocks)
check boxes on the proxy port features dialogs. Since the Ports and
Interfaces wizard will create some of these ports later, you can defer adding
the ports and connectors until after you’ve run the wizard, if you prefer.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 187

Case Study: Architectural Design

Figure 200: Rotate Control Surface Use Case Execution Context

We also need to add an execution component to support the simulation of
this use case.

 In the DesignSynthesisPkg > ArchitecturalDesignPkg >
ACESDecompositionPkg > ACES_ControlSurfacePkg > FAPkg >
RotateControlSurfacesPkg package add a new component. Name
this component RCS_Component

 In the RCS_Component, add the packages to support the execution,
including the InterfacesPkg > DataTypesPkg package (we’ll need
this later)

 Rename the component configuration Animate.
 Set the Settings of the Animate configuration of the component to

support animation (use your own selected compiler though):

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 188

Case Study: Architectural Design

The structure of the current structure of the ACES_ControlSurface
subsystem packages looks like this:

Figure 201: Current structure of the ACES_ControlSurface subsystem packages

We can use any of the alternative methods from Figure 4 but we’ll continue
to use the Interaction-based approach. That means the next step is to
define scenarios.

9.3.2.4 Define Subsystem-Level Scenarios
In this set of scenarios, there are some sub-activities that go one in parallel,
and we’ll draw these as separate sequence diagrams references by the main
flows.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 189

Case Study: Architectural Design

The first is that there are requirements ACES system to report the surface
positions on a periodic basis. This is passed down to the individual control
surface subsystems to report their own positions on a periodic basis.

Figure 202: Interaction fragment for Timed Position Report

Next, when the subsystem is operational but not currently responding to a
movement command, it must be performing stationkeeping. This means
that the system must periodically make small adjustments to the surface
position to keep that position correct even in the face of changing forces.
Here’s that interaction fragment.

Figure 203: Interaction fragment for Stationkeeping

Now we can look at the main scenarios for this use case. The first, shows
what happens when the subsystem receives a valid movement command:

Figure 204: Rotate Control Surface Scenario 1

The second main scenario shows what happens when a command value is
sent that is out of range:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 190

Case Study: Architectural Design

`
Figure 205: Rotate Control Surface Scenario 2

Note that the error passed in Scenario 2 comes from the ERROR_TYPE we
defined in the Start Up use case package.

The last scenario in this set show what happens if either the commanded
position is not achieved with enough accuracy or if the command position is
achieved outside of the timing constaints:

Figure 206: Rotate Control Surface Scenario 3

As before the error passed in Scenario 3 comes from the ERROR_TYPE
previously defined for the Start Up use case.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 191

Case Study: Architectural Design

9.3.2.5 Define Subsystem Ports and Interfaces

At this point the two different workflows join and proceed together. First,
we’ll use the Create Ports and Interfaces tool of the SE Toolkit as before.
Since the interface blocks are defined in the RCS_InterfacesPkg, the toolkit
will update these interface blocks with the events. Then we’ll update the
parameters of the events.

 Go to each of the sequence diagrams in the previous section, right
click in the diagram and select Auto Realize All Elements. This will
add the elements to the model from the sequence diagram.

 Right click the DesignSynthesisPkg > ArchitecturalDesignPkg >
ACESDecompositionPkg > ACES_ControlSurfacePkg > FAPkg >
RotateControlSurfacesPkg > RCS_ScenariosPkg and select SE-
Toolkit > Ports and Interfaces > Create Ports and Interfaces Recusive

 Go to DesignSynthesisPkg > ArchitecturalDesignPkg >
ACESDecompositionPkg > ACES_ControlSurfacePkg > FAPkg >
RotateControlSurfacesPkg > Events and add the parameters to the
events used in the sequence diagrams.

 Edit the event parameters as shown below. This may require using
the Select option in the Type drop down list to navigate to the high-
level InterfacesPkg > DataTypesPkg package.

Last in this section, we must manually add the flows to the interface blocks,
since the AutoRealize All Elements will not realize either of the power and
pressure flows that begine each scenario. Note that they may (or may not)
affect the execution, but they are still an important interface that should be
specified.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 192

Case Study: Architectural Design

 Right click on the aaRCS_Hydraulics actor block in the browser and

select Add New > Ports and Flows > Flow Property. Name this
property hydraulic_pressure (the default type of int is fine).

 Right click on the aaRCS_Power actor block in the browser and
select Add New > Ports and Flows > Flow Property. Name this
property power (the default type of int is fine).

 Add both power and hydraulic_pressure flow properties to the use
case block Uc_RotateControlSurface.

 Add the pressure flow property to the interface block
iUc_RotateControlSurface_aaRCSHydraulics. Set its direction to in.

 Add the pressure flow property to the interface block
iUc_RotateControlSurface_aaRCSHydraulics. Set its direction to in.

 Set the stereotype of all of these flow properties to
«directedFeature»

The features of the blocks and interface blocks should now look like Figure
207.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 193

Case Study: Architectural Design

Figure 207: Block features for the Rotate Control Surface use case

9.3.3 Derive Subsystem Use Case State Behavior
We can now construct the state machine for this subsystem use cases. In
this case, we’ll build the ACES_ControlSurface subsystem use case Rotate
Control Surface state machine, but we have a few others that we’ve
identified that we could use as an example, such as the ACES_Management
subsystem use case Coordinate Surface Movement.

The figure below shows the state machine for the Rotate Control Surface
use case block:

Figure 208: Rotate Control Surface use case block state machine

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 194

Case Study: Architectural Design

Because the image may be a bit small, here are two areas of the state
machine zoomed in. First the Waiting_for_Movement_Command state:

and then the command processing part of the state machine:

and the part to its right:

Before this can be executed, the following elements must be defined:
Constants

• STATIONKEEPING_INTERVAL

• MAX_MOVE_TIME

• MEASUREMENT_INTERVAL

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 195

Case Study: Architectural Design

• SURFACE_POSITION_JITTER_TOLERANCE

• SURFACE_POSITION_TOLERANCE

The constants are just symbolic names used to represent important
unchanging values.

Value Properties

• SurfaceID surfaceID

• int measured_position

• int commanded_position

• int proposed_position (we’ll need this later…)

• Second elapsed_time (note: Second is defined in the SysML profile)

• bool ok

Value properties represent information that generally varies when the
system is operational.

Operations

• int getMeasuredPosition()

• void Adjust_Position(int pos)

• bool Check_Cmd_Range(int pos)

• void Start_Movement_Timer()

• void Move_To(int pos)

• Second Stop_Movement_Timer()

• int Determine_Position_Error()

• bool Check_Movement(int cPos, int mPos, Second elapsed)

Operations, for the most part, represent system or subsystem functions that
are important enough to be exposed at this level.

Defining the Constants
The constants are all relevant to the architecture and so will be stored in the
InterfacesPkg > DataTypesPkg package. The STATIONKEEPING_INTERVAL
is clearly needed to meet the stationkeeping requirements but its value is
not specified. This means that a requirement is missing – so in a real project,
we’d have to go back to the subject matter expert (or do experiments in the

lab) to determine the value and add it as a requirement. For our purposes,
we’ll do it every 800 miliseconds so we’ll define it as the value of 800. In the
ValueType category in the InterfacePkg > DataTypePkg, add the item as a
Language Kind with the declaration

#define %s 800

In similar fashion, define MAX_MOVE_TIME as with the value 3000 (3
seconds) and MEASUREMENT_INTERVAL as the value 1000.

The constant SURFACE_POSITION_JITTER_TOLERANCE is there to
determine how big an error justifies a correction. This is not specified in the
requirements, so we’ll have to go back to our subject matter experts (or the
lab), determine a reasonable value, and add a new requirement. For our
purposes (simulation), we’ll just use the value ±2:

#define %s 2

The constant SURFACE_POSITION_TOLERANCE is a larger value that means
that if the deviation is this much, then we need to raise an error. Our
subject matter experts need to weigh in the the actual value we need to
require but for our purposes here, we’ll use ±4.

define %s 4

Defining the Value Properties
Simply add the numeric value properties to the Uc_RotateControlSurface
use case block using the default type (int) and assign a initial value of zero.
ok should be defined as a Rhpboolean. For the surfaceID value property,
we’ll need to type it properly and assign it an initial value. In this case, I
assigned the value Left_Inboard_Aileron.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 196

Case Study: Architectural Design

Defining the Operations
As before, it is important to remember that we’re implementing these
functions for the purpose of simulation support, not specifying the internal
design.

int getMeasured_Position()
The intent of this operation is to get the actual measured position. Since
we’re just simulating the system, here is would be usedful to add some
randomness, so we’ll include an implementation that adds a small random
value. Sometimes it will be enough to trigger stationkeeping movement but
not always.

void Adjust_Position(int posInc)
This just augments the reported measured position with an offset. This is
used to simulate and adjust when the measured position differs from the
commanded position.

bool Check_Cmd_Range(int pos)
To add this operation, we’ll also need to add two value properties to the use
case block to represent the low (low_position_limit) and high
(high_position_limit) set limits (actually set during configuration of the
subsystem). When you define these value properties, set their initial values
to -40 and 40, respectively. This function returns TRUE if the commanded
value is within the configured limits of the control surface.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 197

Case Study: Architectural Design

void Start_Movement_Timer()
We won’t actuall time anything so this operation can have an empty
implementation.

void Move_To(int pos)
This operation simulates the movement of the control position to its
commanded position. Since we’re not simulating the internal design, it is
enough to simply assign the commanded value to the measured value.

Second Stop_Movement_Timer()
This operation needs to return the time required for the movement to take
place. In this situation, we’ll just use a random number between 0 and 3100
and then divide it by 1000 to get the time in seconds (3.1 seconds). This
means that usually it will be in range but occasionally it will not.

int Determine_Position_Error()
This function returns the error between commanded and measured
positions.

RhpBoolean Check_Movement(int cPos, int mPs, Second elapsed)
This function checks the success of the movement.

Instrumenting the aaRCS_ACES_Management Actor
In this execution model, the only subsystem actor block relevant is
aaRCS_ACES_Management, as aaRCS_Hydraulics and aaRCS_Power don’t
receive or emit events. Create the following state machine for the
aaRCS_ACES_Management actor block:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 198

Case Study: Architectural Design

Figure 209: aaRCS_ACES_Management actor block state machine

This will enable you to run the use case state machine by driving the actors
with the events moveTheSurface, failTheSurface and disableTheService.

9.3.4 Running the subsystem use case model
Compile and run the RCS_Component::Animate configuration that we
defined in Section 9.3.2.3.

Note: For the compilation to succeed, the events defined in the
InterfacesPkg should be in a subpackage (here there are in the
SubsystemInterfacesPkg. They cannot be in the InterfacesPkg directly if the
DataTypesPkg is a subpackage.

Here is an example output scenario, first driving the movement to position
20 (legal) to position 80 (illegal) and then to position -10 (legal). There are a
number of other paths you should execute to ensure the quality of the
model and its requirements.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 199

Case Study: Architectural Design

Figure 210: Sample execution of the Rotate Surface subsystem use case model

These sequence diagrams can be converted to use the actual subsystem
elements using the technique outlined in Section 9.3.1.2 on page 171. To
recap:

Create an appropriate package within the WBScenariosPkg to hold the
copied sequences. Then, for each newly added sequence diagram

 Copy the subsystem use case analysis sequence diagram to the
newly created package. Rename to add “WB” to the name to
indicate it is a white box (architecture-dependent) scenario.

 Add the actual actors and subsystems to the diagram
 Retarget each local use case actor block with the actual actor or

subsystem block (you can use the SE-Toolkit > Add Subsystems tool
to assist)

 Change the source and target of the messages to reflect the real
elements involved (selecting the messages and use the left and right
arrow keys is the easiest way)

 If there are referenced sequence diagrams used, be sure to update
the references to the copied and updated white box scenarios

 Once complete, realize the messages on the converted sequence
diagram by right clicking on the diagram and selection Auto Realize
All Elements.

If you are now going to add the scenarios from the Rotate Control Surface
use case model, create the package DesignSynthesisPkg >
ArchitecturalDesignPkg > WBScenarios >
ControlAirSurfacesWBScenariosPkg to contain them (since the subsystem
Rotate Control Surface use case is derived from the system level use case
Control Air Surfaces).

If we do this for the sequence produced for the Rotate Control Surface use
case, we get a WBScenariosPkg structure that looks like this:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 200

Case Study: Architectural Design

Figure 211: White box architectural scenarios

Here is a white box architectural version of scenario 1 of the system use
case Control Air Surfaces. Compare to Figure 120 on page 94.

Figure 212: White box version of Control Air Surfaces Scanario 1

Next, we can repeat this process for Scenario 2:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 201

Case Study: Architectural Design

Figure 213: White box version of Control Air Surfaces Scenario 2

The white box version of the normal operation interaction fragment is
shown below:

Figure 214: White box version of the Normal Operation interaction Fragment

The white box version of Scenario 3 is simple:

The last scenario is Scenario 4 in which unflyable errors are discovered.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 202

Case Study: Architectural Design

Figure 215: White box version of Scenario 4

Finally, the details of the white box version of the unflyable interaction
fragment are shown in Figure 216.

Figure 216: White box version of the unflyable interaction fragment

You will also need to do this for any subsystem use cases case well. Here is
the white box architectural version of the Rotate Control Surface scenario 3
from Figure 206. This replaces the stand-in actors used for simulation
purposes with the actual actors.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 203

Case Study: Architectural Design

Figure 217: White box Rotate Control Surface use case scenario 3

The similarly updated referenced interaction fragments are shown below.

