WhatisModel-Based Testi ng
and how do | get started?

Bruce Powel Douglass, Ph.D.
www.bruce-douglass.com

Bruce.Douglass@outlook.com

L. . . © 2020 Bruce Douglass
Thanks to Udo Brockmeyer of BTC Embedded Systems AG for permission to use some of his material on Test Conductor

http://www.bruce-douglass.com/
mailto:Bruce.Douglass@outlook.com

© 2020 Bruce Douglass

Levels of Correctness

ALWAYS WORKS WHILE UNDER ATTACK LEVEL 4

ALWAYS WORKS WITH INVARIANT
VIOLATIONS

LEVEL 3

ALWAYS WORKS UNDER
NORMAL CONDITIONS

LEVEL 2

N WRKSO LEVEL 1

KINDA
SORTA

LEVEL O

© 2020 Bruce Douglass

Why do we test?

© 2020 Bruce Douglass

What do we test?

Implementation

Architecture

Requirements

We normally think about testing code but we can test anything that
makes causality assertions and is sufficiently rigorous to be
exeCUtable © 2020 Bruce Douglass

Why is testing hard?

1. There are (many many) more ways for something to fail than there are for it to succeed
2. Assumptions are often not explicitly stated but their invalidation can cause failures which

are both subtle and catastrophic

3. ltis both difficult and time consuming to get degrees of test completeness

X: [0..9]

Y: [O. .9] —_— processing —_—

-

Z:[0..9]

Testing can never be complete 1
there are an essentially infinite set
of combinations of value,
sequence, and timing

6

People just as smart as you may be trying to break your system

At first look, this has 1000 combinations to be
tested. But what if

o PoTo TPoTo ToTo To T

X comes before Y? Or Z before X?

The system expects Z to occur in < 20ms but it
arrives at 30ms?

The output comes too late?

What if Z, Y, and Z are not independent?
Example: if X>5 then Y must be <=2

What if X is -17?

Does the case Z==-20 fail in the same way as X
== 457

What if X and Y are supplied but not Z?
Resources (e.g. memory)
computation?

Assumptions (preconditions) are not met?

© 2020 Bruce Douglass

Gl enf or d TheeAyt ef Testsg e 1T LS

.)) e ART oFf
A Consider the simple problem 4

- The program reads three integer values from a text input dialog. The three vall SOFTWARE

states whether the triangle is scalene, isosceles, or equilateral. e »
- Define test cases for this system. preof i ER
A Did you remember to test
- Valid scalene triangles? Valid isosceles triangles? Valid equilateral triangles?

- Have you ensured that it is valid when you swap dimensions on different sides for
all types?

- Did you try an example with a zero length side? Negative number?
- Did you try specifying the wrong number of sides (e.g. 2 sides or 4 sides)?
- Did you test the case where the length of one side is the sum of the other two?

- Did you test with and without whitespace? Alphabetic characters? Special
characters?

A Meyer reports highly qualified professional programmers average 7.8 out of 14 tests
that he identifies even for this trivial example

7 © 2020 Bruce Douglass

Models

All models are wrong, but some are
useful.

— Ge&/zgf,- E P Bex —

AZ QUOTES

A Problem: Reality is too complex
A Solution:; Create a model

A A model is always a simplification of reality, wherein we focus on aspects relevant to things
we care about and elide details of those things we do not.

© 2020 Bruce Douglass

Models

All useful models are falsifiable

Bruce Powel Douglass

A Rigorously defined i computable i models make statements that can be demonstrated to
be true or false

A A subtype of computable models i known as executable models i can be tested

© 2020 Bruce Douglass

[intazeloint

Modeling Views

P
sbon gk o,
B S gmntgs).
oo Compete
e

ancinal
doplybigBelapeed = eolon), e eal e =, ncioel;

aCocrtinaton. 55

inden

Inerial ood. —

Functior
ality

State
Behavior

jortDisabie

Behavior

e C
13 =
¥
5 Surtaceboenion
B a0 sevam
= imgere
= reTuc @ seans SIRg Dutcut e e
i Qi b Weg Pa_Tm_T
R It 520
g utrt V.
| e 1o, Eve .
)
et iavaEope St
T a2 otnce

ceeveses
El

T —

10 =

Structure

P Y Y
(G ComputeanguarTorue
[= prT— ¢ B
1P | =computeAngularTorque(fP - P, onfociin.
s el @
P
abPressure | coronalangleTorgue =
a2 que(abP - adP,
abp | coranalAngie); L J
sure SE

Gasttanager

commds e ot
Elnr e ————

TRy ——

i sert
8o lp._somma g g short v
[t

= tCmerasge TotaPlowi,_cameared ToaPowsrs g ...

startF Dok (e
[y
= computzams

i

e
rata i)
- Swetsital e
O = e
£ encaliavad
)
et
 PrRENDECTICDN R Ch fvod

ol el A
o

e aran
vabee

= cumrads e e <0

H wosuseucons .

