
IBM Software

Thought Leadership White Paper

December 2014

Adopting agile methods for safety-
critical systems development

2 Adopting agile methods for safety-critical systems development

Executive summary
Agile methods are known for their speed and f lexibility, but they
also have an undeserved reputation for being undisciplined and
lacking robustness. In fact, agile methods require a great deal of
discipline, and enhance both quality and team productivity.

This paper explains how the inherent discipline and efficiency
of agile development practices makes them ideally suited to the
development of safety-critical systems.

Properties of safety-critical systems
The label “safety-critical” is generally applied to systems that
either can cause harm or are responsible for preventing harm.
Such systems range from medical devices to automotive braking
systems, and from nuclear power plant control to avionic f light
management systems. Most safety-critical systems must be
certified by a regulatory agency to ensure that they are fit for
purpose. This includes verifying that proper development
practices have been applied to promote “system correctness”
as the final outcome. It is important that adherence to the
objectives of the relevant standards can be demonstrated.

As it is virtually impossible to demonstrate deterministic correct-
ness for any significant piece of software, most standards focus
on specifying process objectives and requirements for evidence
that the processes have been followed. For example, the recently
released avionics standard DO-178C (Software Considerations
in Airborne Systems and Equipment Certification) requires
that a system project supply evidence in several categories for
up to 71 objectives, depending on the safety-criticality level.
Supplements to this standard, such as DO-331 (Model-Based
Development and Verification) and DO-332 (Object Oriented
Technology and Related Techniques) add further objectives if
those technologies are employed. These objectives relate to a
number of topics, covering planning (including the specification

of the safety level of the device), software development process
definition, requirements management, software design and
coding. Other objectives relate to configuration management,
quality assurance, integration, verification, tool qualification,
and system certification.

It is important to note that, even though these standards
specify the objectives that any process must meet if it is used to
develop a safety-critical system, the standards do not specify the
processes themselves. As long as a process can be shown to meet
the requirements of the relevant standard, the development team
is free to use whatever processes they wish. Provided that the
safety objectives are achieved, this means that teams are free
to benefit from the advantages of using agile methods.

Traditional methods for developing
safety-critical systems
Traditional methods, including the waterfall and V lifecycles,
involve enormous effort in planning, documentation and rework,
but relatively little time in actual development. This is some-
times referred to as ‘big design up front’. Early planning is often
done in far more detail than is justifiable given the information
that is typically available at the outset of a project. Planning at
this level of detail means that plans inevitably contain errors.
When these errors are discovered, a great deal of additional
effort is required to rectify them. Likewise, the verification of
any given work product, whether it is a requirements specifica-
tion or target software, is typically far removed in time from its
creation. This means that defects are embedded early and
discovered late, implying a huge downstream cost in time
and effort to identify and remove the defects and rework the
artifacts. Great emphasis is placed on analysis and thinking early
on, but there is often little verification of that reasoning, at least
until the end of the project.

3IBM Software

The primary means for “verification” is a manual, error-prone
and expensive review process applied to each of the hundreds of
work products produced during the project lifecycle. The typical
high defect rate and high frequency of missed deadlines attest to
the inadequacy of the approach. This is not to imply that deep
reasoning about correctness and safety is misplaced. Clearly,
such analysis must be done, but only after the appropriate infor-
mation to support it is made available. And, more importantly,
the analysis should be verified as the work is performed. Agile
development principles state that this work should be done in a
way that discovers and repairs defects immediately, such that the
emphasis is on defect avoidance in the product itself, rather than
on the production of documentation.

Why agile?
In general, there are two reasons why teams choose agile
methods. The first is a perceived need to improve quality,
aspects of which may include: customer acceptability, usability,
low defect rates and compliance with relevant standards.
The second reason is to save development time and costs.

Frequently, however, the improved quality achievable through
agile methods gets overshadowed by the surrounding hype and
misinterpretations of the term. Some people and teams claim
to be agile, but are simply skipping the planning, documentation
and design stages. If this behavior truly represented agile
methods, then clearly agile would be completely inappropriate
for safety-critical systems development. In fact, the correct
definition of agile is a highly disciplined approach to software

or systems development, in which developers attempt to avoid
defects by getting the development right the first time, and by
verifying work as it is created.

