
© 2020 Bruce Douglass

What is Model-Based Testing …

and how do I get started?

Bruce Powel Douglass, Ph.D.
www.bruce-douglass.com

Bruce.Douglass@outlook.com

Thanks to Udo Brockmeyer of BTC Embedded Systems AG for permission to use some of his material on Test Conductor

http://www.bruce-douglass.com/
mailto:Bruce.Douglass@outlook.com

© 2020 Bruce Douglass
2

© 2020 Bruce Douglass
3

LEVEL 0
KINDA

SORTA

Levels of Correctness

ALWAYS WORKS WHILE UNDER ATTACK

ALWAYS WORKS WITH INVARIANT

VIOLATIONS

ALWAYS WORKS UNDER

NORMAL CONDITIONS

“WORKS”

LEVEL 4

LEVEL 3

LEVEL 2

LEVEL 1

© 2020 Bruce Douglass
4

Why do we test?

To find out

if it works
To find out if

it DOESN’T

work

To uncover

limitations and

constraints

To demonstrate

compliance

© 2020 Bruce Douglass
5

What do we test?

YES
Design

Implementation

Requirements

Models

Architecture

Code

Systems

Software

Electronics

Mechanics

We normally think about testing code but we can test anything that

makes causality assertions and is sufficiently rigorous to be

executable

© 2020 Bruce Douglass
6

Why is testing hard?

1. There are (many many) more ways for something to fail than there are for it to succeed

2. Assumptions are often not explicitly stated but their invalidation can cause failures which

are both subtle and catastrophic

3. It is both difficult and time consuming to get degrees of test completeness

4. People just as smart as you may be trying to break your system

processing

X: [0..9]

Y: [0..9]

Z: [0..9]

At first look, this has 1000 combinations to be

tested. But what if

• X comes before Y? Or Z before X?

• The system expects Z to occur in < 20ms but it

arrives at 30ms?

• The output comes too late?

• What if Z, Y, and Z are not independent?

Example: if X>5 then Y must be <= 2

• What if X is -1?

• Does the case Z==-20 fail in the same way as X

== 45?

• What if X and Y are supplied but not Z?

• Resources (e.g. memory) aren’t available for the

computation?

• Assumptions (preconditions) are not met?

Testing can never be complete –

there are an essentially infinite set

of combinations of value,

sequence, and timing

© 2020 Bruce Douglass
7 7

Glenford Meyer’s The Art of Testing

▪ Consider the simple problem

− The program reads three integer values from a text input dialog. The three values

represent the lengths of the sides of a triangle. The program displays a message that

states whether the triangle is scalene, isosceles, or equilateral.

− Define test cases for this system.

▪ Did you remember to test

− Valid scalene triangles? Valid isosceles triangles? Valid equilateral triangles?

− Have you ensured that it is valid when you swap dimensions on different sides for

all types?

− Did you try an example with a zero length side? Negative number?

− Did you try specifying the wrong number of sides (e.g. 2 sides or 4 sides)?

− Did you test the case where the length of one side is the sum of the other two?

− Did you test with and without whitespace? Alphabetic characters? Special

characters?

▪ Meyer reports highly qualified professional programmers average 7.8 out of 14 tests

that he identifies even for this trivial example

© 2020 Bruce Douglass
8

Models

▪ Problem: Reality is too complex

▪ Solution: Create a model

▪ A model is always a simplification of reality, wherein we focus on aspects relevant to things

we care about and elide details of those things we do not.

© 2020 Bruce Douglass
9

Models

▪ Rigorously defined – computable – models make statements that can be demonstrated to

be true or false

▪ A subtype of computable models – known as executable models – can be tested

All useful models are falsifiable

© 2020 Bruce Douglass
10

Modeling Views

UML

State

Behavior

Flow

Behavior

Structure

InteractionsData

Function

ality

© 2020 Bruce Douglass
11

Kinds of Models

Conceptual Models

Analysis Models

Design Models

Architecture Models

Implementation

Models

Testing Models

Requirements Models

Requirements Models

It’s not just about testing code!

Any of these models can be tested.

© 2020 Bruce Douglass
12

What is model-based testing?

Model-based testing (MBT) means using models…

 to describe test environments

 to describe test strategies

 to generate test cases

 to enable test execution for software and/or system testing

 to implement full traceability between requirements, models, code, and test cases

© 2020 Bruce Douglass
13 13

Automating MBT: What do we want to automate?

