
© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

| A
|
A

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

Introduction to Model-Based
Engineering
What does a good model smell like?

Dr. Bruce Powel Douglass, Ph. D.
Principal

A Priori Systems

www.bruce-douglass.com

http://www.bruce-douglass.com/

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 2

About the Author

Bruce Douglass, Ph.D.

• Senior Principal Agile Systems Engineer

• Systems Engineering Tech Center

• The MITRE Corporation

• Can be reached at bdouglass@mitre.org

• Contributor to UML standard

• Contributor to SysML standard

• Developer of UML Dependability Profile

• Former Cochair RTAD Task Force for the OMG

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 3

INCOSE Lunch and Learn Series

Introduction to Modeling

Introduction to Agile and Model-Based Engineering

Engineering Agile Requirements: Epics, Use Cases, and User Stories

Improving Requirements with Use Cases

Model-Based Interface Control Documents

From Systems to Downstream Engineering: The Hand Off

Model-Based Testing

MBSE and Safety Analysis

A copy of Agile Model-Based

Systems Engineering Cookbook will

be given away at the end of the

session. You must be present to win.

If you do not acknowledge your

presence when called, another

attendee will be selected.

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 4

Starting Definitions
• Model

‒ is a representation of a system of interest from a particular viewpoint, capturing attributes for a

specific purpose. A model is always an abstraction in that it focuses on properties of interest at the

expense of properties not of interest and at a specified level of precision (detail).

• MBE (Model-Based Engineering)

‒ “An approach to engineering that uses models as an integral part of the technical baseline that

includes the requirements, analysis, design, implementation, and verification of a capability, system,

and/or product throughout the acquisition life cycle.” (Final Report, Model-Based Engineering

Subcommittee, NDIA, Feb. 2011)

• MBSE (Model-Based Systems Engineering)

‒ “The formalized application of modeling to support system requirements, design, analysis,

verification and validation activities beginning in the conceptual design phase and continuing

throughout development and later life cycle phases.” (INCOSE MBSE Report, September 2007)

• MDD (Model-Driven Development)

‒ The use of models for the specification and design of software-based systems.

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 5

Starting Definitions

• DE (Digital Engineering)

‒ Digital engineering is the ability to perform discipline-specific engineering by collaborating with

other disciplines and by leveraging authoritative system data in digital form from those disciplines

within my tools of choice and in the right format.

• DE Platform

‒ A standard platform for projects which includes pre-installed tools, tool integrations, processes, and

links to training and other knowledge / skill resources with the intent of allows quick start up of

internal and sponsor-related projects.

• Digital Thread

‒ A connected set of models of a system in different lifecycle stages, including specification, design,

operation, and maintenance.

• Single Source of Truth

‒ Each important datum is located in a singular, authoritative place and is connected, via navigable

links, to all other relevant data in that or other repositories. Note: this doesn’t mean that all data are

in the same repository but the authoritative source for each datum is singular.

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 6

Modeling For

Beginners

Drawing vs Modeling

What’s a model?

Models & Views

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 7

ModelingDrawing

A model focuses

on system aspects

of interest and

ignores others

Uses a precise

language

A drawing is a picture

with only imagined

semantics and no

underlying repository

of information

Once you’re done

drawing, then go

do the “real work”

Generates any needed

documentation from

the model repository

Stores

underlying

semantics in

model repository

Supports

verification

through review,

execution and/or

formal methods

Foundational Concept of Modeling

Note: it IS possible to use a modeling tool solely for drawing and not modeling,

but it’s not a good idea!

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 8

So What IS a Model exactly?

Modeling is the development of

a set of system data of relevant

systems and their properties

Models have scope

Models have purpose

Models have accuracy

Models have fidelity

Models are

interconnected data!

Models have views (e.g. diagrams)

Diagrams have singular purpose

Diagrams answer questions

Diagrams support specific reasoning

Models are falsifiable

Diagrams show subsets of eng. data

Models are verifiable

Model

Views

Models have precision

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 9

So What IS a Model exactly?

Modeling is the development of

a set of system data of relevant

systems and their properties

Models have scope

Models have purpose

Models have accuracy

Models have fidelity

Models are

interconnected data!