Figure 218: Architectural version of Timed Position Report interaction fragment

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 204

Case Study: Architectural Design

Figure 219: Architectural version of the Stationkeeping interfaction fragment

Note that the lifelines are the actual subsystems and not the original local
stand-ins used for the functional analysis of the subsystem use case. Also
notice that the referenced sequence diagrams on Figure 217 reference the
newly created and modified copies of those interaction fragments, not the
original.

9.4 Create/Update Logical Data Schema
In this task, we will be creating the architectural data and flow schema for
the architecture. This schema must take into account all the analyzed use
cases as well as the specified architecture. This step is crucial because it will
be a hugely important input into the definition of the system interfaces,
performed in Section 9.5.

The good news is that many of the data types can just be copied, renamed
and used from these previous analyses. The bad news is that we cannot just

reuse the data schema diagrams, as they will refer to the original (and use-
case specific) types. These diagrams must be manually recreated in the
project-level TypesPkg. In addition, as we define additional use cases, we
are likely to identify data types that must be (manually) merged because
they must take into account multiple use cases and additional
requirements.

Reusing System Functional Analysis Types
First, let us consider the types that can be directly reused from the system
functional analysis. The previoius task of merging the functional analysis
moved many – if not all – of the types.

As a default, you can create diagrams with the same organization of
elements as the original data schema diagrams (as block definition
diagrams, of course) but using the new system types instead of the original
types from the functional analysis. Compare Figure 128 with Figure 220,
below.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 205

Case Study: Architectural Design

Figure 220: System Data Schema for control surface positions

We must also replicate the Start Up Data Schema diagam (Figure 80) using
the elements in the InterfacesPkg > DataTypesPkg (Figure 221). Again, this
means updating all references to the types used in the use case functional
analysis and replacing them with references to their counterparts in the
DataTypesPkg. This includes the types referenced with relations
(composition and dependency in this case) and the types used to specify the
attributes and value properties.

Figure 221: Start up use case architectural type schema in TypesPkg

Reusing Types from Subsystem Use Case Analyses
Now, let’s look at the types who structure and content were identified
during the analysis of subsystem use cases.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 206

Case Study: Architectural Design

In this case, no new types were identified in the subsystem use case analysis
no nothing must be added for the schema.

9.5 Define / Merge System Logical Interfaces
System logical interfaces include both subsystem-actor and subsystem-
subsytem interfaces. These will ultimately come from the system use case
functional analysis for use cases not decomposed, or from the detailed
analysis of the subsystem use cases for those use case which are
decomposed. These are the logical interfaces between these contextual or
architectural elements and will be captured as interface blocks. Physical
interfaces will be derived from these in the Handoff Worflow, which is
described in detail in Section 10.

If we’ve done a good job in defining the white box scenarios, then they
contain all the information we need. It is important to not only identify the
events that get passed around the archtictural element; we must also
identify and characterize the data they carry and any separate flows not
carried by events. This means that it is crucial that this information be
provide in the sequence diagram and the types (identified in the previous
section) be fully specified in all their logical glory.

Note that the Create Ports and Interfaces tool creates the events as directed
features in the interfaces but does not necessarily include all the types
(depending on how the sequences from which the interfaces were derived
were created). You must review these identified services thorough to
ensure they are complete with data types.

 Right click on the DesignSynthesisPkg > ArchitectureDesignPkg >
WBScenariosPkg and select SE-Toolkit > Ports and Interfaces >
Create Ports and Interfaces Recursive

 Look at the created interface blocks in the InterfacesPkg:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 207

Case Study: Architectural Design

 Walk through these interface blocks and ensure that for each
service the parameter list matches the sequence diagram call. For
example, in the figure above the following events are missing
parameters that will need to be added (by editing the referenced
events (not the event receptions)). You can find the appropriate
parameter lists be going to the originating white box scenarios in
the WBScenariosPkg. This must be done for all interface features
generated using the “bottom up” approach discussed earlier. You

may find that you need to create new types such as
SurfaceConfiguration and SWStatus.

o iACES_Management_ACES_ControlSurface
▪ Command_to_Position()
▪ Updated_Position()
▪ herezaConfiguration()
▪ SW_Status()

o In the case of the Command_To_Position() event reception,
the following parameters should be added:

▪ id: SurfaceIDType
▪ pos: int

o Also identify misspellings and merge together any features
that are synonymous. For example in the
iACES_Management_ACES_ControlSurface there is both a
Command_To_Position() and Command_to_Position()
event reception that differ only in the case of the _to_ part
of the name. These are clearly meant to be the same.
Delete the one with the lower case “_to_”. Also delete the
corresponding event reception from the
ACES_ControlSurface subsystem block.

 Add any flows on the diagrams as flow properties to the appropriate
interface blocks. In the case, add the following flow properties

o A flow named power from the ACES_Power subsystem to
the ACES_ControlSurface subsystem,defined as of type
Ampere (from the SysML profile).

▪ Add this to the iACES_Management_ACES_Power
interface block.

▪ Stereotype this flow as a «directedFeature» with a
direction of in.

▪ Add the flow property to both the ACES_Power
and ACES_ControlSurface subsystems

o A flow named hydraulic_pressure from the
ACES_Hydraulics subsystem to the ACES_ControlSurface

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 208

Case Study: Architectural Design

subsystem defined as being of type Pascal (from the SysML
profile).

▪ Add this to the
iACES_Management_ACES_Hydraulics interface
block.

▪ Stereotype this flow as a «directedFeature» with a
direction of in.

▪ Add the flow property to both the
ACES_Hydraulics and ACES_ControlSurface
subsystems

o Add a flow from the actor Aircraft_Power to the
ACES_Power subsystem.

▪ Name this flow power.
▪ Add it to the iACES_Power_AircraftPower interface

block.

▪ Stereotype this flow as a «directedFeature» with a
direction of in.

▪ Add the flow property to the Aircraft_Power
actor

o Add a flow from the actor Aircraft_Hydraulics to the
ACES_Hydraulics subsystem.

▪ Name this flow pressure.
▪ Add this flow to the

iACES_Hydraulics_Aircraft_Hydraulics interface
block.

▪ Stereotype this flow as a «directedFeature» with a
direction of in.

▪ Add the flow property to both the
Aircraft_Hydraulics actor

o Add a new block diagram to add the new ports connecting
the ACES_ControlSurface, ACES_Power and
ACES_Hydraulics subsytems. This is because the Create
Ports and Interface wizard did not create these interface
because there is only flows between these subsystems and
no events.

▪ In the DesignSynthesisPkg > ArchitectureDesignPkg
> ACES_DecompositionPkg add a new block
definition diagram name ACES Flow Connections

▪ Drag the ACES_ControlSurface, ACES_Power and
ACES_Hydraulics onto the diagram

▪ Add proxy ports and interface blocks, as shown in
Figure 222

Figure 222: Architectural Flow interfaces and Connections

▪ Move (not copy) the newly created interface
blocks from the DesignSynthesisPkg >
ArchitectureDesignPkg > ACES_DecompositionPkg
package to the InterfacesPkg.

Once this is all done, the updated interface blocks features should be
updated with parameters and types and look like Figure 223.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 209

Case Study: Architectural Design

Figure 223: Interface Blocks updated with parameters and types

9.6 Analyze Dependability
We won’t perform this activity in this Deskbook in order to keep it a little
shorter. We’ll just say a three of things about it here.

First, as we’ve mentioned before, dependability analysis is an ongoing
parallel activity to requirements and design. It ensures that the created
engineering data and work products meet the safety, reliability, and security
needs of the customer. As we make design decisions – and architecture is
heavily design focused – we introduce the possibility that 1) we didn’t
properly address concerns already identified, and 2) we introduced new
concerns. Therefore, as we define and evolve the architecture, we must
maintain and update our dependability analyses.

Secondly, if you’re using Rhapsody to perform such dependability analysis,
then you need to have a place to put it. Previously, we added a package for
each use case in the functional analysis package to hold all use case detail.
We added subpackages to organize this detail, including a Safety Analysis
package. We will do the same here. Since this is a type of architectural
analysis, we’ll add it into the ArchitecturalAnalysisPkg Package as shown in
Figure 224.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 210

Case Study: Architectural Design

Figure 224: Architectural Dependability Analysis

Thirdly, the result of such analysis at the architectural level is usually to
generate more requirements. These requirements are due to the
interaction of the existing safety requirements and the addition of design
and technology decisions. These newly identified requirements are
allocated to subsystems and result in work in the parallel activities of
Create/Update Subsystem Requirements and Allocate Use Cases to
Subsystems (see Figure 10 on page 19).

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 211

Case Study: Handoff to Downstream Engineering

10 Case Study: Handoff to Downstream Engineering

The purpose of the Handoff to Downstream Engineering is to

• Refine the system engineering data to a form usable by downstream
engineers

• Create separate models to hold the prepared engineering data in a
convenient organizational format

• For each subsystem, work with downstream engineering teams to
create a deployment architecture and allocate system engineering
data into that architecture

It is crucial to understand that the handoff is a process and not an event.
There is a non-trivial amount of work to do to perform the above objectives.
As with other activities in the Harmony aMBSE process, this can be done a
single time, but is recommended to take place many times, in an iterative,
incremental fashion. It isn’t necessarily difficult work, but it is necessary
work for project success.

The refinement of the systems engineering data is necessary because to this
point it has been primarily focused on its conceptual nature and logical
properties. What is needed by the downstream teams are the physical
properties of the system – along with the allocated requirements – so that
they may design and construct the physical subsystems.

The workflow for this activity is shown in Figure 13 on page 22 but is
replicated below in Figure 225.

Figure 225: Handoff Workflow

10.1 Gather Subsystem Specification Data
This task refers to the gathering together of the information to support the
hand off. However, if you’ve organized the model how the Deskbook
recommends, it’s already done! Good for you.

10.2 Create the Shared Model
The SE Toolkit can create the basic struture of the Shared and subsystem
models for you. The tool kit provides automation here and the created

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 212

Case Study: Handoff to Downstream Engineering

models follow the recommended model structure supported by the SE
Toolkit.

 To be included in the automatic creation of the Shared model,
packages must be tagged with includeInSharedModel (of type
Boolean with the value set to TRUE).

 Mark the following packages with the includeInSharedModel tag
o RequirementsAnalysisPkg
o InterfacesPkg
o TypesPkg

 To be create a relevant subsystem model for hand off each of the
relevant subsystem packages must be marked with the tag
isSubsystem (of type Boolean with the value set to TRUE).

 Mark the following packages with the isSubsystem tag
o ACES_HydraulicsPkg
o ACES_PowerPkg
o ACES_ContolSurfacePkg

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 213

Case Study: Handoff to Downstream Engineering

o ACES_ManagementPkg
 In the browser, right click on the project (at the top) and select SE-

Toolkit > Architecture Tools > Create Handoff Models.

This results in the creation of the shared and subsystem models. A project
set is then loaded into Rhapsody with the system engineering model and
the created models as separate projects. This is to facilitate the setting of
properties. The models can still be loaded and worked on separately, as
desired. Figure 226 shows the starting model organization for the the
Shared model and one of the subsystem models (the other subsystem
models are organized similarly).

Figure 226: Models created with Create Handoff Models tool

You should also note these the created models are UML models, rather than
SysML. This is because we anticipate that a great deal of the downstream
work will proceed in software. Nevertheless, if desired (and we’ll see later
why it might be, you can always add the SysML and HarmonySE profiles.

10.2.1 Define the Physical Interfaces
The primary purpose of the Shared model is to contain elements relevant to
multiple subsystems. This includes the physical interfaces between
architectural elements and common physical types passed by those
interfaces.

 At this point, close Rhapsody with the project list and open the
Shared model which is located in the file system as a folder under
the folder containing the SE project:

Interface blocks inherently contain specifications of services or flows. So far,
all the interface blocks in the InterfacesPkg > SubsystemInterfacesPkg
package (contained by reference in the Shared model) specify services with
event receptions, which may or may not carry data. These serve as the
logical specification of the interfaces. However, the subsystem teams are
going to do detailed design and implementation of actual, physical
subsystems and must use the physical interfaces of those systems. The

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 214

Case Study: Handoff to Downstream Engineering

purpose of this task is to derive the physical interface specifications from
the logical ones.

This task produces two related, but distinct work products. The first is the
specification of the actual interfaces, whether they be message passing,
protocol-oriented, electrical, or mechanical. That is the subject of this
section. The second part is the specification of the physical data schema
which includes physical details of the data, such as bit mapping of values.
This latter work product will be the subject of Section 10.2.2.

Three distinct interfaces are going to be used in this system. The first is the
messaging interface which includes an electrical and software protocol
specification, together known as the Control Bus Protocol (CBP). Then there
are also the power and hydraulic interfaces. The following sections will
discuss these in detail.

10.2.1.1 Control Bus Protocol
For most of the interfaces, the system will use a custom communications
protocol known as the Control Bus Protocol which runs on top of an RS-232
physical electronics layer. Since the RS-232 electronic specification is
available elsewhere (see, for example https://en.wikipedia.org/wiki/RS-
232), we will focus exclusively on the software aspects of the protocol.
Almost all the services currently defined as events in the interface blocks
will be refined from this logical realization to a physical message
implementation. We will do that in this section.

Useful Stereotypes
The following stereotypes are used to formally specify the physical message
schema. These all the specification of the actual bit and byte structure of
the message features. These stereotypes should be added to the
PhysicalInterfaces package so that they are visible to the subsystem models.

