‘ IBM Software Group

Concurrency Architectures in the UML

Bruce Powel Douglass, Ph.D.
Chief Evangelist
IBM Rational

Bruce.Douglass@us.ibm.com

Twitter: @BruceDouglass

Yahoo: tech.groups.yahoo.com/qroup/RT-UML/ S
IBM: www-01.ibm.com/software/rational/leadership/thought/brucedouglass.html software

= |Goto IBM

& Innovation for a smarter planet © 2010 IBM Corporation




| IBM Software Group | Rational software

Basic Definitions

= Concurrency

Ki)

Concurrency refers to the
simultaneous execution of action
sequences

= Concurrency unit

0

concurrency units 1s “don’t know — don’t care”

A Concurrency Unit (task or thread)
has a sequence of actions in which the
order of execution 1s known however the
order of execution of actions in different

(except at explicit synchronization points)

6‘ Innovation for a smarter planet

~|III



‘ IBM Software Group | Rational software

Concurrency defines execution order dependencies

Task 1 Task 2 Task 3 = What's the order of execution?
B Qw D » A then W then Alpha?
» Alpha then Beta then Gamma then
L W then Y then A?

Action B

» A then B then W then Y then Z then

Alpha?
Ej Ej = ALL ARE CORRECT

—!

¥ ¥
Action D Action

Action E

ki

¥ ¥

Action £ Action
Gamma

If you care about the
i synchroniz;:ion point . Order between the

| ' ! 0 sequences, then

P D D ——= concurrency was

the wrong choice!

&‘ Innovation for a smarter planet 3

Qﬂ

N




| IBM Software Group | Rational software

Basic Definitions

= Urgency
@ Urgency refers to the
nearness of a deadline
= Criticality

O

Criticality refers to the
importance of the task’s

———correct and timely completion

6‘ Innovation for a smarter planet

Utility function:
"value" of action completion

Urgency

=

o
I
I

Criticality

Time deadline




| IBM Software Group | Rational software

Basic Definitions

= Deadline

A deadline is a point in time
O at which the completion of an

—— —action becomes incorrect or irrelevant

= Priority

Priority is a numeric value used

O to determine which task, of
A\

the current ready-to-run task set
will execute preferentially

6‘ Innovation for a smarter planet 5




| IBM Software Group | Rational software

Basic Definitions

= Arrival Pattern

@ The arrival pattern for a task
or triggering event is either time-

based (periodic) or event-based (aperiodic)

= Synchronization Pattern

Synchronization pattern refers to the

how the tasks execute during
0 a rendezvous, e.g. synchronous,

balking, waiting, or timed

6‘ Innovation for a smarter planet



| IBM Software Group | Rational software

Basic Definitions

= Blocking Time
The blocking time for a task or

@ action is the length of time it may

— be kept from executing because a
lower priority task owns a required resource

= Execution Time

The execution time for a task or
O action is the length of time it

- requires to complete execution

6‘ Innovation for a smarter planet



‘ IBM Software Group | Rational software

Basic Definitions

execution time jitter

task state

Hunning

Waiting

T time

arriving event
initiating tazk execution

&‘ Innovation for a smarter planet 8



| [T
KA
(Li]]
Hn
-
L

| IBM Software Group | Rational software

Blocking
Task A Task X Task Y Task Z
(Highest Priority (1)) (Priority = 98) (Priority = 99) (Priority = 100)
Period = 50ms Period = 500ms Period = 800ms Period = 1000ms
Exec time =10ms | --- Exec time = 80ms Exec time = 100ms Exec time = 500ms

Locks for 5ms Locks for 10ms
Resource R

= What is the blocking time for Task Z?
= What is the blocking time for Task A?

= Will Task A always meet its deadlines?

o This 1llustrates unbounded priority
inversion — this is ALWAYS a bad thing!