By contrast, traditional methods insist on a long period of
feature creation followed by an even longer period of stabiliza-
tion—which can amount to long periods of “bug insertion”
and “bug removal”. Many organizations working in the safety-
critical area—whether for medical, automotive, transportation,
aerospace, or military systems—use traditional, heavyweight
approaches involving reams of paper, extensive manual processes
and a variety of disparate and often non-integrated tools, includ-
ing documentation created in word processors and spreadsheets.
These traditional processes require considerable due diligence,
creating a huge burden on the engineering staff; and they are
often hugely expensive.

With agile methods, teams can incrementally create verifiable
artifacts that can then be mathematically analyzed, simulated or
tested on the target platform. The construction and verification
of components during system development is a key benefit of
agile practices; this iterative process can deliver the quality
needed in safety-critical systems at a relatively low cost. In
safety-critical development, the key concern is safety, and in
agile methods, the paramount concern is quality. There is no
contradiction here, because by paying careful attention to
quality, safety can be improved and managed. It makes sense,
then, to adapt agile methods to the specific needs of safety-
critical projects, so that the benefits of agile can be realized
in these demanding development environments.

4 Adopting agile methods for safety-critical systems development

It should be noted that there are also secondary benefits to using
agile methods, including improved productivity, improved time
to market, improved customer satisfaction and decreased devel-
opment costs. However, in the context of safety, these additional
benefits are naturally of lesser importance. What is important is
tailoring the various agile practices to make them applicable to
the needs of safety-critical systems development. Traditional
methods may appear to be more disciplined than agile—if only
because their governance can require reams of documentation,
hundreds of hours of management overhead and built-in time
delays to handle the inevitable scrap and rework as the project
nears completion. But in reality, all of this additional material
and work may produce only the illusion of discipline, and does
not necessarily contribute to creating executable, verifiable
software.

In contrast to traditional methods (for example, waterfall
techniques), verification occurs early in the agile process,
alongside development, and teams work closely together to
ensure that the delivered products meet the requirements. This
enables agile approaches to avoid much of the additional cost
and overhead that would otherwise arise from the need to
rework sub-standard output. For products created in an agile
environment, performance is robust and reliable, and defect
rates are low. Compared to traditionally developed systems,
where defect rates are typically significantly higher, systems
developed in an agile approach are more likely to quickly meet
with approval in a safety-critical context.

Practices needed for agile development
Agile methods promote greater discipline than traditional
approaches, in that they focus on defect avoidance and the
continuous creation of executable, verifiable code. The code
is delivered frequently for stakeholder review throughout the

 project. Rather than relying on reams of paper to “tell” what
has been accomplished, the more disciplined agile process itself
enables teams to “show” the accomplishments, step by step, as
the project progresses. In this way, the rigor inherent in agile
stems from producing working, verified code throughout the
project, which requires teams to solve problems as they are
encountered. Equally, agile teams are usually cross-functional,
and can therefore draw on a broader range of collective expertise
right from the outset of the project.

This paper will now outline five of the most important agile
practices that impact safety-critical systems development:

●● Incremental development
●● Test-driven development
●● Continuous integration
●● Dynamic planning
●● Risk management

Incremental development
One major difference in project management style between
traditional and agile approaches is the use of incremental
development, which can help teams handle complexity better.
In a traditional approach, many teams create prototypes (early
system versions created for a specific purpose, such as a proof
of concept), then spend a great deal of time on detailed design.
Only much later, will they actually get down to coding. The
challenge of this ‘big design up front’ practice is that it creates a
rigid, brittle architecture. Any architectural issues discovered
later in the development cycle will usually be hard to fix—and
the prohibitively high cost of creating a better-engineered
solution makes it likely that remediation will be merely
superficial. Agile offers an alternative, enabling teams to remain

5IBM Software

in prototype mode and use evolutionary design to take thin,
vertical slices of the architecture and start to build the product
sooner. Engineers discover the major problems earlier, rather
than late in the project, when coding is meant to be nearing
completion.