«bitmapped»
This stereotype is used for value properties/attributes, variables, or
registers that use bit fields to represent information.

It has tags that allow the specification and usage of the bit fields, including,
if applicable, starting address in a memory map.

«bytemapped»
This stereotype is used for value properties/attributes, variables, and
registers that are byte-mapped, including, if applicable, start address in a
memory map.

https://en.wikipedia.org/wiki/RS-232
https://en.wikipedia.org/wiki/RS-232

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 215

Case Study: Handoff to Downstream Engineering

Example
Below, I’ve shown SampleClass that has three attributes. statusField is bit
mapped with 3 fields held in bit combinations. measureStatus is a hardware
register in a memory map (at address 0A00-01FE) that is 1 byte in size and is
a write-only hardware register. rangedPressure is an example of a ranged
real value, whose valid range is -100.00 kP to +100.00 kP, but is held as a
scaled 32-bit integer value. The stored value is 100 times the actual value
and only the integral part is stored. Thus, an actual value of -32.98 kP would
be stored as an integer value of -3298.

Defining the protocol

 Add two packages to the PhysicalInterfacesPkg.
o PhysicalTypesPkg will hold base types used by the protocol

messages

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 216

Case Study: Handoff to Downstream Engineering

o MessageTypesPkg will hold the message definitions

Figure 227 shows the base structure for a CBP message. All of the fields are
stereotyped as «bytemapped» so we can define the size (in bytes), it’s
position in the message, whether it is big- or little-endian, and define its
usage. In addition to this more formal specification of the bit format of the
message, the diagram contains a comment that summarizes the structure.

The command byte is 2 bytes (16-bits) in size, big-endian format and holds
one of the values of the CBP_Command enumerated type, shown at the
right of the figure. Most of these messages will have actual content fields,
which are defined in the relevant subtype.

Figure 227: Base Structure of CBP Messages

Figure 228 shows the set of CBP messages. All of the defined subtypes
provide their own contents structure.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 217

Case Study: Handoff to Downstream Engineering

Figure 228: CBP Message Types related to movement

Figure 229: Other CBP Messages

It is also possible show this as a table with message type, list of attributes,
type and description and other properties.

 In the CommonStereotypes package, add a new table layout named
Class and Attributes Table.

 In the Columns Advanced Options set the following context pattern:
o {pkg}Package*, {cls}Class, {Attr}Attribute*, {tags}Tag

 Define the columns in the Columns tab

 Create a table view in the MessageTypesPkg named Message

Attributes Table.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 218

Case Study: Handoff to Downstream Engineering

 Right click on the table view and select Features.
 In the Scope property of the General tab, set the scope to be the

MessageTypesPkg. Click on OK to close the Features dialog.
 Double click on the table view to open it.

You should see a table of the message types, their attributes, types, and
filled out tagged values. A limited snapshot of this table is shown below:

Figure 230: Message Attributes and Tags

Other properties of interest can be easily added to the table, as desired.

It is important to show how these (physical) messages related to the
(logical) services identified in the InterfacesPkg, referenced from the
systems engineering model.

 Use the File > Add Profile to Model menu item to add the
HarmonySE profile to the model (yes, it’s ok to add this to a UML
project as well. We want to use some of its features).

 In the CommonStereotypesPkg, add a new table layout named
Logical_Physical

 Add a table view in the MessageTypesPkg using the above layout.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 219

Case Study: Handoff to Downstream Engineering

 Looking at the interface blocks (they’re now classes) in the
IntefacesPkg package, walk through all the event receptions, one by
one and with the Harmony Dependency wizard, add a «represents»
relation from one of the CBP messages to the event reception.

o Ones that do not require a content payload can directly use
the base class CBPMessage since the command field will
identify which command is intended. All other messages will
have to be subclassed from CBPMessage and have their
additional contents defined.

o If no CBPMessage subtype meets the need, then add a new
one, defining its content fields and making it a subclass of
CBPMessage

When complete, every event reception in every interface block will be
represented by a CBPMessage:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 220

Case Study: Handoff to Downstream Engineering

Figure 231: Logical - Physical Schema Mapping Table

10.2.1.2 Power and Hydraulics Interfaces
Most, but not all services are modeled using event receptions in the logical
interfaces. There are some, however, that are actual flows that are modeled
as flow properties (attributes in UML). In this model, these are

• iACES_Power_Aircraft_Power::power

• iACES_Hydraulics_Aircraft_Hydraulics::pressure

• iACES_ControlSurface_ACES_Power::power

• iACES_ControlSurface_ACES_Hydraulics::pressure
The last two were added manually in the last chapter and you must move
them from the ACES_DecompositionPkg to the InterfacesPkg to see them
in the Shared model.

To provide those specifications is straightforward (far easier than the
definiiton of the CBP messages we just performed.

In the PhysicalInterfacesPkg add the following Object Model Diagram
(OMD) to create the classes

• Hydraulic_Interface_Spec

• External_PowerInterface_Spec

• External_Power_Set
o Note that this contains a frequency attribute which is of

type Hertz; this must be added to the types in the
PhysicalInterfaces package. Ampere and Pascal are
available from the SysML profile if you decide to add it to
the model.

• Drag the appropriate interface blocks from the InterfacesPkg and
add «represents» relations to those elements

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 221

Case Study: Handoff to Downstream Engineering

Figure 232: Hydraulic and Power Interfaces

Note that the stereotype InterfaceBlock is marked as Undefined. This is
because we’ve not added the SysML profile to the model. This is not a
problem but you can add the SysML profile using the File > Add Profile to
Model feature of Rhapsody to resolve it. .

10.2.2 Specify the Physical Data Schema

We defined some basic types for a number of the attributes in the
messages. Some are new, such as the CBP_Command which enumerates
the different message type command fields, and others, such as SurfaceID,
that are copied directly (and renamed slightly) from the referenced
InterfacesPkg > DataTypesPkg.

Figure 233: Some base types to support the physical data schema

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 222

Case Study: Handoff to Downstream Engineering

Figure 234: Some additional base types

10.3 Create the Subsystem Model
We created the subsystem models at the same time as the Shared model
earlier in this chapter by using the SE Toolkit automation. If you have been
doing things manually and have not yet created the subsystem models, now
is the time.

There are a number of subsystem models to elaborate but we will do only
one in this Deskbook – the Control Surface Subsystem. This was selected
because it has an interesting deployment architecture with mechanical,
electronic, and software aspects. Feel free to create the other subsystems
when you’ve completed this Deskbook.

The structure of the subsystem models is all the same. As a starting point,
the model has

• A copy (not a reference) of the subsystem specification package
from the systems engineering model

• A reference to the RequirementsAnalysisPkg of the system
engineering model (so the susbsytem can see its requirements)

• A reference to the PhysicalInterfacesPkg package of the Shared
model

• A reference to the CommonStereotypes package of the Shared
model

• An (empty) SubsystemSpecPkg to hold any additional requirements
work that must be done

• An (empty) DeploymentPkg to hold the deployment architecture.

I like to enable browser ordering (View > Browser Options > Enable
Ordering) to arrange the packages in this fashion:

Figure 235: Subsystem Model Organization

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 223

Case Study: Handoff to Downstream Engineering

I like to have a view of the requirements allocated to the subsystem. Such a
table was defined in the system model CommonPkg::Subsystem Req Alloc
Table Layout. I can include a reference to that. Complicating things just a
bit, the relation between the subsystem and the requirement is «allocate»,
which is defined in the SysML profile. So if you want to add this view, you’ll
need to add to model (by reference) the CommonPkg::Subsystem Req Alloc
Table Layout (or duplicate it) and add SysML using Add Profile to Model.

To recap, the table layout was defined using the following context pattern:

and the following columns:

If you do that, you can create a table view that shows the requirements
allocated to the subsystem:

Figure 236: Requirements allocated to the Control Surface Subsystem

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 224

Case Study: Handoff to Downstream Engineering

It is recommended that you place this table view in a package nested within
in the SubsystemSpecPkg package, rather than ACES_ControlSurfacePkg
because the latter is likely to be replaced in subsequent interations of the
Harmony aMBSE process.

 Add a package named SS_ReqModel inside the SubsystemSpecPkg
 Place the above created table in that nested package

Another option for visualization of the requirements is to create some
OMDs and add the requirements on to them. The next three figures show
how this might be done.

Figure 237: Subsystem requirements – 1

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 225

Case Study: Handoff to Downstream Engineering

Figure 238: Subsystem Reqauirements - 2

Figure 239: Subsystem Requirements - 3

If you draw these diagrams, they should also be placed in the
SubsystemSpecPkg::SS_ReqModel package.

10.4 Define the Interdisciplinary Interfaces
This and the next section deal with the subsystem deployment architecture.
The deployment architecture involves the

• Identification of the design work products (which we’ll call
components here) of different engineering disciplines

• The definition of the interdisciplinary interfaces between these
components

• The allocation of requirements to the different components

What we do not want to do is to define the structure of the software,
mechanical, electronic, hydraulic or pneumatic aspects; we have
engineering specialists to do that after the hand off is complete. We want to
specify these component just enough that we can do a good job of the tasks
listed above. Specifically, this means that we will not define the internal
software, mechanical or electronic structure here. That is important. Leave
that works for the experts in those disciplines.

 In the DeploymentPkg, add a new Object Model Diagram (OMD)
named Deployment Architecture.

 Fill out the diagram as shown in Figure 240

Figure 240: Deployment Architecture for the Control Surface Subsystem

Note that four discipline related components (shown as classes) are
depicted in Figure 240:

• Software Block

• Electronics Block

• Mechanical Block

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 226

Case Study: Handoff to Downstream Engineering

• Hydraulics Block

Each of these elements has an abbreviation of the discipline in the name,
but more importantly carries a stereotype indicating it’s domain:
«software», «electronic», «mechanics», and «hydraulic». Each of these is a
stand-in for the collection of all design elements of the respective
engineering discipline.

The Electronics block is broken down into 4 primary functional components:

• Timer Block

• Movement Control Block

• Hydraulics Control Block

• Communications Block

These should not be interpreted as a constraint on the electronic design.
The only reason these functional components are identified at all is because
the software-electronic interface is reasonably complex and identifiying
these different components allows us to separate out the interfaces. This
could have been done with a single port (one on the software block and one
on the electronics block) and multiple provided and required interfaces. This
could even have been done without creating the internal electronics
components, but this does show the expected relation between the
software commands intended to affect the mechanical and hydraulic parts
(mediated by the electronics).

Note the direct associations between the electronic and mechanical blocks
and the mechanical and hydraulic blocks. By convention (for deployment
architecture only), I use ports to indicate connections that carry dynamic
flows, such as software commands or mechanical force, and use direct
associations to indicate non-behavioral (static) connections. Examples of
static connections include cable management and mechanical fastenings.
They are an important aspect of the design and so are represented on the
deployment architecture.

Also shown are the currently empty interfaces. These interfaces must be
detailed as to the information they carry and they means by which they are
accessed by the participating disciplines.

10.4.1 Specifying the interfaces
It is important that the specification of interfaces – even when ultimately
performed by the systems engineers – is done with the cooperation and
agreement of engineers representing the affected disciplines. It is our
experience that defining the interfaces late in the development process has
been a leading cause of integration failure. Therefore, we will endeavor to
do a good job of specifying the interfaces to clarify the anticipated
collaboration of the designs from the contributing engineering disciplines.

Having said that, we also anticipate that the interfaces are likely to change.
This is especially true in an incremental, iterative process. The keys to
interdisplinary success are to

1. Specify the interfaces, including the services and physical
implementation mechanisms using the best information currently
available

2. Hide the actual designs behind the interfaces
3. Freeze the interfaces under configuration control
4. Later – if and when an issue with the interface is discovered – then

thaw the interface from configuration control, renegotiate and
refreeze the interface

To start with add a new package named InterdisciplinaryInterfacesPkg
inside the DeploymentPkg package. Move all created interfaces there. This
structuring will make it easier to create specific table views of the interface
details later.

Key Interface concept
The engineers on both sides of an interface should always have a
known target to meet. It’s ok if this target changes downstream in
a controlled fashion with the knowledge and agreement of the
affected parties.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 227

Case Study: Handoff to Downstream Engineering

The software-electronic interfaces
The deployment architecture in Figure 240 identifies four separate sw-ee
interfaces. In this section, we will detail those interfaces. To do so, we will
use the stereotypes in the CommonStereotypes package such as
«memorymapped» and «interruptmapped». These define the interface
metadata of interest.

First, let’s look at the timer services, as specified in the interface
iSE_EE_Timer. This is shown in Figure 241.

Figure 241: Details of iSW_EE_Timer interface

The tags defined by the «memorymapped» stereotype define the interface.
There are two memory mapped attribute. The first is timerRegister:

We see that this electronic register is 32 bits wide, at address 0A00:0000
and holds the current timer value when read.

The other attribute is the timerControlRegister. It is 8 bits wide and is
located at address 0A00:0002. It has the following bits: writing a 1 bit to bit
0 sets the timer value to 0; writing a 1 bit to bit 1 starts the timer; writing a
1 to bit 2 stops the timer. Writing a zero value to a bit has no effect.

The operations defined merely use the memory mapped registers. They are
not invoked as normal operations, but they specify how to invoke services.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 228

Case Study: Handoff to Downstream Engineering

For example to start the timer with the startTimer operation, it is really
meant that the software will write a 1 to bit 1 at address 0A00-0002.