Models have views (e.g. diagrams)

Diagrams have singular purpose

Diagrams answer questions

Diagrams support specific reasoning

Models are falsifiable

Diagrams show subsets of eng. data

Models are verifiable

Model

Views

Models have precision
To be clear, you do

NOT model in Visio or

PowerPoint; you can

only draw pictures

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 10

Uses of Diagrams and Tabular Views

• Data Entry

‒ Drawing diagrams or entering data into tables/matrices is a way of entering

information into the model

‒ When you create an element on the diagram, the model either

o Refers to an existing element, and updates it based on your actions, or

o Creates a new element in the model repository

• Model visualization

‒ Creating a diagram or tables allows you to create a view of a subset of the model

information

• Simulation / Execution Debugging & Execution Control

‒ Some modeling tools provide special diagrams and tools to control execution,

insert events, change values, set breakpoints, etc.

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 11

Executable Models
• WHY

‒ To make sure the model isn’t stating “utter nonsense.”

‒ Models make declarative and imperative statements of truth

‒ It is absolutely crucial that we have a means by which we can

verify that the statements of truth made by the model can be

verified or demonstrated to be true

o Such models are said to be “falsifiable”; this means that

there is a way to demonstrate that a false model is indeed

false

‒ The larger the model, the more important this is

‒ The more significant the impact of the model or system, the

more important this is

• Rhapsody, Magic Draw, and Sparx Enterprise Architecture can

build and execute models (with differing levels of fidelity)

“Any language rich enough to

say something interesting is

also rich enough to say utter

nonsense that at first glance

sounds reasonable. ”

- Douglass’ Paradox

Declarative statements

identify what you want to

happen; imperative

statements identify how to

make something happen.

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

Syntactic: Is it well-formed?

– “Compliance in form”

Performed by quality assurance personnel

• Audits – work tasks are performed as per plan

and guidelines

• Syntactic review – work products conform to

standard for organization, structure and format

12

What do we mean by “verification & validation” of work

products (e.g. models)?

Valid: Does it solve the right problem?
• Validation = “meets the stakeholder need”

Performed by customer + engineering

Some common techniques

• Review – (subject matter expert & customer) – most

common, weakest

• Simulation – show simulated input → outputs

• Sandbox – exploratory usage in constrained

environment

• Flight test – demonstration of system capabilities

• Deployment – early usage of system of partial

capability

Semantic: Is the content correct?

• Compliance in meaning

Performed by engineering personnel

Three basic techniques

• Semantic review (subject matter expert & peer) –

most common, weakest means

• Testing – requires executability of work products,

impossible to fully verify

• Formal methods – strongest but hard to do and

subject to invariant violation

Syntactic

Verification
Semantic

Verification
Validation

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 13

INCOSE Organizational Model-Based Capabilities Matrix

Level Benefit Focus Technologies

4

Enterprise wide

capabilities

High Employing

modeling as an

organizational

standard approach;

managed reusable

DE Assets

DE Platform

infrastructure, tooling,

training, and processes

widely applied across

organization

3

Program/project wide

capabilities

Moderately

High

Wide-scale use of

modeling

throughout projects

Model integrated with

other functional

disciplines, digital

threads defined and

digital twin

2

Modeling standards are

applied

Moderate Standardizing use

of modeling

Integration of modeling

into processes,

standardized reviews

and quality assurance

1

Limited use of

modeling

Low Answer specific

questions during

development

Modeling efforts

address specific

objectives and

questions

0

No MBSE capability

None Litlte or no use of models in systems

engineering efforts; use of document-based,

siloed data.