ST oW p_ iR e)aaS

esiabel e
= setmsvava(p_vavevake s

e

ey S—
VLTestBulder Sireteey caarcurs
7 RVt Taatsc oblsTesas)
o+ Atpsinng | e |
T nsPyehclelgn Velel gt B *
WTesti(~ -
bl i s Ty e
Bei¥ellon) T faSVehiclelgh Vehickelighi | B ey |
SeRed)
hiclalight PThny |
[] {2
Hefed) - : s
taahiclelightSecThry oo B
T tsFoiedCyclebodeContolier FrosdCycisodeControler 4,
———r |
BeGel)
e et et
e
»
= T e 3 o Il T
o g g s g Lty
_________ N e 5= = = =
,,,,,,,,,,,,,,, . J J S
77777 !
saadqoTast dsatieg g
i
sitei (-
ssconvandesuto_commadedrion - 20
| ctratingy { 5
funrngTest
mancediont)
comouteaperuretfon = 20) Iy 13 < 'y 13 1y L 13 1y 2y L 173 ") 1) 1y
enatind
) ¥ ROOT RunningTase
A © 2020 Bruce Douglass
| setconmangasrion)

Kinds of Models

O

Conceptual Models

Design Models

O

Requirements Models

M —

g
Implementation
4 \ Models
ﬁ
g
' O Testing Models
f \ Architecture Models _)

O

Requirements Models

M e—
Y

Me—

Me—

11

Any of these models can be tested.

| t 6s not

j ust

about t es

© 2020 Bruce Douglass

What is model -based testing?

Model-based testing

From Wikipedia, the free encyclopedia

Model-based testing is application of model-based design for designing and optionally also executing artifacts to
perform software testing or system testing. Models can be used to represent the desired behavior of a System
Under Test (SUT), or to represent testing strategies and a test environment.

Model-based testing (MBT) means using model s

to describe test environments

to describe test strategies

to generate test cases

to enable test execution for software and/or system testing

to implement full traceability between requirements, models, code, and test cases

12 © 2020 Bruce Douglass

Automating MBT: What do we want to automate?

A Creation of Test Architecture

A Capturing of outcomes during execution

A Conversion of requirements scenarios to test cases
A Application of test cases to system

A Identification of points of failure

A Gathering of pass/fail statistics

A Computation of coverage metrics

13 © 2020 Bruce Douglass

UML Testing Profile

A Current revision 1.2 (April 2013)
- OMG Document formal/2013-04-03
- Version 2.0 is in the works
- Available at http://www.omg.org/spec/UTP/1.2/PDF

The UML Testing Profile defines a language for designing, visualizing, specifying, analyzing,
constructing, and documenting the artifacts of test system#.is a test modeling language that
can be used with all major object and component technologies and applied to testing systems in
various application domains. The UML Testing Profile can be used stand alone for the handling o
test artifacts or in an integrated manner with UML for a handling of system and test artifacts
together.

The UML Testing Profile extends UML with test specific concepts like test components, verdicts,

defaults, etc. These concepts are grouped into concepts for test architecture, test data, test peha
and time. Being a profile, the UML testing profile seamlessly integrates into UML.: it is based|on tl
UML metamodel and reuses UML syntax. The UML Testing Profile is based on the UML 2.0
specification. The UML Testing Profile is defined by using the metamodeling approach of UML.

14 © 2020 Bruce Douglass

http://www.omg.org/spec/UTP/1.2/PDF

UML Testing Profile Metamodel

DataPoal Arbiter
TestLog
= name:String Deployment 0.* 0.* 1 +
= TestLogDefinition-String 1
H verdict:Verdict testConfiguratioh
[——
\
testConfiguration n* \
executions | 0_* 0 * | executions \
. \
Test scenario N T
N TestContext n €S t
\\ -, /
[- 'd
< TestCase - / 0.* TestComponent 7’ /I
4 = /
$ /
T suT T /l
2 /
- \/ /
- - - . l
- /
System Under Test
il
0.1 1 Scheduler
Behavior
1 0..1
. wEnumMeraticns 0.1
(e Werdict
TestObjective pass
fail
inconculsive
errar

15

© 2020 Bruce Douglass

1

Capture test cases with UML/SysML

A Recommend usingOMG 6 s

St

andard

U Mbwwloegsdrg) n g

A Specify test cases visually for better communication across teams

A Creating code tests cases or importing Cunit/Cpp unit tests also possible

A Can be done manually or with automation (via Test Conductor)

save to all presets

SDTestScenario_0]