Next, let’s look at the iSW_EE_Comm interface. This allows the software to
send messages out through the communications bus. There are four
memory-mapped attribues:

• controlRegister – sets the properties of the communications,
including

o Parity (on/off, and even/odd),
o LSB/MSB first,
o Data Length (7 or 8 bits)
o Channel selection (0-15)

• statusRegister – returns the status of the communications
o Loopback (on/off)
o Framing error
o Overrun error
o Parity error

• receiveBuffer – where values appear when received

• transmitBuffer – wher values are written to be sent

Figure 242 shows the details, mostly stored in the tags from the relevant
stereotypes. The operations are detailed but not shown, since they primarily
just access the attributes. Note, however, that the operation
incomingValueReady() is interrupt-mapped. When interrupts are enabled in
the control register and a value is received, the specified interrupt is
invoked.

Figure 242: Details of iSW_EE_Comm interface

The iSW_EE_Hydraulics and iSW_EE_Movement interfaces are a bit
simpler:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 229

Case Study: Handoff to Downstream Engineering

Figure 243: Details of iSW_EE_Hydraulics interface

Figure 244: Details of iSW_EE_Movement interface

Showing the interfaces in a table
These interfaces can be shown in a table format as well as diagrammatically.
This will be similar to the Class and Attributes table layout we used in the
Shared model, but in this one we want to show operations as well.

 Add a new top level package named SubsystemCommonPkg.
 Right click on the new package and select Add New > Tables and

Charts > Table Layout. Name this layout Class And Features Layout.

 Set the context pattern and columns and shown below

Especially note the use of the “|” (vertical bar) as an “or” operator in the
context pattern.

 Add a new table view in the DeploymentPkg >
InterdisciplinaryInterfacesPkg named Interdisciplinary Interface
Details.

 Right click on the new table view and set the scope to be the
InterdisciplinaryInterfacesPkg package and the layout to be Class
And Features Layout.

The table, shown in the next two figures, should look something like this:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 230

Case Study: Handoff to Downstream Engineering

Figure 245: Interdisciplinary Interfaces - Part 1

Figure 246: Interdisciplinary Interfaces - Part 2

10.5 Allocate Requirements to Engineering Disciplines

Each engineering discipline within the subsystem must also know their
requirements. You must take each requirement allocated to the subsystem
and either allocate it directly to an engineering discipline or decompose it
into derived requirments that are then so allocated. In a SysML model, this
can be done on a Requirements Diagram or in a table. In this UML
subsystem model, it can be done on an OMD or in a table.

Personally, I prefer to create the new requirements on diagrams but later
view the results in tabular form. This work should be done in the
SubsystemSpecPkg > SS_ReqModel package. This package already contains
the diagrams showing the allocated requirements and the Subsystem
Requirements Table View, previously created. How I like to perform this
task:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 231

Case Study: Handoff to Downstream Engineering

 Create a new diagram for the purpose of allocation to the

engineering disciplines
 Drag the blocks representing the disciplines onto the diagram
 One at a time, drag a requirement onto the diagram and either

o Create an allocate relationship from the block to the
requirement, OR

o Create new, derived requirements
o Add a derive relation between the original and the new

requirement(s)
o Draw an allocate relation from the engineering discipline

blocks to the new requirement(s)
 Add new diagrams as necessary
 Repeat until all requirements are allocated

The diagrams below are typical of this effort.

Figure 247: Derivation of Discipline-Specific Requirements - 1

Note that in Figure 247 requirement_11 is really an abstraction of all the
specific requirements about the subsystem movement ranges, and then
discipline-specific requirements are derived from that. Then those new
requirements are allocated to the different engineering discipline blocks.

Figure 248: Derivation of Discipline-Specific Requirements - 2

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 232

Case Study: Handoff to Downstream Engineering

Figure 249: Derivation of Discipline-Specific Requirements - 3

Figure 250: Derivation of Discipline-Specific Requirements - 4

There are, of course, more requirements to derive and allocate but the
previous four slides shows the work that must be done.

Of course, this data can be visualized in tables. We’ve covered requirements
tables previously, so we’ll just show the allocation table.

 Right click on the SubsystemSpecPkg > SS_ReqModel package and
select Add New > Views and Layouts > Table View

 Name this table view Discipline Requirements Allocation Table.
 Right click on the new table and select Features.
 In the Features dialog, set the Table Layout to the Alloc Table

Layout (which is located in the SysML Profile package).
 Set the scope to the entire model (default)
 Click OK

The table shows the all allocations in the model in the first column. The
second column is the source of the allocation (mostly, the blocks
representing the different engineering disciplines). The third column is the
target (the requirement) of that allocation relation. The next two figures
show the table contents.

Note that there are more requirments to be allocated but this is enough to
show the approach.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 233

Case Study: Handoff to Downstream Engineering

Figure 251: Table of requirements allocated to engineering disciplines - 1

Figure 252: Table of requirements allocated to engineering disciplines - 2

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 234

Post Log: Where do we go from here?

11 Post Log: Where we go from here
We have only traversed two use cases through the first set of system
engineering workflows. We only detailed a single subsystem, of several
involved in realizing those use cases, and even for those, we didn’t do a
complete allocation. Nevertheless, you can see how the workflow unfolds.
In a real system development, we would continue with the allocations for
the ACES_ControlSystem and we would detail the other subsystems as well.
At that point, the hand off work flow would be complete, and each of the
subsystem teams can begin work.

11.1 Downstream engineering begins
The subsystem teams are generally interdisciplinary; that is, they have
members who specialize in different engineering disciplines, such as
software, electronics, mechanics, and hydraulics. At this point, the
following models exist to support the detailed design and implementation
by the subsystem teams:

• Shared Model
o Physical Interfaces

▪ Physical Types
o Common Stereotypes

• Subsystem Models, each of which has
o Requirements specification with allocated requirements
o Deployment architecture identifying the involved disciplines

▪ Interfaces between the engineering disciplines
▪ Requirements allocated to the engineering

disciplines

This is the information required to perform the downstream engineering
work, so that later the different subsystems can be integrated and verified
and validated as a whole.

11.2 System Engineering Continues
In general, we believe the best systems engineering process is one that is
both incremental and iterative. In this Deskbook, we’ve walked through
what one such iteration might look like. However, there are a number of
other use cases and associated requirements that must be detailed. This
means that this workflow will be repeated, resulting in an increasingly
complete and comprehensive system specification and model(s).

At the end of most (although not necessarily all) iterations, a hand off
workflow is performed to update the subsystem teams with their
elaborated requirements so they can incrementally add those features and
properties to their subsystems.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 235

Appendix: Passing Data Around in Rhapsody for C++

12 Appendix: Passing Data Around in Rhapsody for
C++

The most common language version of Rhapsody in systems engineering is
C++. This impacts systems engineers because both UML and SysML use an
action language to specify primitive actions, including the content of actions
in activity diagrams, in the implementation of functions and options, and in
the action lists in state machines. Also there is a generic action language
provided by Rhapsody. However, by far, most people just using the
underlying target implementation language as the action language, for a
variety of good reasons.

One outcome of this is to require the systems engineer to understand
enough of the underlying action language to create and manipulate data
types. This appendix is meant to give a brief introduction to the data typing
and parameter passing in Rhapsody for C++ and is not meant to be a
comprehensive discussion of C++ data typing.

12.1 Simple and Complex Types
As far as Rhapsody is concerned, simple types are either ones directly
providing by the underlying action language or map directly to them. Thus,
simple types include:

• Language Independent Types
o RhpAddress
o RhpBoolean
o RhpInteger
o RhpPositive
o RhpReal
o RhpUnlimitedNatural
o OMBoolean

• Language Dependent Types
o bool
o int

o long
o short
o float
o long double
o short
o unsigned char
o unsigned int
o unsigned long
o unsigned short

Complex Types are all other types. The reason why it matters is that when
you add an argument to an operation or event, simple types get copied and
sent, while for complex types, a reference to the original value is sent
instead.

In (Input) Parameters
For example, if I create a function printInt that takes an argument of type
int and prints it, I create the function like this:

I can use the passed value x in the implementation directly like this:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 236

Appendix: Passing Data Around in Rhapsody for C++

Here’s the generated code for the function:

//## operation printInt(int)

void printInt(int x) {

 //#[operation printInt(int)

 std::cout << "Value is " << x << std::endl;

 //#]

}

And I can invoke the function like this
 printInt(5);

However, if instead I use a complex type (in this case, I created an
enumeration type call ENUMTYPE with values like “ONE”, “TWO” and
“THREE”, things are different.

Here’s the type definition:

And the printEnum function parameter

With an implementation that looks like this.
void printEnum(const ENUMTYPE& e) {

 //#[operation printEnum(ENUMTYPE)

 std::cout << "Value is " << e << std::endl;

 //#]

}

See that “&” symbol? That indicates that we are passed a constant reference
to the value in e. We can treat e just like we did x in the previous example.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 237

Appendix: Passing Data Around in Rhapsody for C++

To call printEnum, I can just just

printEnum(myValue);

Let’s now consider a structured value. In C++, a structured value is either a
struct or a class. These two things are essentially the same (they only differ
on the default visibility of the features; struct features are public by default
while class features are private by default).

Consider a structured type ErrorType that has multiple attributes:

We can write a printError function that receives a single argument e of type
ErrorType

and a simple implementation:

Why didn’t we just directly access the values of e.errCode, e.dateTime and
e.severity? Rhapsody tried to enforce good programming practices and one
of these practices is that you should always go through functions to access
the data. To that end, by default, Rhapsody generates both an accessor (get
+ variable name; also known as a getter) and mutator (set + variable name;
also known as a setter) for you. By default, even though the visibility of the
variables in Rhapsody is declared as public, the actual variable itself is
declared protected and the accessor and mutator are declared as public.

You wouldn’t be the first person to be confused by this.

This behavior can be changed with properties. If you select the class, open
its features dialog, go to the Properties Pane, select View All, and go to the
topic CG_CPP > Attribute > Visibility. Here you have a drop down list. The
default visibility is set to protected, but you can select fromAttribute. If you

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 238

Appendix: Passing Data Around in Rhapsody for C++
make that change, then you can directly get and set attributes without using
the accessor and mutator operations. You can even set this at the project
level if you want that behavior for all classes and blocks.

If you make this change for the ErrorType class, then you could implement
the printError differently.

12.1.1 Special Case: #define
It is a good programming practice to give important numbers explicit and
meaningful names. Obscure numbers that just show up, unexplained, in

specifications and code are often called “magic numbers”. It is not a
complement. It means that there is no support to help others (or even
yourself) to figure out why the number is there.

As a very simple example, consider converting foot-pounds of force to
horsepower. You could write something like

 qxt = tqp * 5252;

Or you could write

#define HORSEPOWER2FOOTLBS 5252

force_ftlb = force_hp * HORSEPOWER2FOOTLBS;

The first line defines a constant. It is nothing more than a textual name
given to a value and can be used anywhere that the value it represents can
be used. It makes eases understanding of the code you write. It’s important
to understand that HORSEPOWER2FOOTLBS is not a variable with the value
of 5252. It is just another name for that value.

The second line is just an example of using meaningful names for variables;
in this case, appending an abbreviation for the units in the name itself.

To define a named constant, add a new type, give it the kind of Language,
and define it using %s to reference the value:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 239

Appendix: Passing Data Around in Rhapsody for C++

InOut (Input and Output) Parameters
InOut parameters allow you to both pass in a value and receive an updated
value back. These are implemented as non-const references.

An example of this, we’re going to create a convert operation that can
convert force units between horsepower and foot-pounds. First, let’s define
an enumeration FORCEUNITS for the units. Add a new Type (or DataType if
you’re using SysML) of kind Enumeration, and define the literals:

Next, let’s define the type we’ll be passing around, ForceType:

Now define the convert function to take two parameters; an InOut
parameter passing in the original value and returning the converted value
and an in parameter of the type to which to convert the incoming value.

Here’s the implementation of the function:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 240

Appendix: Passing Data Around in Rhapsody for C++

Here is a test class with attributes and a state machine to demonstrate the
output of this function.

This is the state machine to support the execution of these functions:

Where printForce function is defined:

If you run it and insert the ev3 event, this has the output:

Out (Output only) Parameters
Finally, out parameters don’t provide an input value but they do provide an
output. The implementation provides a reference pointer.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 241

Appendix: Passing Data Around in Rhapsody for C++

Let’s demonstrate that by defining a new function that returns a ForceType,
as defined above:

Note that the out parameter f, is defined as a pointer to a reference. This is
a little bit more complex.

Here’s the implementation. It uses a local variable, f1, which is a pointer to a
ForceType. Creates a new one of them and then assigns the out parameter f
to the value of the pointer (so now f points to the newly created value).

To use it, we must pass a pointer in the parameter list. So we’ll add fptr (a
pointer to a ForceType) to TestClass:

and we’ll update the TestEventClass1’s state machine to use it (see ev4).

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 242

Appendix: Passing Data Around in Rhapsody for C++

So the function gimmeaforce is provided a pointer argument which is
updated with a value. You can see it is dereferenced and passed in the call
to printForce. (The expression *fptr returns the thing to which fptr points).

12.2 Passing Arguments in Event Receptions

So far, all the examples we’ve given were functions. It is similar for event
receptions. Once difference is that only input parameters are supported for
event receptions. If you want to be tricky and allow the state machine to
return values, you can send pointer types and have the target state machine
modify the values through dereferencing the pointers. More commonly,
separate events are used to send return values21 when necessary.