There is an important difference in the meaning of the word
“prototype” as used within the two approaches. In a traditional
approach, “prototype” means a roughed-out implementation
that is ultimately discarded. In an incremental design approach,
“prototype” means an initial implementation that evolves incre-
mentally into the final, released system. Agile teams start with a
thin slice of functionality that crosses the proposed architectural
stack, and then build the smallest possible implementation.
The interfaces between the components in the architectural
stack are tested immediately, so teams are able to discover—and
address at source—many of the major problems. As the project
progresses, more functionality is added, and teams continuously
verify the work as it is being done. The system capabilities can
be elaborated on a highest-risk first basis or by other criteria,
such as urgency, criticality, or availability (for example, the
availability of some resource or subject matter expert).
Continuous verification ensures low defect rates as the system
prototypes evolve. Continuous integration guarantees that the
work products from different teams will assimilate correctly.
Although reviews can certainly be done, they become a second-
ary means of adding quality, not the primary one. The incre-
mental approach is well established, and decades of research
and practical experience attest to its effectiveness in producing
software with fewer defects and in less time than serial waterfall
approaches.1

Test-driven development
Test-driven development (TDD) is another fundamental agile
practice. The idea is to produce only work products that are
free of defects. It is carried out through a process of very short
(20- to 60-minute) cycles in which some portion of a work
product is produced and verified. This most commonly applies
to source code. A key tenet of TDD is that the test should be
written before the code that will be tested. If defects are found,
they should be immediately fixed, before more functionality
is added. The result of this approach is that teams write “just
enough code” to pass the test, not wasting time and effort
writing additional code that may or may not be necessary but
will certainly need to be tested. Well-formed tests that target
the required functionality will produce more sustainable code
because there will be fewer code paths to manage. In the IBM®
Harmony/Agile for Embedded Software Development process2
(hereafter referred to as the IBM Harmony/Agile process), this
is known as the nanocycle. Figure 1 shows the IBM Harmony/
Agile nanocycle workflow. The important thing to note is the
speed at which this cycle runs; 20 minutes per cycle is not
uncommon. Although this discussion has focused on source
code, any verifiable work product can use this TDD approach.
The IBM Harmony/Agile process focuses on the creation of
executable work products for this reason, including requirements
models, architectural models and design models. TDD-style unit
testing is highly recommended because of the huge positive
impact it has on quality.

6 Adopting agile methods for safety-critical systems development

Figure 1. The IBM Harmony/Agile nanocycle

Nanocycle:
Each loop is
typically 20 - 60
minutes in
duration

[more requirements]Identify software elements Develop test cases

Refine Collaboration

Translate

Run Tests Fix Defects

Analyze Outcomes
Perform Coverage

Analysis

Make Change Set
Available

[all requirements implemented]

[stable and usable]

[no defect]

[defect]

[else]

7IBM Software

Continuous integration
Continuous integration is, in a sense, a communal TDD prac-
tice. Its purpose is to avoid costly integration problems identified
late in the development process. Similar to TDD, continuous
integration accomplishes this goal by applying defect identifica-
tion and removal early and often. Most commonly, this practice
results in a daily build in which the work of multiple engineers
is linked, and in the running of test cases that cross component
boundaries. These tests become more elaborate and complete
as the complexity of the components grows. When integration
problems are discovered, they are immediately fixed before new
features can be added. In this way, the software always integrates.
This practice greatly reduces the integration time at the end of
the project compared with more traditional methods. The key
benefit of continuous integration is that it enables everyone on
the team to be working on the same build; the team can there-
fore make the most of its collective skills to manage quality
problems as they occur. Creating a smoothly running continuous
integration system might be costly up front for teams that have
not invested in tuning their builds or test automation, but the
payoff for this investment is significantly higher productivity.

Dynamic planning
Most traditional projects are managed according to a detailed
plan drawn up early in the project, which makes hundreds or
thousands of assumptions based on limited information, many
of which may be optimistic, and many of which may turn out
to be incorrect. In comparison, agile approaches recognize that
plans can and must change as more information becomes avail-
able during a project. They therefore replace much up-front
planning with a more evolutionary approach.

In point of fact, agile planning happens at the beginning of each
iteration so that it can include changes resulting from knowledge
gained in the previous iteration. Some guiding principles for
agile planning are:

●● Do not plan beyond your level of available information.
●● Put into place metrics that continuously measure progress

and success based on outcomes.
●● Use the outcomes of the work to update plans frequently

during the project.