TCon_CashR

egisteritsCas

hRegister.Cas
hPeqicter

«TestScenarios

TCon_CashR TCon_CashR
egisteritsTC_ egistertc2
at_hw_of Cas
hEenictar T

f{calor = yellow, person = { name = Peter, ag%e =35}

=PreCal I ctio
Lpush_bacl k(7)
Lpush back(3);
sortlistilist=") |

|
<PostCallAction
RTC_ASSERT _MAME{"Check that list is
sorted", IsSorted(etlist);

RequestCallback() |
1

Callback{data = *)

=|

<5t hAI
RTC ASSERT NAME(Ch ot it argument
ect(datal);

[
o
[
I

I
| doSormethingf)
1 |

save_LW_presats

save_MW_presets

FlowehartOfFCWhiteBex_007 eFlowCharts

§ °
W
S 4
%
save to all presets restore all presets

\ # % |
= L J

¢

J

[Sequence Diagram Test Case

16

z.)

FlowchariOfSave_FM_Presets

[tsRadio nextWavebandi):
L mem=0;

[else]
[mem=5]

f = w->getits CurrentFrequency().
> seWaIuel'm[mem
=save(mem,),

w = its Radio. getlts CurrentWaveband(); B

[Flow Chart Test Cases j

Prof il

armed
l axiing
9
717 | m{EXTTIME) .
actve D
v
detacting
e »
evDoor "
i =) tm{SILENCE_TIME)
} ertenng @) Si 4

7‘ evMovement

piviovement

) tm{ALARM_TIME)
@
—_—

o] Intrusion
tm(ENTRY_TIME)" |

[Statechart Test Case j

© 2020 Bruce Douglass

http://www.omg.org/

Example model: Tokenizer (Manual)
Buddyod

OTest

This simple model
receives digits and dots
as characters, evaluates
the string and computes
the corresponding real
value

17

Client Oé'

Tokenizer D&'

1

itsTokenizer

1 jtsTokenizer:-Tokenizer Oé.

1 itsClient:Client

e

E ch:char
E result:double
E tensPlace:double

e test1()
Epe test2()

E digit{c:char):int
E‘FeuDigit{c:dﬁar}

EpevDot()

Epevivs)

E Operation_4{):void

E print{msg:RhpString,valu...

© 2020 Bruce Douglass

SUT

Example model: Tokenizer (Manual)

This is the state machine for the Tokenizer class

c GotANumber @
T {%result = 0; tensPlace = 10;
NotANumber
evDigit/
evDigit/ | ProcessingWholePart e, ch = params->¢;
ch = params->c;
‘ réresult = result*10 + digit(ch);
evWs/
print("Result =", result); o
evDot evDigit/
result += digit(params->c)ftensPlace;
tensPlace *= 10;
ProcessingFractionalPart
evDot
S A

18 © 2020 Bruce Douglass

Example model: Tokenizer (Manual)

Create Test Cases as Sequence Diagrams

itsClient:Client

| evDigit(1)

itsTokenizer: Tokenizer

| evDigit(2
T

| evDot()

| evDigit('3)

| evDigit{4)

eviWs()

rint{ Result}, 12.34)

-

result == 12,34

itsClient: Client

| evDigit('0")

itsTokenizer: Tokenizer

| evDigit{0")
f

| evDot()

| evDigit{'7)

| evDigit('s")

eviWis()

rint{ Result}, 0.73)

itsClient: Client

19

itsTokenizer: Tokenizer

| evDot()
I

I evDigit(7)

| evDigit{'8")
I
| evwis(

irint "Result}, 0.78)
result ==0.78

© 2020 Bruce Douglass

Example model: Tokenizer (Manual)
Manually instrument the client (Test Buddy) to invoke the test

Client .}. Tokenizer “3

1
itsTokenizer - |

Testing testl/
itsTokenizer->GEN(evDigit('1");
itsTokenizer->GEN(evDigit('2");
itsTokenizer->GEN(evDot);
itsTokenizer->GEN(evDigit(‘3");
itsTokenizer->GEN(evDigit('4"));
itsTokenizer->GEN(evWS);

test?2/

itsTokenizer->GEN(evDigit('0"));
itsTokenizer->GEN(evDigit('0"));
itsTokenizer->GEN(evDot);
itsTokenizer->GEN(evDigit('7");
itsTokenizer->GEN(evDigit('8"));
itsTokenizer->GEN(evWS);

test3/

itsTokenizer->GEN(evDot);
itsTokenizer->GEN(evDigit('7");
itsTokenizer->GEN(evDigit('8");
itsTokenizer->GEN(evWS);

SV AVIAVE SRV uuu\dluss

20

Example model: Tokenizer (Manual)

Now execute the model and create nani ma
execution)

* Rhapsody feature i can produce sequence diagrams from the interaction of modelled elements during execution

21 © 2020 Bruce Douglass