Another difference is that while as many parameters can be passed as
desired, Rhapsody wraps them up into a struct called params, which
contains pointers to each event argument. This is only visible on the

21 Although triggered operations, a synchronous kind of event receptor, can return
a value.

receiving side of the event exchange. The values held in the params
structure are only valid through the completion of the state machine step in
which they are defined.

On the sender side, it is common to use the Send Action to send the action
to the target object22. This can either use the association role name (if
associations are used) or the port name (if ports are used). To demonstrate
this, I’ve constructed a simple model.

The following diagram shows the two objects connected using ports:

The instance of TestEventClass2 is the event receiver in this case. Here is its
state machine:

22 Although the GEN macro is a commonly used alternative.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 243

Appendix: Passing Data Around in Rhapsody for C++

Here is the sender (TestEventClass1) state machine:

The events ep, eq, and es are there so that you can send them to the
TestClass1 instance to have it send a corresponding event to TestClass2
instance.

The events of interest here are:

evSimple, which passes 3 simple values, an int, a string, and a real:

evError which passes an argument of the ErrorType class we defined earlier
in this appendix:

and evForce, which passes an argument of type ForceType, also defined
earlier:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 244

Appendix: Passing Data Around in Rhapsody for C++

On the sender side, when we send the event, we must specify where it goes
(in this case, port p0), and the values. For evSimple, the send action looks
like this:

For the evError event, we define an attribute err in TestEventClass1 of type
ErrorType and we’ll pass this. Note the use of the & operator to pass the
address of the attribute.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 245

Appendix: Passing Data Around in Rhapsody for C++

Similarly for evForce, we define an attribute ftLb of type ForceType and
pass this value.

In the TestEventClass1 state machine, we assign values to the fields for the
structured types before sending the events. In the TestEventClass2, we use
the previously defined printError and printForce functions to print the
received values. Note that both these functions expect a reference to the
structure type and what we have is a pointer, so we must dereference the
pointer to pass it; for example, to send the parameter e of the evError event
to the printError function we use the syntax

 printError(*params->e);

For the simple parameter (see evSimple event), we can just deference the
params structure to access the values.

The output from this model, if we invoke evSimple, evError and evForce
looks like this:

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 246

Appendix: Passing Data Around in Rhapsody for C++

12.3 Summary

That’s pretty much it. Functions, including operations of classes and blocks,
can have input, output and input/output arguments. Simple types are
passed by copy but complex arguments, including enumerations, are passed
by reference. Event receptions have only input arguments. Behind the
scenes, Rhapsody constructs a params struct to hold pointers to the pass
values. The pointers in the params struct must then be dereferenced to
access the passed values.

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 247

Tables

13 Tables
This section contains a few of the larger tables from the model.

13.1 Derived Requirements Table

Requirement Name Specification Derived From

ACES_SS_requirement_32

Any subsystem running software shall - both at start up
and upon command - run an integrity check of the
installed software object code verified by a method at
least as robust as 32-bit CRC check StartUpReq_4

ACES_SS_requirement_33

Any subsystem running software that contains
configuration data shall - both at start up and upon
command - run an integrity check of the installed
configuration verified by a method at least as robust as
32-bit CRC check as well as reasonable range checks. StartUpReq_4

ACES_SS_requirement_34

All subsystems other than the ACES_Management
subsystem shall report error status and BIT results upon
query or upon completion of tests. StartUpReq_4

ACSCUNT_requirement_10
The accuracy of movement of the control surface shall
be +/- 0.5 degrees angle of +/- 0.5 cm distance. FuncReq_36

ACSCUNT_requirement_11

Each control surface shall measure achieved control
position with an accuracy of +/- 0.05 degrees or +/- 0.05
cm FuncReq_36

ACSCUNT_requirement_12

If achieved position of any control surface unit is out of
specification or takes longer than 3.0s, the control
surface unit shall inform ACES_Management of the error FuncReq_40

ACSCUNT_requirement_13

Each control surface shall accept a command for it's
position and will respond with both current commanded
position and current measured position. FuncReq_40

ACSCUNT_requirement_16
The ACES_Management subsystem shall check that each
command movement takes place within 3.0seconds. FuncReq_37

ACSCUNT_requirement_17

The ACES_Management subsystem shall check that each
angular movement of less than 10 degrees is performed
in less than 1.0 seconds. FuncReq_37

ACSCUNT_requirement_18

Each control surface subsystem shall report movement
completion to the ACES_Management subsystem with
acquired measured position and time required for the
movement. FuncReq_37

ACSCUNT_requirement_19

The ACES_Management subsystem shall listen for life
ticks from each surface control subsystem interface,
expecting them to arrive at least every 0.5s. FuncReq_39

ACSCUNT_requirement_20

If the ACES_Management subsystem does not receive a
life tick within 0.5s of the initiating life tick, it shall report
an error to both the Pilot Display and Attitude
Management systems. FuncReq_39

ACSCUNT_requirement_21
Each control surface input shall issue a life tick message
to the ACES_Management subsystem at least every 0,5s. FuncReq_39

ACSCUNT_requirement_24

Each control surface unit instance shall have a unique
identifier which shall be used to in messages to the
ACES_Management subsystem. InterfaceReq_0

ACSCUNT_requirement_25

Each control surface unit shall have, as persistent
configuration data, low and high movement limits,
required measurement accuracy, and movement time
limits. FuncReq_0

ACSCUNT_requirement_26

Each surface control unit instance shall report an error
to the ACES_Management subsystem if the result of a
commanded movement is out of specification either in
accuracy or timing. FuncReq_36

ACSCUNT_requirement_3
All control surfaces shall accept commands from the
ACES_Management subsystem to set rotational position. FuncReq_0

ACSCUNT_requirement_7

Each control surface shall accept a command to move it
to the desired position and shall begin movement based
on that command within 0.1 seconds. FuncReq_0

AM_requirement_1

The ACES_Management systen shall command each
control surface position either as a response to a
received command or turning built in test. FuncReq_0

AM_requirement_27

The ACES_Management subsystem shall issue an error
message to the Attitude Management system if both
incoming and outgoing hydraulic pressures not are
within +/1 1000 kPa of the default pressure of 35000 kPa
and if this is not true. ErrorReq_34

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 248

Tables

AM_requirement_27

The ACES_Management subsystem shall issue an error
message to the Attitude Management system if both
incoming and outgoing hydraulic pressures not are
within +/1 1000 kPa of the default pressure of 35000 kPa
and if this is not true. ErrorReq_35

AM_requirement_28
The ACES_Management subsystem shall check hydraulic
pressure at least once every 2.0 seconds. ErrorReq_35

AM_requirement_28
The ACES_Management subsystem shall check hydraulic
pressure at least once every 2.0 seconds. ErrorReq_34

AM_requirement_29

The ACES_Management subsystem shall issue an error
message to the Attitude Management subsystem.if
incoming or internal power for fluctuations of more than
5% in voltage. ErrorReq_37

AM_requirement_29

The ACES_Management subsystem shall issue an error
message to the Attitude Management subsystem if
incoming or internal power for fluctuations of more than
5% in voltage. ErrorReq_36

AM_requirement_30

The ACES_Management subsystem shall issue an error
to the Attitude Control System within 0.5s if it detects a
sudden power loss. ErrorReq_36

AM_requirement_30

The ACES_Management subsystem shall issue an error
to the Attitude Control System within 0.5s if it detects a
sudden power loss. ErrorReq_37

AM_requirement_35
The ACES_Management subsystem shall request a built
in test run by every subsystem that contains software. StartUpReq_4

AM_requirement_4

The ACES_Management subsystem shall range check
each movement command for each control surface
movement to ensure that the set position is in range. FuncReq_36

AM_requirement_6

If a movement position is out of range for the a specified
control surface, the ACES_Management subsystem shall
reject all positions specified within the incoming
command and respond with a message indicating its
rejection. FuncReq_36

AM_requirement_9

The setting precision of the ACES_Management
subsystem for control surface position shall be +/- 0.1
degrees of angle or +/1 0,1 cm distance FuncReq_36

DerConfigReq_1

Each control surface unit shall be support configuration
to set min and max positions, hydraulic and power
inputs and error limits, and zero position. ConfigReq_0

DerConfigReq_2
Each control surface unit shall provide the ability to
respond to requests for current configuration settings. ConfigReq_2

DerFunReq_1

Once a each control surface has achieved its
commanded position, it shall maintain station keeping
adjustments to keep it within 0.1 degrees of angle or
0.1cm of extension, as appropriate, at least 10 times per
second. FuncReq_36

DerIntReq_1

The Control Surface subsystem types shall provide an
interface to set and get the commanded control surface
position. InterfaceReq_0

DerIntReq_10
Each control surface subsystem shall detect faults and
report them to the ACES Management subsystem. InterfaceReq_3

DerIntReq_15
The ACES Power system shall distribute power from the
aircraft to the ACES internal subsystems. InterfaceReq_4

DerIntReq_16
The ACES Power subsystem shall provide an interface to
select input source. InterfaceReq_5

DerIntReq_17

The ACES Power subsystem shall monitor incoming
current and voltage and inform the ACES Management
system if the current or voltage exceeds nominal values
by more than 10% for more than 30 seconds, or by more
than 30% for more than 2 seconds. InterfaceReq_5

DerIntReq_18

The ACES Management system will monitor the power
from the ACES Power subsystem and automatically
switch if it receives a power fault,. InterfaceReq_5

DerIntReq_2
The Control Surface subsystem types shall provide an
interface to get the measured control surface position. InterfaceReq_0

DerIntReq_3

The Control Surface With Trim subsystem type shall
provide an interface to set and get the commanded trim
tab control surface position. InterfaceReq_0

DerIntReq_4

The Control Surface With Trim subsystem type shall
provide an interface to get the measured trim tab
control surface position. InterfaceReq_0

DerIntReq_5

Retracting control surface subsystem type shall provide
an interface to set and get the commanded extension of
the control surface. InterfaceReq_0

DerIntReq_6

Retracting control surface subsystem type shall provide
an interface to get the control surface measured
extension. InterfaceReq_0

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 249

Tables

DerIntReq_7

Every second the ACES Management subsystem will
query all the control surface measures positions and
relay them to the Attitude Management System InterfaceReq_1

DerIntReq_8
 The control surfaces subsystems shall provide an
interface to request their hydraulic and power status. InterfaceReq_2

DerIntReq_9

The ACES Management system shall provide the status
of power and hydraulics to the pilot display at least
every second while operational. InterfaceReq_2

DerStartUpReq_1

 Each control surface unit shall support a Built In Test
(BIT) that is only available while not operational, for
checking movement ranges, accuracy, and timing. StartUpReq_4

DerStartupReq_2

Each control surface unit shall support periodic BIT
(PBIT) run at least every 30 seconds; this test suite shall
only run tests which do not interfere with surface
control operation. StartUpReq_4

DerStartupReq_3

All BIT and PBIT results from the Control Surface
subsystem shall be reported to the ACES Management
System. StartUpReq_4

DerStartupReq_4
The ACES Management system shall maintain system
state StartUpReq_4

Table 4: Derived Requirements Table (Complete)