Planning is crucial to understand what resources you need, how
many (or much) of them you need, when you need them and
what your outcomes will be. Many teams feel uncomfortable
moving from traditional planning, with its apparent certainties,
to agile planning, where timescales and deliverables are more
clearly estimates. However, software development is largely a
matter of invention, and making accurate predictions about
invention is difficult. By putting in place a plan with clear expec-
tations, by continuously measuring progress versus desired
outcomes and by adjusting the plans to meet reality, greater
confidence can be gained in predictions of deliverables and
outcomes, and better project success can be achieved.

Risk management
The last practice is project risk management. Risk is a function
of both known and unknown factors, so project risk manage-
ment is a question of identifying potentially dangerous lapses
in knowledge and then taking specific actions. These actions—
known as “spikes” in Scrum or “risk mitigation activities” in
IBM Harmony/Agile—improve understanding and thereby
reduce risk. Risks might be technology related (for example,
“I’m not sure if CORBA is fast enough to meet our communica-
tion needs”), user-based (“Will pilots accept this kind of interface

8 Adopting agile methods for safety-critical systems development

in their cockpit?”), or managerial (“Can this milestone be
achieved before the deadline?”). The answer to such risk
concerns lies in the discovery, dissemination and collective
understanding of information. Risk is usually managed using
a risk list or risk management plan, which typically tracks the
following key items for each identified risk:

●● Quantified impact and likelihood
●● Risk strategy (acceptance, avoidance, mitigation, transference)
●● Responsible parties for risk strategy
●● Status and results.

Agile methods emphasize risk management because this disci-
pline is among the key contributors to project success. Agile
manages technical risk by frontloading the work backlog with
high-risk items. For each challenge, a thin slice of the code from
the technology thought to be risky is prototyped and tested to
determine whether the solution works, before the rest of the
code is completed. This process is repeated for all risky parts
of the code at the beginning of the project. The risk of not
building the right product is handled by providing customer
demos at every iteration. Planning at the beginning of each
iteration enables teams to repeatedly evaluate their highest-risk
issues and decide how to handle them as they gain the informa-
tion required.

Agile practices for safety-critical
development
The agile practices described here do not avoid useful work, or
promote undisciplined coding instead of meeting requirements.
Agile practices primarily avoid tasks that add little or no value.
They emphasize activities that provide high value, and they
reorder tasks to address risk as rapidly as possible.

Safety-critical systems development has special needs, and for
safety-critical projects agile includes additional practices to
address those needs, such as:

●● Initial safety analysis
●● Continuous safety assessment
●● Continuous traceability analysis
●● Change management
●● Requirements-based verification

Initial safety analysis—using techniques such as fault tree analy-
sis, failure mode and effect analysis, and hazard analysis—looks
at the specific safety concerns of the system, codifies the safety
risk and identifies additional requirements for safety control
measures. As the project progresses, technological solutions to
the requirements are realized. These solutions might introduce
further safety concerns, so an ongoing assessment is required
to determine the need for additional safety control measures.
Traceability analysis—required by most safety standards—
enables the development team to make its safety case, showing
how all requirements are realized in the design and code, and
how they are adequately tested. Traceability connects the differ-
ent work products into a cohesive, coherent whole. The focus
is on “continuous traceability”—that is, traceability which is
created at the same time as work products are created or
modified—because adding traceability after the fact is error-
prone and expensive. Change management evaluates the impact
of changes to work products (such as requirements or design)
using traceability as a guide. This ensures that the effect of
changes on system performance and safety are well understood,
and that their acceptability can therefore be determined. Lastly,
requirements-based verification uses detailed traceability to
ensure that all requirements are satisfied by design and code,
are adequately covered by test cases, and that there is no
implementation for which there are no requirements.

9IBM Software

Safety-critical practices: regulations and
compliance
Safety-critical systems must be certified against their applicable
standards. These standards identify the objectives that a system
or project must meet before it is allowed to be deployed in its
operational environment. For example, avionics software must
be certified against DO-178B (or the newer DO-178C) and
its associated supplements. Medical software is certified
against IEC 62304. Nuclear power plants are certified against
IEC 61513. Passenger automobiles are certified against
ISO 26262.