Maturity

https://connect.incose.org/Pages/Product-Details.aspx?ProductCode=MBCM

https://connect.incose.org/Pages/Product-Details.aspx?ProductCode=MBCM

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 14

Project-Oriented Modeling Maturity

Level Benefit Focus Technologies

4

Integrated cross platform

modeling

High Large-scale breaking

down with federated

models; connecting

tools and data

DE Platform forms the

core work environment

3

Executable

Moderately

High

Use of verifiable,

testable models;

Executable state and

activity models, model-

based test; use of

quantitative metrics

2

Standardization

Moderate Wide-spread use of

modeling within the

project; single

source of truth

Use of modeling

guidelines and standards,

strong integration into

engineering process

1

Visualization

Low Visualizing

engineering data

Reverse engineering,

Picture drawing,

“boutique engineering”

0

Textual / code-based/

siloed document-based

development

None Manual, time intensive heroic development with

disconnected, siloed data

Maturity

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 15

SysML

Modeling

Views

Model

State

Behavior

Flow

Behavior

Structure

Interactions
Parametrics

Functionality

Parametric diagram

Use case diagram

Requirements diagram

Sequence diagram

Timing diagram

Structure/Internal Block diagram

Class/Block diagram

Activity diagram

State diagram

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 16

UML and SysML – The Preeminent Modeling Languages

UML (software) SysML (systems)UML4SysML

Structural

Functional (declarative)

Behavioral (imperative) State Diagram

Activity Diagram

Sequence Diagram

Use case

Use Case Diagram
Requirement

Requirement Diagram

Requirement Table

Allocation Matrix

Class

Object (Instance)

Attribute

Block

Part

Value Property

Units

SI Units Model Library

Package

Profile

Stereotype

Interface

Package Diagram

Class Diagram

Structure Diagram

Deployment Diagram

Block Definition Diagram

Internal Block Diagram

Proxy port

Full port

Interface Block

Communication Diagram

Timing Diagram

Interaction Overview

«continuous»

«discrete»

«control»

«probability»

At the UML 101/SysML 101 level, they are the same, except some elements are renamed

Parametric Parametric Diagram

Parametric Constraint

S
y
s
M

L
 P

il
la

r

Signal

Operation

Port

Constraint

State

Event

Action

Control Flow

Constraint Block

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 17

Architecture Frameworks

Zachman Framework

DoDAF

TOGAF

Definition: An architecture framework is an encapsulation of a minimum set of practices and requirements

for artifacts that describe a system's architecture.

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

What is UML?

18

Unified Modeling Language

Diagrams and views

Model elements

4-Tier Metamodel Architecture

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

What is UML?
• Unified Modeling Language see http://www.omg.org/spec/UML/2.5/PDF/

• Comprehensive full life-cycle 3rd Generation modeling language

‒ Standardized in 1997 by the Object Management Group (OMG)

‒ Incorporates state of the art Software and Systems development concepts

• Matches the growing complexity of real-time systems

‒ Large scale systems, Networking, Web enabling, Data management

• Extensible and configurable

• UML supports but doesn’t require object-oriented development

• UML is process agnostic

‒ By design, the UML is meant to be used with any reasonable development process

http://www.omg.org/spec/UML/2.5/PDF/

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

UML Features
• UML is a graphical language

‒ Diagrams form the primary means by which models are created and understood

‒ Packages are folders that contain model elements including both diagrams and the elements they

portray.

o This applies to the UML itself but also to the user models (designs) you create

‒ The key is the underlying semantic repository of information about the system you’re modeling

‒ A diagram type is defined by the types of things that can be represented and their symbology

‒ A diagram usage is the purpose for a diagram, which subsets the kinds of elements used

‒ Example:

o A class diagram is a type of UML diagram

o Uses of class diagrams: class, structure, object, package, task, subsystem, architecture, interface

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

UML Semantic basis

• UML is constructed using a 4-tier metamodel hierarchy

‒ M3 – Meta-metamodel (MOF Core language)

‒ M2 – Metamodel (UML Language)

‒ M1 – Design model (model)

‒ M0 – Instance model (deployed system)

• The UML definition itself is divided up into packages to

support

‒ Modularity

‒ Layering

‒ Partitioning

‒ Extensibility

‒ Reusability

M3: Meta-meta model

Meta-Object Facility (MOF) Layer

M2: Meta model

UML / SysML Layer

M1: Model

User Model (design) layer

M0: Instance

Operational Systems Layer

“It’s Meta-Turtles all

the way down”

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

UML Diagrams

From UML 2.51 OMG Document Number formal/2017-12-05

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 23

What is SysML?

