
© 2020 Bruce Douglass

What is Model -Based Testing é

and how do I get started?

Bruce Powel Douglass, Ph.D.
www.bruce-douglass.com

Bruce.Douglass@outlook.com

Thanks to Udo Brockmeyer of BTC Embedded Systems AG for permission to use some of his material on Test Conductor

http://www.bruce-douglass.com/
mailto:Bruce.Douglass@outlook.com

© 2020 Bruce Douglass
2

© 2020 Bruce Douglass
3

LEVEL 0
KINDA

SORTA

Levels of Correctness

ALWAYS WORKS WHILE UNDER ATTACK

ALWAYS WORKS WITH INVARIANT

VIOLATIONS

ALWAYS WORKS UNDER

NORMAL CONDITIONS

ñWORKSò

LEVEL 4

LEVEL 3

LEVEL 2

LEVEL 1

© 2020 Bruce Douglass
4

Why do we test?

To find out

if it works
To find out if

it DOESNôT

work

To uncover

limitations and

constraints

To demonstrate

compliance

© 2020 Bruce Douglass
5

What do we test?

YES
Design

Implementation

Requirements

Models

Architecture

Code

Systems

Software

Electronics

Mechanics

We normally think about testing code but we can test anything that

makes causality assertions and is sufficiently rigorous to be

executable

© 2020 Bruce Douglass
6

Why is testing hard?

1. There are (many many) more ways for something to fail than there are for it to succeed

2. Assumptions are often not explicitly stated but their invalidation can cause failures which

are both subtle and catastrophic

3. It is both difficult and time consuming to get degrees of test completeness

4. People just as smart as you may be trying to break your system

processing

X: [0..9]

Y: [0..9]

Z: [0..9]

At first look, this has 1000 combinations to be

tested. But what if

Å X comes before Y? Or Z before X?

Å The system expects Z to occur in < 20ms but it

arrives at 30ms?

Å The output comes too late?

Å What if Z, Y, and Z are not independent?

Example: if X>5 then Y must be <= 2

Å What if X is -1?

Å Does the case Z==-20 fail in the same way as X

== 45?

Å What if X and Y are supplied but not Z?

Å Resources (e.g. memory) arenôt available for the

computation?

Å Assumptions (preconditions) are not met?

Testing can never be complete ï

there are an essentially infinite set

of combinations of value,

sequence, and timing

© 2020 Bruce Douglass
7 7

Glenford Meyerõs The Art of Testing

ÁConsider the simple problem

-The program reads three integer values from a text input dialog. The three values

represent the lengths of the sides of a triangle. The program displays a message that

states whether the triangle is scalene, isosceles, or equilateral.

-Define test cases for this system.

ÁDid you remember to test

-Valid scalene triangles? Valid isosceles triangles? Valid equilateral triangles?

-Have you ensured that it is valid when you swap dimensions on different sides for

all types?

-Did you try an example with a zero length side? Negative number?

-Did you try specifying the wrong number of sides (e.g. 2 sides or 4 sides)?

-Did you test the case where the length of one side is the sum of the other two?

-Did you test with and without whitespace? Alphabetic characters? Special

characters?

ÁMeyer reports highly qualified professional programmers average 7.8 out of 14 tests

that he identifies even for this trivial example

© 2020 Bruce Douglass
8

Models

ÁProblem: Reality is too complex

ÁSolution: Create a model

ÁA model is always a simplification of reality, wherein we focus on aspects relevant to things

we care about and elide details of those things we do not.

© 2020 Bruce Douglass
9

Models

ÁRigorously defined ïcomputable ïmodels make statements that can be demonstrated to

be true or false

ÁA subtype of computable models ïknown as executable models ïcan be tested

All useful models are falsifiable

© 2020 Bruce Douglass
10

Modeling Views

UML

State

Behavior

Flow

Behavior

Structure

InteractionsData

Function

ality

© 2020 Bruce Douglass
11

Kinds of Models

Conceptual Models

Analysis Models

Design Models

Architecture Models

Implementation

Models

Testing Models

Requirements Models

Requirements Models

Itôs not just about testing code!

Any of these models can be tested.

© 2020 Bruce Douglass
12

What is model -based testing?

Model-based testing (MBT) means using modelsé

4 to describe test environments

4 to describe test strategies

4 to generate test cases

4 to enable test execution for software and/or system testing

4 to implement full traceability between requirements, models, code, and test cases

© 2020 Bruce Douglass
13 13

Automating MBT: What do we want to automate?

ÁCreation of Test Architecture

ÁCapturing of outcomes during execution

ÁConversion of requirements scenarios to test cases

ÁApplication of test cases to system

ÁIdentification of points of failure

ÁGathering of pass/fail statistics

ÁComputation of coverage metrics

© 2020 Bruce Douglass
14 14

UML Testing Profile

ÁCurrent revision 1.2 (April 2013)

-OMG Document formal/2013-04-03

-Version 2.0 is in the works

-Available at http://www.omg.org/spec/UTP/1.2/PDF

The UML Testing Profile defines a language for designing, visualizing, specifying, analyzing,

constructing, and documenting the artifacts of test systems.It is a test modeling language that

can be used with all major object and component technologies and applied to testing systems in

various application domains. The UML Testing Profile can be used stand alone for the handling of

test artifacts or in an integrated manner with UML for a handling of system and test artifacts

together.

The UML Testing Profile extends UML with test specific concepts like test components, verdicts,

defaults, etc. These concepts are grouped into concepts for test architecture, test data, test behavior,

and time. Being a profile, the UML testing profile seamlessly integrates into UML: it is based on the

UML metamodel and reuses UML syntax. The UML Testing Profile is based on the UML 2.0

specification. The UML Testing Profile is defined by using the metamodeling approach of UML.

http://www.omg.org/spec/UTP/1.2/PDF

© 2020 Bruce Douglass
15 15

UML Testing Profile Metamodel

Test scenario
ñTest fixtureò

System Under Test

© 2020 Bruce Douglass
16 16

Capture test cases with UML/SysML

ÁRecommend using OMGôs standard UML Testing Profile (www.omg.org)

ÁSpecify test cases visually for better communication across teams

ÁCreating code tests cases or importing Cunit/Cpp unit tests also possible

ÁCan be done manually or with automation (via Test Conductor)

Visualize
Test Cases

Flow Chart Test Cases Statechart Test CaseSequence Diagram Test Case

http://www.omg.org/

© 2020 Bruce Douglass
17

Example model: Tokenizer (Manual)

This simple model

receives digits and dots

as characters, evaluates

the string and computes

the corresponding real

value

SUT
òTest Buddyó

© 2020 Bruce Douglass
18

Example model: Tokenizer (Manual)

This is the state machine for the Tokenizer class

© 2020 Bruce Douglass
19

Example model: Tokenizer (Manual)

Create Test Cases as Sequence Diagrams

© 2020 Bruce Douglass
20

Example model: Tokenizer (Manual)
Manually instrument the client (Test Buddy) to invoke the test

cases

© 2020 Bruce Douglass
21

Example model: Tokenizer (Manual)
Now execute the model and create ñanimated sequence diagramsò* from the

execution)

* Rhapsody feature ïcan produce sequence diagrams from the interaction of modelled elements during execution