13.2 Subsystem Requirements Allocation Table

Package Subsystem Requirement

ACESDecompositionPkg

ACES_Control_SurfacePkg

ACES_Control_SurfacePkg ACES_Control_Surface ACES_SS_requirement_32

ACES_Control_SurfacePkg ACES_Control_Surface ACES_SS_requirement_33

ACES_Control_SurfacePkg ACES_Control_Surface ACES_SS_requirement_34

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_10

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_11

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_12

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_13

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_18

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_19

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_21

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_24

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_25

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_26

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_3

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_7

ACES_Control_SurfacePkg ACES_Control_Surface ConfigReq_1

ACES_Control_SurfacePkg ACES_Control_Surface ConfigReq_3

ACES_Control_SurfacePkg ACES_Control_Surface DerConfigReq_1

ACES_Control_SurfacePkg ACES_Control_Surface DerConfigReq_2

ACES_Control_SurfacePkg ACES_Control_Surface DerFunReq_1

ACES_Control_SurfacePkg ACES_Control_Surface DerIntReq_1

ACES_Control_SurfacePkg ACES_Control_Surface DerIntReq_10

ACES_Control_SurfacePkg ACES_Control_Surface DerIntReq_11

ACES_Control_SurfacePkg ACES_Control_Surface DerIntReq_12

ACES_Control_SurfacePkg ACES_Control_Surface DerIntReq_14

ACES_Control_SurfacePkg ACES_Control_Surface DerIntReq_2

ACES_Control_SurfacePkg ACES_Control_Surface DerIntReq_8

ACES_Control_SurfacePkg ACES_Control_Surface DerReqInt_13

ACES_Control_SurfacePkg ACES_Control_Surface DerStartUpReq_1

ACES_Control_SurfacePkg ACES_Control_Surface DerStartupReq_2

ACES_Control_SurfacePkg ACES_Control_Surface DerStartupReq_3

ACES_Control_SurfacePkg ACES_Control_Surface ErrorReq_26

ACES_Control_SurfacePkg ACES_Control_Surface ErrorReq_27

ACES_Control_SurfacePkg ACES_Control_Surface ErrorReq_28

ACES_Control_SurfacePkg ACES_Control_Surface ErrorReq_29

ACES_Control_SurfacePkg ACES_Control_Surface ErrorReq_3

ACES_Control_SurfacePkg ACES_Control_Surface ErrorReq_34

ACES_Control_SurfacePkg ACES_Control_Surface ErrorReq_35

ACES_Control_SurfacePkg ACES_Control_Surface ErrorReq_36

ACES_Control_SurfacePkg ACES_Control_Surface ErrorReq_37

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 250

Tables

ACES_Control_SurfacePkg ACES_Control_Surface FuncReq_25

ACES_Control_SurfacePkg ACES_Control_Surface FuncReq_27

ACES_Control_SurfacePkg ACES_Control_Surface FuncReq_28

ACES_Control_SurfacePkg ACES_Control_Surface FuncReq_29

ACES_Control_SurfacePkg ACES_Control_Surface FuncReq_30

ACES_Control_SurfacePkg ACES_Control_Surface FuncReq_36

ACES_Control_SurfacePkg ACES_Control_Surface FuncReq_37

ACES_Control_SurfacePkg ACES_Control_Surface FuncReq_40

ACES_Control_SurfacePkg ACES_Control_Surface OtherReq_0

ACES_Control_SurfacePkg ACES_Control_Surface OtherReq_1

ACES_Control_SurfacePkg ACES_Control_Surface SafetyReq_006

ACES_Control_SurfacePkg ACES_Control_Surface Safety_Req_390202

ACES_Control_SurfacePkg ACES_Control_Surface Safety_Req_390207

ACES_Control_SurfacePkg ACES_Control_Surface Safety_Req_390209

ACES_Control_SurfacePkg ACES_Control_Surface Safety_Req_390210

ACES_Control_SurfacePkg ACES_Control_Surface Safety_Req_390211

ACES_Control_SurfacePkg ACES_Control_Surface Safety_Req_390212

ACES_Control_SurfacePkg ACES_Control_Surface Safety_Req_390213

ACES_Control_SurfacePkg ACES_Control_Surface Safety_Req_390214

ACES_Control_SurfacePkg ACES_Control_Surface Safety_Req_390215

ACES_Control_SurfacePkg ACES_Control_Surface Safety_Req_390217

ACES_Control_SurfacePkg ACES_Control_Surface Safety_Req_390218

ACES_Control_SurfacePkg ACES_Control_Surface ACES_SS_requirement_32

ACES_Control_SurfacePkg ACES_Control_Surface ACES_SS_requirement_33

ACES_Control_SurfacePkg ACES_Control_Surface ACES_SS_requirement_34

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_10

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_11

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_12

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_13

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_18

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_19

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_21

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_24

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_25

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_26

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_3

ACES_Control_SurfacePkg ACES_Control_Surface ACSCUNT_requirement_7

ACES_Control_SurfacePkg ACES_Control_Surface ConfigReq_1

ACES_Control_SurfacePkg ACES_Control_Surface ConfigReq_3

ACES_Control_SurfacePkg ACES_Control_Surface DerConfigReq_1

ACES_Control_SurfacePkg ACES_Control_Surface DerConfigReq_2

ACES_Control_SurfacePkg ACES_Control_Surface DerFunReq_1

ACES_Control_SurfacePkg ACES_Control_Surface DerIntReq_1

ACES_Control_SurfacePkg ACES_Control_Surface DerIntReq_10

ACES_Control_SurfacePkg ACES_Control_Surface DerIntReq_11

ACES_Control_SurfacePkg ACES_Control_Surface DerIntReq_12

ACES_Control_SurfacePkg ACES_Control_Surface DerIntReq_14

ACES_Control_SurfacePkg ACES_Control_Surface DerIntReq_2

ACES_Control_SurfacePkg ACES_Control_Surface DerIntReq_8

ACES_Control_SurfacePkg ACES_Control_Surface DerReqInt_13

ACES_Control_SurfacePkg ACES_Control_Surface DerStartUpReq_1

ACES_Control_SurfacePkg ACES_Control_Surface DerStartupReq_2

ACES_Control_SurfacePkg ACES_Control_Surface DerStartupReq_3

ACES_Control_SurfacePkg ACES_Control_Surface ErrorReq_26

ACES_Control_SurfacePkg ACES_Control_Surface ErrorReq_27

ACES_Control_SurfacePkg ACES_Control_Surface ErrorReq_28

ACES_Control_SurfacePkg ACES_Control_Surface ErrorReq_29

ACES_Control_SurfacePkg ACES_Control_Surface ErrorReq_3

ACES_Control_SurfacePkg ACES_Control_Surface ErrorReq_34

ACES_Control_SurfacePkg ACES_Control_Surface ErrorReq_35

ACES_Control_SurfacePkg ACES_Control_Surface ErrorReq_36

ACES_Control_SurfacePkg ACES_Control_Surface ErrorReq_37

ACES_Control_SurfacePkg ACES_Control_Surface FuncReq_25

ACES_Control_SurfacePkg ACES_Control_Surface FuncReq_27

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 251

Tables

ACES_Control_SurfacePkg ACES_Control_Surface FuncReq_28

ACES_Control_SurfacePkg ACES_Control_Surface FuncReq_29

ACES_Control_SurfacePkg ACES_Control_Surface FuncReq_30

ACES_Control_SurfacePkg ACES_Control_Surface FuncReq_36

ACES_Control_SurfacePkg ACES_Control_Surface FuncReq_37

ACES_Control_SurfacePkg ACES_Control_Surface FuncReq_40

ACES_Control_SurfacePkg ACES_Control_Surface OtherReq_0

ACES_Control_SurfacePkg ACES_Control_Surface OtherReq_1

ACES_Control_SurfacePkg ACES_Control_Surface SafetyReq_006

ACES_Control_SurfacePkg ACES_Control_Surface Safety_Req_390202

ACES_Control_SurfacePkg ACES_Control_Surface Safety_Req_390207

ACES_Control_SurfacePkg ACES_Control_Surface Safety_Req_390209

ACES_Control_SurfacePkg ACES_Control_Surface Safety_Req_390210

ACES_Control_SurfacePkg ACES_Control_Surface Safety_Req_390211

ACES_Control_SurfacePkg ACES_Control_Surface Safety_Req_390212

ACES_Control_SurfacePkg ACES_Control_Surface Safety_Req_390213

ACES_Control_SurfacePkg ACES_Control_Surface Safety_Req_390214

ACES_Control_SurfacePkg ACES_Control_Surface Safety_Req_390215

ACES_Control_SurfacePkg ACES_Control_Surface Safety_Req_390217

ACES_Control_SurfacePkg ACES_Control_Surface Safety_Req_390218

ACES_Control_Surface_RetractingPkg

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACES_SS_requirement_32

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACES_SS_requirement_33

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACES_SS_requirement_34

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACSCUNT_requirement_10

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACSCUNT_requirement_11

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACSCUNT_requirement_12

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACSCUNT_requirement_13

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACSCUNT_requirement_18

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACSCUNT_requirement_19

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACSCUNT_requirement_21

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACSCUNT_requirement_24

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACSCUNT_requirement_25

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACSCUNT_requirement_26

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting AM_requirement_35

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ConfigReq_1

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ConfigReq_3

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerConfigReq_1

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerConfigReq_2

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerFunReq_1

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerIntReq_1

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerIntReq_10

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerIntReq_11

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerIntReq_12

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerIntReq_14

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerIntReq_2

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerIntReq_8

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerReqInt_13

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerStartUpReq_1

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerStartupReq_2

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerStartupReq_3

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ErrorReq_3

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ErrorReq_30

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ErrorReq_31

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ErrorReq_32

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ErrorReq_33

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ErrorReq_34

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ErrorReq_35

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ErrorReq_36

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ErrorReq_37

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting FuncReq_1

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting FuncReq_36

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting FuncReq_37

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting FuncReq_40

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 252

Tables

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting OtherReq_0

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting OtherReq_1

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting SafetyReq_006

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390202

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390203

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390204

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390207

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390209

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390210

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390211

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390212

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390213

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390214

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390215

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390217

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390218

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACES_SS_requirement_32

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACES_SS_requirement_33

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACES_SS_requirement_34

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACSCUNT_requirement_10

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACSCUNT_requirement_11

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACSCUNT_requirement_12

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACSCUNT_requirement_13

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACSCUNT_requirement_18

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACSCUNT_requirement_19

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACSCUNT_requirement_21

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACSCUNT_requirement_24

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACSCUNT_requirement_25

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ACSCUNT_requirement_26

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting AM_requirement_35

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ConfigReq_1

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ConfigReq_3

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerConfigReq_1

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerConfigReq_2

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerFunReq_1

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerIntReq_1

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerIntReq_10

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerIntReq_11

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerIntReq_12

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerIntReq_14

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerIntReq_2

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerIntReq_8

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerReqInt_13

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerStartUpReq_1

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerStartupReq_2

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting DerStartupReq_3

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ErrorReq_3

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ErrorReq_30

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ErrorReq_31

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ErrorReq_32

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ErrorReq_33

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ErrorReq_34

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ErrorReq_35

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ErrorReq_36

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting ErrorReq_37

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting FuncReq_1

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting FuncReq_36

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting FuncReq_37

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting FuncReq_40

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting OtherReq_0

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting OtherReq_1

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting SafetyReq_006

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390202

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390203

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 253

Tables

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390204

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390207

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390209

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390210

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390211

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390212

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390213

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390214

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390215

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390217

ACES_Control_Surface_RetractingPkg ACES_Control_Surface_Retracting Safety_Req_390218

ACES_Control_Surface_With_TrimPkg

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACES_SS_requirement_32

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACES_SS_requirement_33

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACES_SS_requirement_34

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_10

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_11

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_12

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_13

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_18

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_19

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_21

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_24

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_25

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_26

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_3

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_7

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim AM_requirement_35

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ConfigReq_1

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ConfigReq_3

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerConfigReq_1

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerConfigReq_2

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerFunReq_1

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerIntReq_1

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerIntReq_10

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerIntReq_11

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerIntReq_12

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerIntReq_14

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerIntReq_2

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerIntReq_3

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerIntReq_4

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerIntReq_8

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerReqInt_13

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerStartUpReq_1

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerStartupReq_2

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerStartupReq_3

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_10

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_11

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_12

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_13

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_14

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_15

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_16

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_17

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_18

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_19

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_20

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_21

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_22

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_23

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_24

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_25

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_3

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_34

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 254

Tables

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_35

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_36

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_37

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_4

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_5

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_6

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_7

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_8

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_9

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_10

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_11

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_12

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_13

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_15

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_16

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_17

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_18

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_19

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_2

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_20

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_21

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_22

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_23

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_24

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_25

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_26

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_3

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_35

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_36

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_37

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_4

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_40

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_5

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_6

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_7

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_8

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_9

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim OtherReq_0

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim OtherReq_1

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim SafetyReq_006

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390202

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390203

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390204

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390207

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390209

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390210

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390211

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390212

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390213

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390214

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390215

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390217

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390218

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACES_SS_requirement_32

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACES_SS_requirement_33

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACES_SS_requirement_34

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_10

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_11

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_12

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_13

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_18

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_19

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_21

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_24

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 255

Tables

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_25

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_26

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_3

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ACSCUNT_requirement_7

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim AM_requirement_35

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ConfigReq_1

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ConfigReq_3

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerConfigReq_1

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerConfigReq_2

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerFunReq_1

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerIntReq_1

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerIntReq_10

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerIntReq_11

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerIntReq_12

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerIntReq_14

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerIntReq_2

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerIntReq_3

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerIntReq_4

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerIntReq_8

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerReqInt_13

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerStartUpReq_1

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerStartupReq_2

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim DerStartupReq_3

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_10

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_11

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_12

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_13

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_14

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_15

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_16

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_17

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_18

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_19

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_20

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_21

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_22

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_23

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_24

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_25

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_3

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_34

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_35

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_36

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_37

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_4

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_5

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_6

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_7

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_8

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim ErrorReq_9

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_10

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_11

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_12

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_13

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_15

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_16

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_17

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_18

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_19

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_2

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_20

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_21

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_22

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_23

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 256

Tables

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_24

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_25

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_26

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_3

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_35

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_36

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_37

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_4

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_40

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_5

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_6

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_7

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_8

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim FuncReq_9

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim OtherReq_0

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim OtherReq_1

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim SafetyReq_006

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390202

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390203

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390204

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390207

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390209

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390210

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390211

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390212

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390213

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390214

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390215

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390217

ACES_Control_Surface_With_TrimPkg ACES_Control_Surface_With_Trim Safety_Req_390218