6‘ Innovation for a smarter planet



| IBM Software Group | Rational software

Priority Inheritance

Task A
(Highest Priority (1))

Period = 20ms

Exec time = 10ms

- I
pll])

Task X

Task Y

(Priority = 98)
Period = 500ms

Exec time = 80ms

(Priority = 99)
Period = 800ms

Exec time = 100ms

Task Z
(Priority = 100)
Period = 1000ms

Exec time = 500ms

Locks for 5ms

Resource R

Locks for 10ms

Priority Ceiling = 1
= The Priority Ceiling for a resource is the priority of the highest priority task that can
ever access the resource (in this case “17)

» While a lower priority task accesses the resource, it's priority is temporarily escalated to its
resource ceiling and deescalated once it releases the resource

» What is the blocking time for Task Z?
» What is the blocking time for Task Y?
» What is the blocking time for Task X?
» What is the blocking time for Task A?
» Will Task A always meet its deadlines?

% Innovation for a smarter planet 10



| IBM Software Group | Rational software

Basic Definitions

= Timeliness

Ki)

Timeliness refers to the ability
of a task to predictably complete
its execution prior to the

elapse of its deadline

= Schedulability

0

A task set is schedulable if it can
be guaranteed that in all cases,
all deadlines will be met

6‘ Innovation for a smarter planet



‘ IBM Software Group | Rational software

Task Scheduling Schemas

A taxonomy of Scheduling Schemas

Faimess_Doctrine_Schema

SchedulingMethod

Round_Rabin TMDA

Prionty_Based Schema

Arrival Based Schema

Static_Priority

Interrupt_Driven_Schema

Cyclic_Executive

Dynamic_Prionty

[

Time_Triggered_Cyclic_Executive

EDF

&‘ Innovation for a smarter planet

Prigrity_Interrupt Schema

RMS




| IBM Software Group | Rational software

-
I

Task Scheduling Patterns
= Priority-based preemptive
» Highest priority task not blocked runs preferentially

» Good response time to high priority events
» May be static (priority assigned at design) or dynamic (priority assigned at run-time)

Non-preemptive

» Round robin executes tasks in turn

» May require “cooperative multitasking”
» Single misbehaving task can hang the system

Time Driven Multiplexed Architecture (TDMA)

» Each task is given a specific time-slice in a round-robin fashion

» Poor response time to events

Cyclic executive

Run a set sequence in a particular order

Each task runs to completion
Poor response time to events

v Vv v v

Highly predictable
Interrupt

» No scheduling per se, just a set of interrupt handlers

» Requires that handlers are short (relative to arrival frequency) and atomic
» Great response time to events of interest

6‘ Innovation for a smarter planet 13



| IBM Software Group | Rational software

Task ldentification Strategies

-
I

Task Identification Strategy

Description

Single event groups

For simple systems, you may define a thread for each event type

Event source

Group all events from a single source together for a thread

Related information

For example, all numeric heart data

Independent Processing

When the actions can be clustered into sequences of actions in which the order
within the sequences is defined but between these sequences is unimportant

Interface device

For example, a bus interface

Event properties

Events with the same period, or aperiodic events*

Target object

For example, waveform queue or trend database

Safety Level

6‘ Innovation for a smarter planet

For example, BIT, redundant thread processing, watchdog tasks




| IBM Software Group | Rational software

Representing Concurrency in the UML

= Concurrency Units
» Active classes
= This is the primary means for representing task or thread concurrency in the system
= Parallel operator in sequence diagrams (lifelines are instance roles typed by classes)

» Other means represent “logical concurrency” in the “independence of execution sequence”
sense and almost never used to represent actual threads

= Forks/joins in activity diagrams
= Orthogonal regions (and-states) in state machines

6‘ Innovation for a smarter planet 15



| IBM Software Group | Rational software

Representing Concurrency in the UML

= Concurrency metadata representation as
» Constraints — user-defined “well-formedness rules”
» Tags — value-name pairs added to model elements

= Typical concurrency metadata include
» Priority
» Period
» Execution time
» Worst case execution time
» Worst case blocking time
» Deadline
» Locking time
» Priority ceiling
» Access control method

6‘ Innovation for a smarter planet 16



‘ IBM Software Group | Rational software
Active Classes are the Basis of UML Concurrency

= In UML 1.x the unit of concurrency was called the «active» class, which is normally
a structured class (i.e. a class with parts)