▪ Creation of Test Architecture

▪ Capturing of outcomes during execution

▪ Conversion of requirements scenarios to test cases

▪ Application of test cases to system

▪ Identification of points of failure

▪ Gathering of pass/fail statistics

▪ Computation of coverage metrics

© 2020 Bruce Douglass
14 14

UML Testing Profile

▪ Current revision 1.2 (April 2013)

− OMG Document formal/2013-04-03

− Version 2.0 is in the works

− Available at http://www.omg.org/spec/UTP/1.2/PDF

The UML Testing Profile defines a language for designing, visualizing, specifying, analyzing,

constructing, and documenting the artifacts of test systems. It is a test modeling language that

can be used with all major object and component technologies and applied to testing systems in

various application domains. The UML Testing Profile can be used stand alone for the handling of

test artifacts or in an integrated manner with UML for a handling of system and test artifacts

together.

The UML Testing Profile extends UML with test specific concepts like test components, verdicts,

defaults, etc. These concepts are grouped into concepts for test architecture, test data, test behavior,

and time. Being a profile, the UML testing profile seamlessly integrates into UML: it is based on the

UML metamodel and reuses UML syntax. The UML Testing Profile is based on the UML 2.0

specification. The UML Testing Profile is defined by using the metamodeling approach of UML.

http://www.omg.org/spec/UTP/1.2/PDF

© 2020 Bruce Douglass
15 15

UML Testing Profile Metamodel

Test scenario
“Test fixture”

System Under Test

© 2020 Bruce Douglass
16 16

Capture test cases with UML/SysML

▪ Recommend using OMG’s standard UML Testing Profile (www.omg.org)

▪ Specify test cases visually for better communication across teams

▪ Creating code tests cases or importing Cunit/Cpp unit tests also possible

▪ Can be done manually or with automation (via Test Conductor)

Visualize
Test Cases

Flow Chart Test Cases Statechart Test CaseSequence Diagram Test Case

http://www.omg.org/

© 2020 Bruce Douglass
17

Example model: Tokenizer (Manual)

This simple model

receives digits and dots

as characters, evaluates

the string and computes

the corresponding real

value

SUT
“Test Buddy”

© 2020 Bruce Douglass
18

Example model: Tokenizer (Manual)

This is the state machine for the Tokenizer class

© 2020 Bruce Douglass
19

Example model: Tokenizer (Manual)

Create Test Cases as Sequence Diagrams

© 2020 Bruce Douglass
20

Example model: Tokenizer (Manual)
Manually instrument the client (Test Buddy) to invoke the test

cases

© 2020 Bruce Douglass
21

Example model: Tokenizer (Manual)
Now execute the model and create “animated sequence diagrams”* from the

execution)

* Rhapsody feature – can produce sequence diagrams from the interaction of modelled elements during execution

© 2020 Bruce Douglass
22

Example model: Tokenizer (Manual)
Now execute the model and create “animated sequence diagrams”* from the

execution)

* Rhapsody feature – can produce sequence diagrams from the interaction of modelled elements during execution

© 2020 Bruce Douglass
23

Example model: Tokenizer (Manual)

Review the outcomes and compare to the test specifications

Test Case 1 Outcome Test Case 2 Outcome Test Case 3 Outcome

© 2020 Bruce Douglass
24

Example model: Tokenizer (Manual)

Review the outcomes and compare to the test specifications

Test Case 1
Test Case 1

Result

© 2020 Bruce Douglass
25

Example Model: Tokenizer (Test Conductor)

Generates

© 2020 Bruce Douglass
26

Example Model: Tokenizer (Test Conductor)

Additional test

condition

© 2020 Bruce Douglass
27

Example Model: Tokenizer (Test Conductor)

Test outcomes

Test Report

© 2020 Bruce Douglass
28

Integrated design and test environment with automation
Manage test cases within Rational Rhapsody with Test Conductor