Adherence to safety objectives is neither cheap nor easy. Atego
HighRely, a DO-178 consulting firm, estimates that certification
under the DO-178B standard adds at least 25 to 40 percent
to total project costs, and the premium can be as high as
75 to 150 percent.3

It is not advisable to begin the certification process at the end of
a project. This typically results in unplanned rework, plus cost
overruns. Costs are likely to be lower if certification agencies are
consulted early. In DO-178 projects, the key document is the
Plan for Software Aspects of Certification (PSAC), which details
the proposed approaches, tasks and work products that will be
used to gain certification. Early release of such a document to
the certification agency enables the project team to incorporate
the agency’s feedback early, thus helping to reduce the amount
of rework. In an agile project, the PSAC and supporting plans
(such as the quality assurance plan, configuration management
plan and software verification plan) help identify the practices
that will be employed and the work product content and struc-
ture. They also outline how all of the relevant safety objectives
will be met. Just as with all other agile work products, this is
best done incrementally with frequent verification (with the
certification agency) as the project progresses.

Adopting agile for safety-critical projects
Agile methods can provide significant benefits in terms of
quality and team productivity, but their adoption is neither
easy nor pain-free. The recommended steps to successful agile
adoption are:

1. Identify where you are. Assess your strengths and weaknesses
as an engineering organization. Your assessment should
include not only software development, but also other
engineering disciplines (for example, electrical, mechanical,
human-machine interface, and systems engineering), project
planning, project governance, quality assurance and testing.

2. Identify where you want to be. Do not state what you want
the process to be, but state the objective outcomes and goals
you want to achieve, such as dependability, quality and
stakeholder satisfaction.

3. Identify the gaps. Assess where you are and where you want
to be as an engineering organization.

4. Identify measures of success. Objective, goal-based metrics
can be used to assess the success of changes made to your
processes and practices. These metrics give you evidence,
rather than perceived or hoped-for results.

5. Plan incremental remediation. A good remediation plan uses
agile practices to adopt agile practices. Identify specific
practices and methods that address the high priority concerns
(identified in Step 3) with goal-based metrics that allow
continuous monitoring of progress.

6. Implement that plan dynamically. This means using objective,
goal-based metrics to steer the adoption of the practices to
ensure their optimal benefit. A plan is really a theory, and
theories need to be adjusted continually to account for reality.

10 Adopting agile methods for safety-critical systems development

IBM solutions for adopting agile for
safety-critical systems development
The IBM solution for systems and software engineering provides
a collaborative lifecycle solution for agile development. By
integrating support for the different activities across the systems
and software delivery lifecycles the IBM solution helps to avoid
siloes of activity and enables teams to work collaboratively.
The solution supports key engineering activities including
requirements management, model-based architecture and
design, testing and quality management, change and configura-
tion, and collaborative planning and workflow management.
It is integrated with the IBM Harmony/Agile process and its
variants to support the objectives of industry-specific standards.
Furthermore, the solution is extensible through open standards
to support IBM and third-party domain- and industry-specific
needs.

Conclusion
Safety-critical systems are difficult to develop. In addition to
addressing normal concerns about quality and time-to-market,
safety-critical systems must also meet the demanding objectives
of relevant safety standards and are subject to rigorous certifica-
tion. Agile methods are a set of practices that can help improve
both quality and productivity, and that can also be employed in

the development of safety-critical systems. The standard agile
practices apply well to safety-critical systems, but they must be
tailored and customized to ensure that safety objectives are met.

The key agile practices that can assist in the development of
safety-critical systems are:

●● Incremental development (evolutionary development with
frequent requirements-based verification)

●● Test-driven development (development and application of
unit tests as the code is developed)

●● Continuous integration (continuously building software and
verifying that the various components work together properly)

●● Dynamic planning (updating plans based on continuously
measured “ground truth”)

●● Risk management (identifying and prioritizing project risks
and reducing them through risk strategies).

In addition, the traditional safety-critical practices of initial
safety analysis, continuous safety assessment, managing
traceability links among work products, change management
and requirements-based verification can ensure an efficient,
high-quality development process.