= In UML 1.x the notation was to use a heavy border

UML 1.x Active Class

= In UML 2.0 the notation has changed to double vertical lines

SEMYEN

UML 2.0 Active Class

6‘ Innovation for a smarter planet 17



| IBM Software Group | Rational software

Active Classes

= «active» classes specify the metadata, structure and behavior of «active» objects
= «active» classes

» Contain internal parts (object roles typed by classes) that execute in the thread context of
the «active» class

» Own an OS thread in which it (and its parts) executes

» Own an event queue for their state machines and all state machines within them
» May contain parts that are themselves «active»

class 0

™ attribute_0:int e —
= attribute_1:int object 0 object_1

& Message 2()void
B Message_3()void

6‘ Innovation for a smarter planet

~|I|I



| IBM Software Group | Rational software

Concurrency Model

= Active class is a stereotype of a class which owns the root of a thread
= Active classes normally aggregate passive classes via composition relations
= Standard icon is a class box with heavy line

Sensor MNumerncView

.1

Database 1

Datallueue WaveformDisplayView

6‘ Innovation for a smarter planet 19



| IBM Software Group | Rational software

Concurrency Model

= Active class is a stereotype of a class which owns the root of a thread
= Active class normally aggregate passive classes via composition relation

1 alhread:-DatafcqThread 1 dThread:DisplayThread

“Parts” are object roles;
they execute in the \

it 0
thread context of the 1 5:Sensor port_ 0 R B
composite active class \ 2 -
1 d:Database
1 dg:DataQueue 1 wdvwWaveformDisplayView
port_1 port_1

6‘ Innovation for a smarter planet 20



| IBM Software Group | Rational software

Task Diagram

= A task diagram is a class diagram that shows only model elements related to the
concurrency model

» Active objects
» Semaphore objects
» Message and data queues

» Concurrency metadata in constraints and tagged values

= May use opaque or transparent interfaces

6‘ Innovation for a smarter planet 21



IBM Software Group | Rational software

o}

Interruptlevel = [MIRO4";
SaPenod = [100, 'usz");
SadbsDeadline = (100, 'ug’);
SahwforstCase = (15, 'ug;

.

=}

SAPrionty = 15;

SAPeriod =10, 'mz);
SAsbzDeadline = [10, 'ms";
SavworstCase = (B, 'me’;

=

winterruptHandlers

SafetySysteminterruptHandler

=}

SéPriority = 20;

SéPeriod = [300, 'me);
Saleadline = (100, 'ms";
SavorstCase = [200, 'me);

1 MeasurementThread
.}

& interrupts acceptintarupt()...

i
GRMBlocking = TRUE;
SAWorstCase = [2, 'ms";

c3emaphares

aResources
Sensar

|

YisualizationThread

1

1 ActuationThread

1

6‘ Innovation for a smarter planet

wRezourcas
Database

iy

-
I

o}
GRMElocking=TRUE;
SaworstCaze = (1.7, 'me);

& main(:vaoid

SAPriarity = 10;

SaPernod = (8. 'mz):
SadhzDeadline = (B, 'ms’;
SahorstCase = [2.5, 'me);
CRMain = "main';

22



‘ IBM Software Group | Rational software

Another Task Diagram

gt
period = (10, 's%);
priorty = 100;

worstCase = (120, 'ms’);

deadline = (10, 's);

gLt
period = (20, 'ms’);
priority = &;

worstcase = (B, 'ms’);

deadline = (20.'ms");

-{D}_
period = (250, 'ms’); QRSAnalyzer
priority = 10; —
worstcase = (10, 'ms’); ) it
deadline = (250 'ms’); accessControl = "HighestLocker”
priorityCeiling = &;
/ accesstime = (100, ‘us’);
ible = true’;
1 preempti i
"-\.\_\_\_\-\-\- /
b -
TrendAnalyzer /-’ i}
1 . worstcase = (2, 'ms’);
1 e e = e
/ i}
worstcase = (1.5, 'ms’);
& getDataSample(timelndex:int):double; — guarded = 'trLEe': )
& addDataSample{timelndex:int d-double)void [ D
i~
1 1 period = (1000, ‘ms’);
P, priority = 20;
e 0.2 /woratcase = (20, 'ms’):
s / deadline = (1000, s°);
ECGWaveformDisplay * 1 =
ECGSample Fakad ngger