ACES_HydraulicsPkg

ACES_HydraulicsPkg ACES_Hydraulics SafetyReq_001

ACES_HydraulicsPkg ACES_Hydraulics SafetyReq_002

ACES_HydraulicsPkg ACES_Hydraulics SafetyReq_004

ACES_HydraulicsPkg ACES_Hydraulics SafetyReq_005

ACES_HydraulicsPkg ACES_Hydraulics SafetyReq_390197

ACES_HydraulicsPkg ACES_Hydraulics Safety_Req_390198

ACES_HydraulicsPkg ACES_Hydraulics Safety_Req_390200

ACES_HydraulicsPkg ACES_Hydraulics Safety_Req_390201

ACES_HydraulicsPkg ACES_Hydraulics Safety_Req_390209

ACES_HydraulicsPkg ACES_Hydraulics SafetyReq_001

ACES_HydraulicsPkg ACES_Hydraulics SafetyReq_002

ACES_HydraulicsPkg ACES_Hydraulics SafetyReq_004

ACES_HydraulicsPkg ACES_Hydraulics SafetyReq_005

ACES_HydraulicsPkg ACES_Hydraulics SafetyReq_390197

ACES_HydraulicsPkg ACES_Hydraulics Safety_Req_390198

ACES_HydraulicsPkg ACES_Hydraulics Safety_Req_390200

ACES_HydraulicsPkg ACES_Hydraulics Safety_Req_390201

ACES_HydraulicsPkg ACES_Hydraulics Safety_Req_390209

ACES_ManagementPkg

ACES_ManagementPkg ACES_Management ACES_SS_requirement_32

ACES_ManagementPkg ACES_Management ACES_SS_requirement_33

ACES_ManagementPkg ACES_Management ACES_SS_requirement_34

ACES_ManagementPkg ACES_Management ACSCUNT_requirement_12

ACES_ManagementPkg ACES_Management ACSCUNT_requirement_13

ACES_ManagementPkg ACES_Management ACSCUNT_requirement_16

ACES_ManagementPkg ACES_Management ACSCUNT_requirement_17

ACES_ManagementPkg ACES_Management ACSCUNT_requirement_18

ACES_ManagementPkg ACES_Management ACSCUNT_requirement_19

ACES_ManagementPkg ACES_Management ACSCUNT_requirement_20

ACES_ManagementPkg ACES_Management ACSCUNT_requirement_21

ACES_ManagementPkg ACES_Management ACSCUNT_requirement_24

ACES_ManagementPkg ACES_Management ACSCUNT_requirement_26

ACES_ManagementPkg ACES_Management ACSCUNT_requirement_3

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 257

Tables

ACES_ManagementPkg ACES_Management AM_requirement_1

ACES_ManagementPkg ACES_Management AM_requirement_27

ACES_ManagementPkg ACES_Management AM_requirement_28

ACES_ManagementPkg ACES_Management AM_requirement_29

ACES_ManagementPkg ACES_Management AM_requirement_30

ACES_ManagementPkg ACES_Management AM_requirement_35

ACES_ManagementPkg ACES_Management AM_requirement_4

ACES_ManagementPkg ACES_Management AM_requirement_6

ACES_ManagementPkg ACES_Management AM_requirement_9

ACES_ManagementPkg ACES_Management ConfigReq_1

ACES_ManagementPkg ACES_Management ConfigReq_3

ACES_ManagementPkg ACES_Management DerIntReq_11

ACES_ManagementPkg ACES_Management DerIntReq_12

ACES_ManagementPkg ACES_Management DerIntReq_14

ACES_ManagementPkg ACES_Management DerIntReq_16

ACES_ManagementPkg ACES_Management DerIntReq_17

ACES_ManagementPkg ACES_Management DerIntReq_18

ACES_ManagementPkg ACES_Management DerIntReq_7

ACES_ManagementPkg ACES_Management DerIntReq_9

ACES_ManagementPkg ACES_Management DerReqInt_13

ACES_ManagementPkg ACES_Management DerStartupReq_4

ACES_ManagementPkg ACES_Management ErrorReq_0

ACES_ManagementPkg ACES_Management ErrorReq_1

ACES_ManagementPkg ACES_Management ErrorReq_10

ACES_ManagementPkg ACES_Management ErrorReq_11

ACES_ManagementPkg ACES_Management ErrorReq_12

ACES_ManagementPkg ACES_Management ErrorReq_13

ACES_ManagementPkg ACES_Management ErrorReq_14

ACES_ManagementPkg ACES_Management ErrorReq_15

ACES_ManagementPkg ACES_Management ErrorReq_16

ACES_ManagementPkg ACES_Management ErrorReq_17

ACES_ManagementPkg ACES_Management ErrorReq_18

ACES_ManagementPkg ACES_Management ErrorReq_19

ACES_ManagementPkg ACES_Management ErrorReq_2

ACES_ManagementPkg ACES_Management ErrorReq_20

ACES_ManagementPkg ACES_Management ErrorReq_21

ACES_ManagementPkg ACES_Management ErrorReq_22

ACES_ManagementPkg ACES_Management ErrorReq_23

ACES_ManagementPkg ACES_Management ErrorReq_24

ACES_ManagementPkg ACES_Management ErrorReq_25

ACES_ManagementPkg ACES_Management ErrorReq_26

ACES_ManagementPkg ACES_Management ErrorReq_27

ACES_ManagementPkg ACES_Management ErrorReq_28

ACES_ManagementPkg ACES_Management ErrorReq_29

ACES_ManagementPkg ACES_Management ErrorReq_3

ACES_ManagementPkg ACES_Management ErrorReq_30

ACES_ManagementPkg ACES_Management ErrorReq_31

ACES_ManagementPkg ACES_Management ErrorReq_32

ACES_ManagementPkg ACES_Management ErrorReq_33

ACES_ManagementPkg ACES_Management ErrorReq_34

ACES_ManagementPkg ACES_Management ErrorReq_35

ACES_ManagementPkg ACES_Management ErrorReq_36

ACES_ManagementPkg ACES_Management ErrorReq_37

ACES_ManagementPkg ACES_Management ErrorReq_4

ACES_ManagementPkg ACES_Management ErrorReq_5

ACES_ManagementPkg ACES_Management ErrorReq_6

ACES_ManagementPkg ACES_Management ErrorReq_7

ACES_ManagementPkg ACES_Management ErrorReq_8

ACES_ManagementPkg ACES_Management ErrorReq_9

ACES_ManagementPkg ACES_Management FuncReq_0

ACES_ManagementPkg ACES_Management FuncReq_1

ACES_ManagementPkg ACES_Management FuncReq_10

ACES_ManagementPkg ACES_Management FuncReq_11

ACES_ManagementPkg ACES_Management FuncReq_12

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 258

Tables

ACES_ManagementPkg ACES_Management FuncReq_13

ACES_ManagementPkg ACES_Management FuncReq_15

ACES_ManagementPkg ACES_Management FuncReq_16

ACES_ManagementPkg ACES_Management FuncReq_17

ACES_ManagementPkg ACES_Management FuncReq_18

ACES_ManagementPkg ACES_Management FuncReq_19

ACES_ManagementPkg ACES_Management FuncReq_2

ACES_ManagementPkg ACES_Management FuncReq_20

ACES_ManagementPkg ACES_Management FuncReq_21

ACES_ManagementPkg ACES_Management FuncReq_22

ACES_ManagementPkg ACES_Management FuncReq_23

ACES_ManagementPkg ACES_Management FuncReq_24

ACES_ManagementPkg ACES_Management FuncReq_25

ACES_ManagementPkg ACES_Management FuncReq_26

ACES_ManagementPkg ACES_Management FuncReq_27

ACES_ManagementPkg ACES_Management FuncReq_28

ACES_ManagementPkg ACES_Management FuncReq_29

ACES_ManagementPkg ACES_Management FuncReq_3

ACES_ManagementPkg ACES_Management FuncReq_30

ACES_ManagementPkg ACES_Management FuncReq_31

ACES_ManagementPkg ACES_Management FuncReq_32

ACES_ManagementPkg ACES_Management FuncReq_33

ACES_ManagementPkg ACES_Management FuncReq_34

ACES_ManagementPkg ACES_Management FuncReq_35

ACES_ManagementPkg ACES_Management FuncReq_36

ACES_ManagementPkg ACES_Management FuncReq_37

ACES_ManagementPkg ACES_Management FuncReq_38

ACES_ManagementPkg ACES_Management FuncReq_39

ACES_ManagementPkg ACES_Management FuncReq_4

ACES_ManagementPkg ACES_Management FuncReq_40

ACES_ManagementPkg ACES_Management FuncReq_5

ACES_ManagementPkg ACES_Management FuncReq_6

ACES_ManagementPkg ACES_Management FuncReq_7

ACES_ManagementPkg ACES_Management FuncReq_8

ACES_ManagementPkg ACES_Management FuncReq_9

ACES_ManagementPkg ACES_Management InterfaceReq_0

ACES_ManagementPkg ACES_Management InterfaceReq_1

ACES_ManagementPkg ACES_Management InterfaceReq_10

ACES_ManagementPkg ACES_Management InterfaceReq_11

ACES_ManagementPkg ACES_Management InterfaceReq_12

ACES_ManagementPkg ACES_Management InterfaceReq_13

ACES_ManagementPkg ACES_Management InterfaceReq_14

ACES_ManagementPkg ACES_Management InterfaceReq_15

ACES_ManagementPkg ACES_Management InterfaceReq_16

ACES_ManagementPkg ACES_Management InterfaceReq_17

ACES_ManagementPkg ACES_Management InterfaceReq_18

ACES_ManagementPkg ACES_Management InterfaceReq_19

ACES_ManagementPkg ACES_Management InterfaceReq_2

ACES_ManagementPkg ACES_Management InterfaceReq_20

ACES_ManagementPkg ACES_Management InterfaceReq_21

ACES_ManagementPkg ACES_Management InterfaceReq_22

ACES_ManagementPkg ACES_Management InterfaceReq_23

ACES_ManagementPkg ACES_Management InterfaceReq_24

ACES_ManagementPkg ACES_Management InterfaceReq_25

ACES_ManagementPkg ACES_Management InterfaceReq_26

ACES_ManagementPkg ACES_Management InterfaceReq_27

ACES_ManagementPkg ACES_Management InterfaceReq_28

ACES_ManagementPkg ACES_Management InterfaceReq_29

ACES_ManagementPkg ACES_Management InterfaceReq_3

ACES_ManagementPkg ACES_Management InterfaceReq_4

ACES_ManagementPkg ACES_Management InterfaceReq_5

ACES_ManagementPkg ACES_Management InterfaceReq_6

ACES_ManagementPkg ACES_Management InterfaceReq_7

ACES_ManagementPkg ACES_Management InterfaceReq_8

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 259

Tables

ACES_ManagementPkg ACES_Management InterfaceReq_9

ACES_ManagementPkg ACES_Management OtherReq_0

ACES_ManagementPkg ACES_Management OtherReq_1

ACES_ManagementPkg ACES_Management SafetyReq_001

ACES_ManagementPkg ACES_Management SafetyReq_002

ACES_ManagementPkg ACES_Management SafetyReq_003

ACES_ManagementPkg ACES_Management SafetyReq_004

ACES_ManagementPkg ACES_Management SafetyReq_005

ACES_ManagementPkg ACES_Management SafetyReq_390197

ACES_ManagementPkg ACES_Management Safety_Req_390198

ACES_ManagementPkg ACES_Management Safety_Req_390199

ACES_ManagementPkg ACES_Management Safety_Req_390200

ACES_ManagementPkg ACES_Management Safety_Req_390201

ACES_ManagementPkg ACES_Management Safety_Req_390206

ACES_ManagementPkg ACES_Management Safety_Req_390207

ACES_ManagementPkg ACES_Management Safety_Req_390208

ACES_ManagementPkg ACES_Management Safety_Req_390209

ACES_ManagementPkg ACES_Management Safety_Req_390210

ACES_ManagementPkg ACES_Management Safety_Req_390212

ACES_ManagementPkg ACES_Management Safety_Req_390213

ACES_ManagementPkg ACES_Management Safety_Req_390214

ACES_ManagementPkg ACES_Management Safety_Req_390215

ACES_ManagementPkg ACES_Management Safety_Req_390216

ACES_ManagementPkg ACES_Management StartUpReq_1

ACES_ManagementPkg ACES_Management StartUpReq_2

ACES_ManagementPkg ACES_Management StartUpReq_3

ACES_ManagementPkg ACES_Management StartUpReq_4

ACES_ManagementPkg ACES_Management StartUpReq_5

ACES_ManagementPkg ACES_Management StartUpReq_6

ACES_ManagementPkg ACES_Management ACES_SS_requirement_32

ACES_ManagementPkg ACES_Management ACES_SS_requirement_33

ACES_ManagementPkg ACES_Management ACES_SS_requirement_34

ACES_ManagementPkg ACES_Management ACSCUNT_requirement_12

ACES_ManagementPkg ACES_Management ACSCUNT_requirement_13

ACES_ManagementPkg ACES_Management ACSCUNT_requirement_16

ACES_ManagementPkg ACES_Management ACSCUNT_requirement_17

ACES_ManagementPkg ACES_Management ACSCUNT_requirement_18

ACES_ManagementPkg ACES_Management ACSCUNT_requirement_19

ACES_ManagementPkg ACES_Management ACSCUNT_requirement_20

ACES_ManagementPkg ACES_Management ACSCUNT_requirement_21

ACES_ManagementPkg ACES_Management ACSCUNT_requirement_24

ACES_ManagementPkg ACES_Management ACSCUNT_requirement_26

ACES_ManagementPkg ACES_Management ACSCUNT_requirement_3

ACES_ManagementPkg ACES_Management AM_requirement_1

ACES_ManagementPkg ACES_Management AM_requirement_27

ACES_ManagementPkg ACES_Management AM_requirement_28

ACES_ManagementPkg ACES_Management AM_requirement_29