▪ Common browser for design and test information

− Syncs information to maintain consistency between design
and test

▪ Apply model-based testing to external code

− Visualize interfaces in Rational Rhapsody

Integrated
Design & Test
Environment

Design Artifacts

Test Artifacts Test Execution Reports

© 2020 Bruce Douglass
29

Automate quality

▪ Automatically create test architecture

− Creates a System Under Test (SUT), test components and test context

▪ Apply model-based testing to external code

− Code is developed outside of Rational Rhapsody

− Visualize code interfaces in Rational Rhapsody and apply model-based testing

Automate
Testing Tasks

Automatically Created Test Architecture

© 2020 Bruce Douglass
30 30

Requirements-driven testing

▪ Quick definition and execution of model and requirement-aware tests

− Unit, integration and system testing

− Reuse design scenarios as test cases

▪ Requirement change impact and analysis

− Know which part of the model or which tests are affected by changing
requirements

Requirements,
Design, Test
Traceabililty

Pass/fail results can be

synchronized with RM tool

© 2020 Bruce Douglass
31 31

Requirements to test results coverage

▪ Automated reporting of test results

− Requirement to test coverage table

− Test Coverage results

− Complete test results in Rational
Publishing Engine reports

Reporting
Testing Results

& Coverage

© 2020 Bruce Douglass
32

Coverage Analysis is one of the key benefits of automation

Which requirements

are covered?

Which model

elements are

covered?

© 2020 Bruce Douglass
33

Coverage Analysis is one of the key benefits of automation

What code is

covered?

© 2020 Bruce Douglass
34

▪ Requirements-based test cases are generated with specified model and requirement

coverage.

MBT – Automatic Test Generation (ATG)

© 2020 Bruce Douglass
35

▪ System shows an explicitly modeled input and output interface using ports

▪ System contains four units with explicitly modeled input and output interfaces

using ports; the units get input integer values and multiply with 2

▪ Software architecture shows how the units are integrated using ports and

links

Sample System to demo MBT

© 2020 Bruce Douglass
36

▪ Objective is to test each unit in isolation

▪ TestCondcutor automatically creates test architectures for each unit (SUT)

▪ “White box test”:

• requirements based testing using the interfaces of the SUT

• code coverage measurement of the internal structure of the SUT

MBT: Unit Testing I

© 2020 Bruce Douglass
37

− An instance of the unit under test (SUT) is contained in the test architecture,
and two test components which are connected to the ports of the SUT

− Developers specify the expected input / output behaviour in a test case

− TestConductor executes the unit tests and computes test verdicts (pass/fail)

MBT: Unit Testing II

© 2020 Bruce Douglass
38

▪ Objective is to test two or more integrated units

▪ TestCondcutor automatically creates test architectures for one unit, developers can extend

the test architecture to add more units (SUT)

▪ “Grey box test”

• requirements based testing using the external interfaces of the integrated SUT

• code coverage measurement of the internal structure of the SUT

MBT: IntegrationTesting I

© 2020 Bruce Douglass
39

▪ Instances of the two units under test (SUT) are contained in the test architecture, and two
test components which are connected to the ports of the SUT

▪ Developers specify the expected input / output behaviour of the integrated units

▪ TestConductor executes the integration tests and computes test verdicts (pass/fail)

MBT: Integration Testing II

© 2020 Bruce Douglass
40

▪ Objective is to test the whole SW system on host or on an embedded target

▪ TestCondcutor automatically creates test architectures for the SW system using

the system ports and interfaces

▪ “Black box test”

• requirements based testing using the interfaces of the SUT

MBT: Software System Testing I

© 2020 Bruce Douglass
41

Summary
▪ Testing is hard!

▪ Models are simplifications of reality that allow us to focus on relevant issues

▪ Models provide significant enhancement to our ability to deal with engineering data, such as

requirements, design, and implementation

▪ Models likewise enhance our ability to test:

− Development of test architectures from model structures

− Development and representation of test cases

− Execution of test cases against the SUT in the test architecture

− Computation of verdicts (pass/fail)

− Determination of coverage (model and/or code)

▪ The UML Testing Profile defines a standard way for modeling test-related information

▪ Model-Based Testing can be done

− Manually by “instrumenting” actors or creation of testing stubs

− Automatically with tools such as Test Conductor

▪ Automation of Model Based Testing provides real benefits

− Repeatable testing

− Auto generation of test architectures

− Auto execution of test suites and analysis of outcomes to determine verdicts

− ATG can even analyze model structures and create test cases to ensure coverage

© 2020 Bruce Douglass
42

Want to

know more?