&‘ Innovation for a smarter planet

= datum-:double

23



| IBM Software Group | Rational software

-
L

Assigning Objects to Tasks

Recommendation: rather than make an existing class active, add a new class to
own the thread

» Put the relevant parts (typed by the classes) inside as parts

= Active classes are normally composites that delegate responsibilities to their
internal parts

» The relation between the classes is composition
» The relation between the structure class and its parts is whole-part
= Semantic classes provide

» Decomposition of complex actions required for the thread’s action and the information
to be used

= Rendezvous classes provide
» Management of the interaction between threads
» E.g. queues, semaphores, barriers, etc.
» Normally execute in the thread of the caller

6‘ Innovation for a smarter planet 24



‘ IBM Software Group | Rational software

Task Example

SensorManager y \
fi 4

1
Sensar s S—t FilterPolicy

Controller

Fan

WValve = ~ ClosedLoopController

I
Heater y
—

6‘ Innovation for a smarter planet 25




‘ IBM Software Group | Rational software

Task Example with Concurrency

1 its3ensorThread:SensorThread

o

1 itsSensorManager:Sensorldanager

e — === SAPrionity = 10;
ControllerPort SAPeriod = (5, 'ms');
&

1 itsSensor:Sensor

1 itsFilterPolicy:FilterPolicy

—

B SAWorstCase = (1, 'ms’);
SARoot = "execute()":

{=}
SAPriority = 20;
SAPeriod = (200, 'ms");

SensorPort -

e =
1 itsControllerThread:ControllerThread

1 itsController:Controller

1 itsActuatorThread-ActuatorThread

1 itsFan:Fan

1 itsValve:Valve

L

itsClosedlLoopController:ClosedLoopCt

1 jtsHeater-Heater

ActuatorPort

ControllerPort
fint3
SAPriority = 15;
SAPeriod = (25, 'ms’. 2, 'ms’);
_— — — 7 SAWorstCase = (10, 'ms’);
SARoot = "execute()";

&‘ Innovation for a smarter planet

SAWorstCase = (15, 'ms’);

DV WV - W P PUE B € iae Poan W R W



‘ IBM Software Group | Rational software

Concurrency in Activity Diagrams

= Forks and joins indicate concurrency boundaries

Activity Diagram for Use Case
"Perform Optical Surveillance”

enable
Camera

this is a diagram connector used )
to "beautify” the diagram by minimizing line
crossing. The "inlet” matching connector is at

" the bottom of the diagram.
videaCamera i /
POST Camera
. Initialization
2 zoom setCenter
¢ ¥y

__| Wait for A

= Command

[cmd == poomCmd]  [cmd == sefCenterCmd]

Create Video
Frame

[emd == incrementalMoveCmd] .

[cmd == tragkTargetCmd)]

[cmd == digableCameraCmd] [emd == identifyTargetCmd]
L i . \ A . L §

disable track Target

Camera

identify
Target

[cmd == sklectAreaCrmd]

Wait for
next
Frame

select Area

moveTo

video ¥
Camera find Target
Auto [else]
[cameralslnactive()] : i select Target
to Track
¥ h 4 ]
@. video _
Camera " e - : disable
Shut Down [moreTargets() Target

[else] . Tracking

Send
Target List

6‘ Innovation for a smarter planet



‘ IBM Software Group | Rational software

Concurrency in Activity Diagrams

graspht
. L y px PpositionX : N
position positionX g ComputeJointAngles(position) = = ValidatePosition ProximityAlert
5 pY position
positionY
o p0 aorientation
; 4 Emergency
orientation Stop
- isValid isValid ~—————
throw("invalid
position”
Joint1 Joint2 Manipulatar
_ positionA ¥_ positionB ¥ orientation
1 \ [1] LI [l
SWImlaneS JointMove(positionA) ‘ ‘ JointMove(positionB) ‘ open()
indicate an \
execution context,
: T
orientation
most commonly a auE
rotate(orientation)
class [ }
4
GraspOhbject()

&‘ Innovation for a smarter planet 28



‘ IBM Software Group | Rational software

Concurrency in State Machines

= “And-states” indicate regions between which order of execution is not specified

Statechart for Perform Optical
Suneillance use case block

disableCamera/
videoCameraAutoPosition().