ACES_ManagementPkg ACES_Management AM_requirement_30

ACES_ManagementPkg ACES_Management AM_requirement_35

ACES_ManagementPkg ACES_Management AM_requirement_4

ACES_ManagementPkg ACES_Management AM_requirement_6

ACES_ManagementPkg ACES_Management AM_requirement_9

ACES_ManagementPkg ACES_Management ConfigReq_1

ACES_ManagementPkg ACES_Management ConfigReq_3

ACES_ManagementPkg ACES_Management DerIntReq_11

ACES_ManagementPkg ACES_Management DerIntReq_12

ACES_ManagementPkg ACES_Management DerIntReq_14

ACES_ManagementPkg ACES_Management DerIntReq_16

ACES_ManagementPkg ACES_Management DerIntReq_17

ACES_ManagementPkg ACES_Management DerIntReq_18

ACES_ManagementPkg ACES_Management DerIntReq_7

ACES_ManagementPkg ACES_Management DerIntReq_9

ACES_ManagementPkg ACES_Management DerReqInt_13

ACES_ManagementPkg ACES_Management DerStartupReq_4

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 260

Tables

ACES_ManagementPkg ACES_Management ErrorReq_0

ACES_ManagementPkg ACES_Management ErrorReq_1

ACES_ManagementPkg ACES_Management ErrorReq_10

ACES_ManagementPkg ACES_Management ErrorReq_11

ACES_ManagementPkg ACES_Management ErrorReq_12

ACES_ManagementPkg ACES_Management ErrorReq_13

ACES_ManagementPkg ACES_Management ErrorReq_14

ACES_ManagementPkg ACES_Management ErrorReq_15

ACES_ManagementPkg ACES_Management ErrorReq_16

ACES_ManagementPkg ACES_Management ErrorReq_17

ACES_ManagementPkg ACES_Management ErrorReq_18

ACES_ManagementPkg ACES_Management ErrorReq_19

ACES_ManagementPkg ACES_Management ErrorReq_2

ACES_ManagementPkg ACES_Management ErrorReq_20

ACES_ManagementPkg ACES_Management ErrorReq_21

ACES_ManagementPkg ACES_Management ErrorReq_22

ACES_ManagementPkg ACES_Management ErrorReq_23

ACES_ManagementPkg ACES_Management ErrorReq_24

ACES_ManagementPkg ACES_Management ErrorReq_25

ACES_ManagementPkg ACES_Management ErrorReq_26

ACES_ManagementPkg ACES_Management ErrorReq_27

ACES_ManagementPkg ACES_Management ErrorReq_28

ACES_ManagementPkg ACES_Management ErrorReq_29

ACES_ManagementPkg ACES_Management ErrorReq_3

ACES_ManagementPkg ACES_Management ErrorReq_30

ACES_ManagementPkg ACES_Management ErrorReq_31

ACES_ManagementPkg ACES_Management ErrorReq_32

ACES_ManagementPkg ACES_Management ErrorReq_33

ACES_ManagementPkg ACES_Management ErrorReq_34

ACES_ManagementPkg ACES_Management ErrorReq_35

ACES_ManagementPkg ACES_Management ErrorReq_36

ACES_ManagementPkg ACES_Management ErrorReq_37

ACES_ManagementPkg ACES_Management ErrorReq_4

ACES_ManagementPkg ACES_Management ErrorReq_5

ACES_ManagementPkg ACES_Management ErrorReq_6

ACES_ManagementPkg ACES_Management ErrorReq_7

ACES_ManagementPkg ACES_Management ErrorReq_8

ACES_ManagementPkg ACES_Management ErrorReq_9

ACES_ManagementPkg ACES_Management FuncReq_0

ACES_ManagementPkg ACES_Management FuncReq_1

ACES_ManagementPkg ACES_Management FuncReq_10

ACES_ManagementPkg ACES_Management FuncReq_11

ACES_ManagementPkg ACES_Management FuncReq_12

ACES_ManagementPkg ACES_Management FuncReq_13

ACES_ManagementPkg ACES_Management FuncReq_15

ACES_ManagementPkg ACES_Management FuncReq_16

ACES_ManagementPkg ACES_Management FuncReq_17

ACES_ManagementPkg ACES_Management FuncReq_18

ACES_ManagementPkg ACES_Management FuncReq_19

ACES_ManagementPkg ACES_Management FuncReq_2

ACES_ManagementPkg ACES_Management FuncReq_20

ACES_ManagementPkg ACES_Management FuncReq_21

ACES_ManagementPkg ACES_Management FuncReq_22

ACES_ManagementPkg ACES_Management FuncReq_23

ACES_ManagementPkg ACES_Management FuncReq_24

ACES_ManagementPkg ACES_Management FuncReq_25

ACES_ManagementPkg ACES_Management FuncReq_26

ACES_ManagementPkg ACES_Management FuncReq_27

ACES_ManagementPkg ACES_Management FuncReq_28

ACES_ManagementPkg ACES_Management FuncReq_29

ACES_ManagementPkg ACES_Management FuncReq_3

ACES_ManagementPkg ACES_Management FuncReq_30

ACES_ManagementPkg ACES_Management FuncReq_31

ACES_ManagementPkg ACES_Management FuncReq_32

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 261

Tables

ACES_ManagementPkg ACES_Management FuncReq_33

ACES_ManagementPkg ACES_Management FuncReq_34

ACES_ManagementPkg ACES_Management FuncReq_35

ACES_ManagementPkg ACES_Management FuncReq_36

ACES_ManagementPkg ACES_Management FuncReq_37

ACES_ManagementPkg ACES_Management FuncReq_38

ACES_ManagementPkg ACES_Management FuncReq_39

ACES_ManagementPkg ACES_Management FuncReq_4

ACES_ManagementPkg ACES_Management FuncReq_40

ACES_ManagementPkg ACES_Management FuncReq_5

ACES_ManagementPkg ACES_Management FuncReq_6

ACES_ManagementPkg ACES_Management FuncReq_7

ACES_ManagementPkg ACES_Management FuncReq_8

ACES_ManagementPkg ACES_Management FuncReq_9

ACES_ManagementPkg ACES_Management InterfaceReq_0

ACES_ManagementPkg ACES_Management InterfaceReq_1

ACES_ManagementPkg ACES_Management InterfaceReq_10

ACES_ManagementPkg ACES_Management InterfaceReq_11

ACES_ManagementPkg ACES_Management InterfaceReq_12

ACES_ManagementPkg ACES_Management InterfaceReq_13

ACES_ManagementPkg ACES_Management InterfaceReq_14

ACES_ManagementPkg ACES_Management InterfaceReq_15

ACES_ManagementPkg ACES_Management InterfaceReq_16

ACES_ManagementPkg ACES_Management InterfaceReq_17

ACES_ManagementPkg ACES_Management InterfaceReq_18

ACES_ManagementPkg ACES_Management InterfaceReq_19

ACES_ManagementPkg ACES_Management InterfaceReq_2

ACES_ManagementPkg ACES_Management InterfaceReq_20

ACES_ManagementPkg ACES_Management InterfaceReq_21

ACES_ManagementPkg ACES_Management InterfaceReq_22

ACES_ManagementPkg ACES_Management InterfaceReq_23

ACES_ManagementPkg ACES_Management InterfaceReq_24

ACES_ManagementPkg ACES_Management InterfaceReq_25

ACES_ManagementPkg ACES_Management InterfaceReq_26

ACES_ManagementPkg ACES_Management InterfaceReq_27

ACES_ManagementPkg ACES_Management InterfaceReq_28

ACES_ManagementPkg ACES_Management InterfaceReq_29

ACES_ManagementPkg ACES_Management InterfaceReq_3

ACES_ManagementPkg ACES_Management InterfaceReq_4

ACES_ManagementPkg ACES_Management InterfaceReq_5

ACES_ManagementPkg ACES_Management InterfaceReq_6

ACES_ManagementPkg ACES_Management InterfaceReq_7

ACES_ManagementPkg ACES_Management InterfaceReq_8

ACES_ManagementPkg ACES_Management InterfaceReq_9

ACES_ManagementPkg ACES_Management OtherReq_0

ACES_ManagementPkg ACES_Management OtherReq_1

ACES_ManagementPkg ACES_Management SafetyReq_001

ACES_ManagementPkg ACES_Management SafetyReq_002

ACES_ManagementPkg ACES_Management SafetyReq_003

ACES_ManagementPkg ACES_Management SafetyReq_004

ACES_ManagementPkg ACES_Management SafetyReq_005

ACES_ManagementPkg ACES_Management SafetyReq_390197

ACES_ManagementPkg ACES_Management Safety_Req_390198

ACES_ManagementPkg ACES_Management Safety_Req_390199

ACES_ManagementPkg ACES_Management Safety_Req_390200

ACES_ManagementPkg ACES_Management Safety_Req_390201

ACES_ManagementPkg ACES_Management Safety_Req_390206

ACES_ManagementPkg ACES_Management Safety_Req_390207

ACES_ManagementPkg ACES_Management Safety_Req_390208

ACES_ManagementPkg ACES_Management Safety_Req_390209

ACES_ManagementPkg ACES_Management Safety_Req_390210

ACES_ManagementPkg ACES_Management Safety_Req_390212

ACES_ManagementPkg ACES_Management Safety_Req_390213

ACES_ManagementPkg ACES_Management Safety_Req_390214

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 262

Tables

ACES_ManagementPkg ACES_Management Safety_Req_390215

ACES_ManagementPkg ACES_Management Safety_Req_390216

ACES_ManagementPkg ACES_Management StartUpReq_1

ACES_ManagementPkg ACES_Management StartUpReq_2

ACES_ManagementPkg ACES_Management StartUpReq_3

ACES_ManagementPkg ACES_Management StartUpReq_4

ACES_ManagementPkg ACES_Management StartUpReq_5

ACES_ManagementPkg ACES_Management StartUpReq_6

ACES_PowerPkg

ACES_PowerPkg ACES_Power DerIntReq_15

ACES_PowerPkg ACES_Power DerIntReq_16

ACES_PowerPkg ACES_Power DerIntReq_17

ACES_PowerPkg ACES_Power Safety_Req_390209

ACES_PowerPkg ACES_Power DerIntReq_15

ACES_PowerPkg ACES_Power DerIntReq_16

ACES_PowerPkg ACES_Power DerIntReq_17

ACES_PowerPkg ACES_Power Safety_Req_390209

Table 5: Subsystem Requirement Allocation Table (Complete)

References

© Bruce Powel Douglass 2017. All Rights Reserved Harmony aMBSE Deskbook 263

14 References

[1] OMG SysML Specification 1.4 June 2015
http://sysml.org/sysml-specifications/

[2] Bruce Powel Douglass, Agile Systems Engineering (Morgan Kaufmann Press, 2015)
https://www.amazon.com/Agile-Systems-Engineering-Bruce-Douglass-ebook/dp/B015XPGTNI/ref=sr_1_1?ie=UTF8&qid=1478791883&sr=8-
1&keywords=agile+systems

[3] Bruce Powel Douglass, Real-Time Agility (Addison-Wesley Professional, 2009)
https://www.amazon.com/Real-Time-Agility-Harmony-Embedded-Development/dp/0321545494/ref=sr_1_3?ie=UTF8&qid=1478791964&sr=8-
3&keywords=agile+real-time

[4] Bruce Powel Douglass, Real-Time Design Patterns: Robust Scalable Architecture for Real-Time Systems (Addison-Wesley Professional, 2002)
https://www.amazon.com/Real-Time-Design-Patterns-Scalable-Architecture/dp/0201699567/ref=sr_1_1?ie=UTF8&qid=1478792052&sr=8-1&keywords=real-
time+design+patterns

[5] Hans-Peter Hoffmann, Harmony Deskbook 4.1 (IBM, July 2013)
https://www.ibm.com/developerworks/community/blogs/35dfcb99-111b-423a-aaa4-50f3fddae141/entry/harmony_Deskbook_4_1_is_here?lang=en

[6] PID For Dummies
http://www.csimn.com/CSI_pages/PIDforDummies.html

[7] Bruce Powel Douglass, Harmony MBSE Modeling Guidelines
http://merlinscave.info/Merlins_Cave/Tutorials/Entries/2017/5/26_Harmony_Modeling_Guidelines.html

http://sysml.org/sysml-specifications/
https://www.amazon.com/Agile-Systems-Engineering-Bruce-Douglass-ebook/dp/B015XPGTNI/ref=sr_1_1?ie=UTF8&qid=1478791883&sr=8-1&keywords=agile+systems
https://www.amazon.com/Agile-Systems-Engineering-Bruce-Douglass-ebook/dp/B015XPGTNI/ref=sr_1_1?ie=UTF8&qid=1478791883&sr=8-1&keywords=agile+systems
https://www.amazon.com/Real-Time-Agility-Harmony-Embedded-Development/dp/0321545494/ref=sr_1_3?ie=UTF8&qid=1478791964&sr=8-3&keywords=agile+real-time
https://www.amazon.com/Real-Time-Agility-Harmony-Embedded-Development/dp/0321545494/ref=sr_1_3?ie=UTF8&qid=1478791964&sr=8-3&keywords=agile+real-time
https://www.amazon.com/Real-Time-Design-Patterns-Scalable-Architecture/dp/0201699567/ref=sr_1_1?ie=UTF8&qid=1478792052&sr=8-1&keywords=real-time+design+patterns
https://www.amazon.com/Real-Time-Design-Patterns-Scalable-Architecture/dp/0201699567/ref=sr_1_1?ie=UTF8&qid=1478792052&sr=8-1&keywords=real-time+design+patterns
https://www.ibm.com/developerworks/community/blogs/35dfcb99-111b-423a-aaa4-50f3fddae141/entry/harmony_deskbook_4_1_is_here?lang=en
http://www.csimn.com/CSI_pages/PIDforDummies.html
http://merlinscave.info/Merlins_Cave/Tutorials/Entries/2017/5/26_Harmony_Modeling_Guidelines.html