11IBM Software

About the authors
Bruce Powel Douglass, who has a doctorate in neurocybernet-
ics from the USD Medical School, has over 35 years’ experience
designing safety-critical real-time systems in a variety of hard
real-time environments. He has designed and taught courses in
agile methods, object-orientation, MDA, real-time systems, and
safety-critical systems development, and is the author of over
6,000 book pages from a number of technical books including
Real-Time UML, Real-Time UML Workshop for Embedded
Systems, Real-Time Design Patterns, Doing Hard Time, Real-
Time Agility, and Design Patterns for Embedded Systems in C.
He is the Chief Evangelist at IBM Rational®, where he is a
thought leader in the systems space, consulting with and
mentoring IBM customers all over the world. He represents
IBM at many different conferences, and authors tools and
processes for the embedded real-time industry. He can be
followed on Twitter @IronmanBruce. Papers and presentations
are available at his Real-Time UML Yahoo technical
group (http://yhoo.it/1EXhJda) and from his IBM page
(http://ibm.co/11hr5mR).

Jonathon Chard, who has a doctorate in electrical engineering
from the University of Manchester, UK, has over 25 years’
experience in the development of products and systems. He
is currently responsible for the worldwide marketing strategy
for IBM’s solutions for real-time and embedded software devel-
opment including agile approaches for product and systems
development. Previously with IBM and formerly with Telelogic,
he has held pre- and post-sales technical roles covering the
product and systems development lifecycle including require-
ments management, software and systems modeling, code
quality and testing, working with a variety of product and
systems industries. In his earlier career, Jon was a systems
engineering practitioner in the automotive industry.

http://yhoo.it/1EXhJda
http://ibm.co/11hr5mR

	

	

	

	

	

	

	

Please Recycle

For more information
To learn more about agile practices for safety-critical products,
please contact your IBM marketing representative or
IBM Business Partner, or visit the following pages:
●● ibm.com/software/rational/agile/
●● ibm.co/1rWL1Tb

Additionally, IBM Global Financing can help you acquire
the software capabilities that your business needs in the most
cost-effective and strategic way possible. We’ll partner with
credit-qualified clients to customize a financing solution to
suit your business and development goals, enable effective cash
management, and improve your total cost of ownership. Fund
your critical IT investment and propel your business forward
with IBM Global Financing. For more information, visit:
ibm.com/financing

© Copyright IBM Corporation 2014

IBM Corporation
Software Group
Route 100
Somers, NY 10589

Produced in the United States of America
December 2014

IBM, the IBM logo, ibm.com, and Rational are trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide. Other
product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at “Copyright and
trademark information” at ibm.com/legal/copytrade.shtml

This document is current as of the initial date of publication and may be
changed by IBM at any time. Not all offerings are available in every country
in which IBM operates.

THE INFORMATION IN THIS DOCUMENT IS PROVIDED
“AS IS” WITHOUT ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING WITHOUT ANY WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND ANY WARRANTY OR CONDITION OF
NON-INFRINGEMENT. IBM products are warranted according to the
terms and conditions of the agreements under which they are provided.

The client is responsible for ensuring compliance with laws and regulations
applicable to it. IBM does not provide legal advice or represent or warrant
that its services or products will ensure that the client is in compliance with
any law or regulation.

1 See, for example, Barry Boehm’s Software Engineering Economics (Prentice
Hall, 1981) or Balancing Agility and Discipline (Addison-Wesley, 2003).

2 The IBM Harmony/Agile process integrates other practices such as
high-fidelity modeling (along with source code generation) and continuous
integration in the development of software designs and source code.
See Bruce Powel Douglass, Real-Time Agility, (Addison-Wesley, 2009)
for more information.

3 DO-178B Cost and Benefits: what are the true DO-178B costs and benefits;
a detailed analysis. Vance Hildeman, Atego HighRely.
(http://highrely.com/whitepapers.php)

RAW14313-USEN-01

http://www.ibm.com/legal/copytrade.shtml
http://highrely.com/whitepapers.php
http://www.ibm.com/software/rational/agile/
http://www.ibm.co/1rWL1Tb
http://www.ibm.com/financing

	Untitled
	IBM solutions for adopting agile for sa
	Conclusion
	Safety-critical practices: regulations a
	Adopting agile for safety-critical proje
	Agile practices for safety-critical deve
	Continuous integration
	Dynamic planning
	Risk management
	Test-driven development
	Practices needed for agile development
	Adopting agile methods for safety-critic
	Executive summary
	Properties of safety-critical systems
	Traditional methods for developing safet
	Why agile?
	Incremental development
	About the authors
	For more information