Disabled videoCamerashitDown(),

ey
=i}

L

enableCamera

SelfTesting

", POST():

®

MotTracking

Enabled |
TargktingPart TransmittingPart | MovngPart g
|
tm{trackUpdateTime
updateAttitude();
calcuateCameraXy(newX, NewY); | |
GEN(trackingMove(newX, NewY); | |
. incrementalMove
| TransmittingVideo | Tachngow:
Tracking palidTargetDg] | ®—» | vy ¥
| | Moving &
trackTarget | I "5 moveTo(x.¥)
|
|
| tm{FrameRate)/ |
| OUT_PORT(OpticalPort)-=
| GEN(herezaVideoFrame(frame)); |
| EE—
| ParameterPart
|
|

[etse}f .
autoPositionCamera();
[POSTFailed(y ._j noMoreRegions()}/
CUT_PORT (OpticalPort)-=GEN(errorMsg): [ou-r_por‘?-?(op“(c)lnpon)_>
GEN(TargetList(list));

ManagingOpticalParams |

d \

setCenter/ &

|
|
identifyTarget/ |
ntifyTarged
scanRegion=1; I setOCenter(x1,y1,x2,y2)
4
gri i
ScanningRegion (2) felse] —r I l Zooming l
5= rgetFoun
", scan(scanRegion); addToList(targetiD); s B |
- |
" scanRegion++ |
[else] I
i

&‘ Innovation for a smarter planet



| IBM Software Group | Rational software

Concurrency on Sequence Diagrams

The parallel (or
para) operator
indicates parallel
regions.

The order

within a region is
specified by “partial
ordering”

The order of messages
between parallel
regions is unspecified

6‘ Innovation for a smarter planet

Use Case: Deliver Ventilation
Scenario: Gas Delivery Fault

Description:

Shows the flow when gas isn't
properly delivered in the at the right
flow rate

Preconditions:

Ventilator is configured to deliver with
the following

* respiration rate of 10 bpm

+ tidal volume of G00mI

o (Gas conc. 40% Oz, 60% Mz

Postconditions:
Generic fault is raised via
alarms to the physician

i~}

GAS_DELIVERY_FALLT is one of

the following

& Gas supply is depleted

+  Gas supply delivery valve
breaks

* (as hose disconnects from
the gas supply

s (Gas hose disconnects from
the ventilator gas input

* (Gas hos has a kink or
ohstruction

* Breathing circuit disconnect
from the ventilator gas output

& Breathing circuit has a kink or
obstruction

+ Ventilator pump failure

‘Physician

Deliver
Ventilation

start()

Configured

RS

B
5

computeSensorSettings()

|enable(expectedFlow, measurementRate, FLOW_THRESHOLD)

:Gas_Flow_Sensor

|

parallel Jf ![until stopped] !
? loop J I [until stopped] ! o
é tm(BREATH_START _TIME) | Ratais
; ______ _1_ 4 computed by
% | - | respiration rate
% deliverBreathi)
z |
“
7 |
“
L
Z | |
L mde s om oo ompow o mow owm o omow om o m el m m o m
/
4 |[unti| stopped] |
loop /< [until stopped]
1. f |
é Rate is < 1/sec — —Q;‘ tm(measurementRate) |
T é measuredFIow(mFIow}|
| |
opl//) [abs(deliveredFlow - measuredFlow)>FLOW THRESHOLD] |
L
f | alarm{GAS DELIVERY_FAULT) !
é | |
Z | |
7 ! |
- | |
i ;




| IBM Software Group | Rational software

SPT and MARTE

= The UML Profile for Schedulability, Performance, and Time (SPT) is a UML 1.x
profile for specifying timeliness metadata for models

» The SPT was released as a finalized standard in 2003

= The Model Analysis for Real-Time and Embedded systems (MARTE) is a UML 2.x
profile for specifying timeliness metadata for models

» MARTE is still in the process of being finalized

= Both standards are profiles: minor extensions of the UML metamodel, with
stereotypes, tags, and constraints

» Note: Profiles must be compliant with the UML metamodel

6‘ Innovation for a smarter planet

-
I

31



| IBM Software Group | Rational software

The UML Profile for Schedulability, Performance, and Time

= Submitted in response to an OMG RFP

» RFP for a UML Profile for Schedulability, Performance, and Time (OMG document ad/99-
03-13).