SysML is derived from UML

SysML Timeline

UML vs SysML

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

What is SysML?
• A graphical modeling language in response to the UML for Systems Engineering RFP developed by the Object

Management Group (OMG), International Council on Systems Engineering (INCOSE), and AP233

‒ a UML Profile that is both a subset and extension to UML 2

• Designed specifically for the Systems Engineering domain with extensions for requirements and analysis

• Supports the specification, analysis, design, verification, and validation of systems that include hardware, software,

data, personnel, procedures, and facilities

• SysML is the most common way to represent systems engineering information in a rigorous, structured way by

storing the information in models. We discuss models in more detail shortly.

• The pervasive application of models for systems engineering is known as Model-Based Systems Engineering

(MBSE)

Important! At a basic level of use, UML and SysML are the same language, with only minor naming differences

between them.

‒ More advanced uses of SysML will highlight the differences between them.

Like UML, SysML is a language

and is process-agnostic.

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 25

SysML History

SysML 1.6
released

SysML 1.0 Adopted

by the OMG

1995 20062001

Work begun

on SysML

2003

Initial release of SysML

for adoption

Work begun on

SysML 2.0

2019 2021

https://www.omg.org/spec/SysML/About-SysML/

UML 1.1 Adopted by the

Object Management

Group (OMG)

Bruce Douglass releases Harmony Agile
Model-Based Systems Engineering
(Harmony aMBSE) process

Bruce Douglass publishes
Agile Systems
Engineering bookBruce Douglass and Peter

Hoffmann release
Harmony Systems
Engineering (Harmony
SE) process

Friedenthal et. al.
release A Practical

Guide to SysML

Click here to learn about the latest release of SysML

Bruce Douglass publishes
Agile Mode-Based
Systems Engineering
Cookbook

https://www.omg.org/spec/SysML/About-SysML/

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

Nine SysML Views

The nine SysML diagrams are categorized as follows:

– Behavioral Diagrams - dynamic change of system behavior over time

– Structural Diagrams - static system structure diagrams

– Requirements Diagram
SysML Diagrams

Behavioral

Activity Diagram
(act)

Sequence
Diagram (sd)

State Machine
Diagram (stm)

Use Case
Diagram (uc)

Requirements

(req)
Structural

Block Definition
Diagram (bdd)

Internal Block
Diagram (ibd)

Parametric
Diagram (par)

Package Diagram
(pkg)

Same as UML 2

Modified from UML 2

New diagram type

Source: OMG Systems Modeling Language v1.6, page 211

Requirements
Table

Allocation
Matrix

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 27

Characteristics of Predefined SysML Views
View Type UML2 Analog Lifecycle usage Essential Dynamic

simulation

Computational Supports

code gen

Formal

Requirements Diagram

(req)

Static

Functionality

n/a Requirements

Specification;

Functional Analysis

Use Case Diagram (uc) Static

Functionality

Use case diagram Requirements

Specification;

Functional Analysis

Activity Diagram (act) Dynamic

Behavior

Activity diagram –

minor changes

All

Sequence Diagram (sd) Interaction

Behavior

Sequence Diagram All

State Diagram (stm) Dynamic

Behavior

State Diagram All

Block Definition Diagram

(bdd)

Static

Structure

Class Diagram

(moderate change)

Architecture;

Design

Internal Block Diagram (ibd) Static

Structure

Structure Diagram

(moderate change)

Architecture;

Design

Parametric Diagram (par) Static

Functionality

n/a All

Package Diagram (pkg) Static

Structure

Package diagram All

Requirements Table Static Table n/a Requirements

Specification;

Functional Analysis

Allocation Matrix Static Matrix n/a All

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 28

Learning SysML: The A Priori Curriculum

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 29

Example

A quick look at the Pegasus

Smart Bike Trainer

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 30

Model Overview Diagram

Adapted to Cameo Magic Draw

from the Rhapsody models

within the book

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

Requirements Table

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

Use Case Diagram

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED.

Type Context

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 34

Type Composition Architecture

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 35

Connected Architecture

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 36

Motor Selection Trade Study

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 37

An interaction

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 38

Flow of control behavior

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 39

Some state behavior

© 2021 BRUCE POWEL DOUGLASS. ALL RIGHTS RESERVED. 40

For more information