» Standardized in 2003
» New standard being readied for UML 2

= Submitters (in alphabetical order):
» Artisan Software Tools, Inc.
» Telelogic Inc.
» Rational Software Corporation, Inc.
» Telelogic AB
» Timesys Corporation
» TriPacific Software

6‘ Innovation for a smarter planet 32



| IBM Software Group | Rational software

Goal of the SPT Profile

Note: The UML i1s considered to be fully adequate to
model real-time and embedded systems. The profile

1S NOT necessary to make UML applicable to real-
time systems.

= RFP calls for “proposals for a UML profile that defines standard paradigms of use

for modeling of time-, schedulability-, and performance-related aspects of real-time
systems”

» Define some standard means to capture real-time modeling concerns
» Permit exchange of model information between tools, e.g.

= Between design automation tools
= Between design automation and schedulability tools

» Facilitate communication of design intent among engineering staff and other
stakeholders

6‘ Innovation for a smarter planet

41l||'
T}

KX]



| IBM Software Group | Rational software

Guiding Principles

Do not change the UML unless absolutely required

Do not limit the way UML is used.

Provide the ability to annotate a UML model to allow for [quantitative] analysis in a
standard way.

Do not require a deep understanding of applicable analysis techniques, e.g.
» Rate monotonic analysis
» Queuing theory

6‘ Innovation for a smarter planet

34



| IBM Software Group | Rational software

(More) Guiding Principles

Simple analysis should be simple to do. More complex analysis may require more
work.

Support, but do not restrict modeling to existing techniques.
» E.g. RMA, DMA

Automated tools should be able to influence the UML model.
» E.g. update priorities of task threads so that they become schedulable

Support both model analysis and synthesis

6‘ Innovation for a smarter planet 35



| IBM Software Group | Rational software

General Approach

= Use light-weight extensions to add standard modeling approaches and elements
» Stereotypes, e.g. resources
» Tagged values, e.g. QoS properties

= Divide submission into sub-profiles to allow easier comprehension and usage of
relevant parts

6‘ Innovation for a smarter planet 36



‘ IBM Software Group | Rational software

SPT Profile Structure

CommonBase ‘ / Required by virtually
ALL real-time systems
— Yy
Resource
Time Concurrency
AnalysisMethods Infrastructure
S T
Schedulability | i RT_CORBA EnhancedTime
Analysis ! !
7 R EGLE LR Ir """ ]

\ Technology-specific

subprofiles

6‘ Innovation for a smarter planet



=1-{1] Profiles
=8 5PT
ﬂj o

..

£

EI Packages
Paprofile
RTconcurrencyModeling
[+ -«5% Stereotypes

F-€» Types

-- RTresourceModeling
~«5% Stereotypes

‘ IBM Software Group | Rational software

SPT Profile

=2 Object Model Diagrams

VErview

: -- RTschedulabilityModeling
I:f]---xs_» Stereotypes
[=]-5» SAAction

E@ Tags
----- SAAbsDeadline
..... SAActualPty

..... SALaxity
----- SAPreempted

----- SAPriority

----- SAReady

----- SARelDeadline
----- SARelease

----- SAusedResource
----- SAWorstCase
H-«5% SAEngine

5% SAOWNS

~#5% SAPrecedes

H-5% SAResoUrce

t-«5%» SAResponse

~¢5% SASchedulable

H-5e SAScheduler

H-+5e SATrigger

5% SAusedHost

G-

&- Innovation for a smarter planet

5% SAllses

RTtimeModeling

Primitive Operation : doRTStuff in realtimeTransmitter

=l| RTschedulabilityModeling

=l saaction

SasbsDeadline

{20, 'ms’

SaActualPty
SABlocking

10

{800, 'us’)

SADelay llillﬂlI 'us’)
SALaxity Hard
SAPreempted (4.5, 'ms")
SAPriority 5

---------- S AReady {0, 'us")
SARelDeadline

SARelease

SAWorsiCase

SAhost Re o
SAusedResource RT | cRMain = "main"-
— 3AQccurrence = (periodic, (10, 'ms’);
— Quick Add | SAPTiority=10;
| SABlocking=(1,ms");
Name: I | SAWorstCase=(2,'ms’);

| SAAbsDeadline=(10"ms’);

Locate 8] 4

Apply

{250, 'us")
(15, 'ms)

(S}‘Sil‘l‘ln
WaveformDisplaySystem

B

1 VS VoltageSensor

& main()-void

«Rasources

Eaw Waveform




IBM Software Group | Rational software

SAAbsDeadline=(10."ms’);

wSystErn
WaveformDisplaySystem

oY) . .

CRMain = "main”; I 1 VS \oltageSensor

SAOccurrence = (pernodic, (10, 'ms’); 1

SAPriority=10; 1 ds:DataSample
SABlocking=(1,'ms"); I & main():void

SAWorstCase=(2,'ms’); .

«Resources

0..20000

. 1
o 1] Raw: Waveform =
SAAcessControl=
F oyl mbaer E «SAasctions getDataSample(index:int):DataSample
E «SAActions setDataSample(indexcint data:DataSampl...
T—

R

1 WFController! - WaveformScaler

— — —aSAActions

s H{D}

i}

SAWorstCase=(0.2 'ms’);

aSAActions
SAWorstCase=(0.3."ms")

-

-
Pl

T WFEController?-WaveformScaler

A}
SAOccurrence=(periodic (50, 'ms’));
SAPriority=100;

SAWorstCase=(2.5.'ms’);
SAAbsDeadline=(50."ms");

1

«Resourcex
Cooked1:Waveform

. |

st

SAOccurrence=(periodic, (20 'ms");
SAPriority=15;
SABlocking=(1,'ms’};
SAAbsDeadline=(20,"ms);

M

T
T

1 «Rescurces
Cooked? Waveform

1 Display1: WaveformView

1 Display2 - WaveformWView

-H-\"'\-\_
T
.H-\-\'."\-\_

A}
SAQccurrence=(periodic. (50, 'ms’):
SAPriority=100;
SAWorstCase=(2.5,'ms"};
SAAbsDeadline=(50,"ms);

i
SADccurrence=(periodic, (20, 'ms’);
- SAPriority=15;
SABlocking=(1,'ms’);
SAAbsDeadline={20."ms);

&‘ Innovation for a smarter planet



IBM Software Group | Rational software

EngineControlScenarioc |
EMNV ‘DopplerLight TrainSpeed:5 srmoother:-Digi ‘EngineContro ‘Engine SpeedWView: T SpeedHistorny:
peed talFilter ller extWView HistogramWiew
I I I I I I I
MEI? acquire() I I I I I I I
7 getSpeed) | | | | |
g L speed=ﬁlterDaLs_|k5} I I I I
Z 7 el | I I I
Z
o~ I | er | I I
PARespTme=(10.'ms’): | | PARespTime=ave’, 50 ,_'us']l: | | |
PAPrioriti=10- g x PARdspTime="max" 800 "us’):
FPACcur Eflce=|:‘periudic'_'1 U'I,'mE'.EUU.'us'}; I I I I I I
i i S T S e e e
~ control() | | | I | I |
Z | | | | |
? b a(ItuaI=getSpee-d|[} =}
é I /IJ-' I EetSpeed(asjusthent} PARespTlrne=('ave',‘I,'mE}; I
? [ | - | |
? o} I I I o I I
/{; PARespTime=[ave’.2.'ms). | i} | | | | |
ﬁ | | PARespTIime=(5."ms’); | | | |
= PAPriority=20;
é | | PAO ccurrenke= (periodic’, 1 UL'],‘I'Tl s".600 "us'); | | |
R A s e e e s S e
. . | | | | | | |
o, display() : | . | :
. | | | | | I
//; | JEL | | | s=getSpeed() |
/ - T T T .
é | ,I {l__"} | | e addDataPoint(s
f;? | % | FARerspTime(B.'mé'}; | _
? i} I_ | APriority=100; L [;I /
//}' PARespTime=ave’ .2 'ms’): AlQccurrence=(periodic’ 100, 'ms".500,'us’)
Z | I I I I A |
= I I I | s I I
//:; PARespTime=(5"ms");
Z I I I | PAPriority=do. I I
/,:f; | | | | F’AOccurrenFe=['perlodlc.‘IUD_rns.EDU.UE ) |
- I I I 1 I 1 1



‘ IBM Software Group | Rational software

Model Processing

Modeler Analysis Method Provider
User Model
QoS Properties Analytic Techinques
UML Modeling Tool Model Conversion Model Analysis Tool
— |

C. 1
> —L+max By 1Bl
"T T T

1 n—1

4 Inverse Model
Conversion

Validated User Model Analysis Configuration
Paramers

Application System

Modeler

&- Innovation for a smarter planet 41



| [T
KK
(Li]]
Hn
-
L

| IBM Software Group | Rational software

GIGO

= Select the appropriate stereotypes and tags of the schedulability model to match
the kind of analysis desired

» Global RMA

= Elements: active objects, resources

= Tags: execution time, deadline, period, priority, blocking time, priority ceiling
» Detailed RMA

= Elements: active objects, resources, actions, events, scenarios, scenario steps,
messages

= Tags: execution time, deadline, period, priority, blocking time, priority ceiling
» Simulation

= Depends on particular approach
» etc

6‘ Innovation for a smarter planet 42



| IBM Software Group | Rational software

MARTE

= UML Profile for Modeling and Analysis of Real-Time and Embedded Systems
» Current status: Approved but not released
» Latest version: 2009-11-02.pdf spec (OMG Document formal/2009-11-02)

» Replaces SPT Profile
for UML 2

Foundations for RTE systems modeling and analysis
- Core elements

} |nf0rmat|0n avallable - Non-functional parameters (MFP's)
- Time
t VVVV O M G r‘t - Generic resource modeling
atw - marte 'Org - Genertic component madeling
- Allocation
s
MARTE_domain_model | 7
-~
m‘ -
7 5‘“\
MarteDesignModel :
MarteAnalysisModel
é = .

i
Speciaization of foundations for modeling = ;
purpose (specification, design, etc) Specialization of faundations for
- RTE model of computation and annotatiing model for analysis
communication - Generic quantitative analysis
- Software resource modeling - Schedulabilty analysis
- Hardware resource modeling - Performance analysis

6‘ Innovation for a smarter planet 43



| IBM Software Group | Rational software

MARTE Specification Use Cases )

Build Model

Annatate Model
for Analysis

Analyze Model

Analyst

Define Analytic
Methodology

Adapt MARTE
Spedification

Bulld Execution
Plafform

Provide
Execution
Platform

Methodology Provider

Exdecution Platform Prowder

6‘ Innovation for a smarter planet

44



| IBM Software Group | Rational software

References

Iy
v

REAL TiMe UML
THirD EDITION

Apvances iy The UML vor
REAL-TIME SYSTEMS

HELUCE POWEL DOUGLASS

" OING HARD TIME

DEVELOPING REAL-TIME
Sysrems wirh UML, OrjecTs,
FRAMEWORKS, AND PATTERNS

BRUCE POWEL DOUGLASS

Farewora by @rady Booch

EEAL-TIME DESIGN
PATTERNS

RoBusT SCALABLE ARCHITECTURE
FOR REAL-TIVE SysTeas

DRUCE POWEL DOUGLASS

B e
= the Ehapungy
UL paci

Fhodais of ihe
ot

: % Innovation for a smarter planet

JHILEA PR AL

DESIGN PATTERNS For

EMBEDDED SYSTEMSinC

Ar Embedded Sofawdre Engineering Toolkit

EMBEDDED TECHNOLOGY ™ SERIES

Real-Time UML
Workshop for
Embedded

Bruce Powel Douglass

EREUCE TOWEL DOUGLASS




