
© 2019 Bruce Powel Douglass, Ph.D.

Agile Planning for Embedded 

Software Development

Bruce Powel Douglass, Ph.D.
Chief Evangelist, IBM IoT
Bruce.Douglass@us.ibm.com
Twitter: @IronmanBruce

www.bruce-douglass.com

mailto:Bruce.douglass@us.ibm.com


© 2019 Bruce Powel Douglass, Ph.D.2 Agile for Embedded Software Development

Kinds of Agile Planning

01

02

0304

05

06

Roadmap
Planning

Work Item
Estimation

Architecture
Planning

Release
Planning

Risk
Planning

Iteration
Planning

A product roadmap is a 

plan of action for how a 

product or solution will 

evolve over time 

developed by the product 

owner. 

A release plan maps 

features and user stories 

to a set of product 

releases

An iteration plan details 

the work to be done in the 

upcoming iterationAn risk plan identifies risks to 

successful project completion, 

characterizes them, and plans for 

their resolution in a series of 

spikes mapped into the iterations

An architecture plan organizes 

the overall structuring and 

optimization decisions for the 

software

Work item estimation appraises  

the work effort required to 

complete a work item. It may be 

done in relative or absolute terms. 



© 2019 Bruce Powel Douglass, Ph.D.3 Agile for Embedded Software Development

Key Agile Planning Concepts

01

05

07
03

Lorem Ipsum Penatibus

Be open to change

A key principle of Agile is 

to “embrace change”

Plan “just enough”

Don’t plan beyond your level 

of information

Plan “just in time”

Plan just before you need it 

to be sure your information 

is an accurate and 

complete as possible

Replan frequently

Replan as evidence is 

collected so that plans are 

as accurate and complete 

as possible

Decide how to 

measure success 

Measure success against 

goals of the plan

Measure frequently

Measure multiple times per 

task scope.

Achieve consensus

All involved parties should 

agree, including the executors 

of the plan

Time box or 

feature box

This ensures both 

progress and allows 

collaboration.



© 2019 Bruce Powel Douglass, Ph.D.4 Agile for Embedded Software Development

Planning anti-patterns

antipattern

Plan once

Over plan

Under plan

Don’t measure 

success

Don’t measure 

velocity Ignore technical 

debt

Ignore risk 

factors

Add no slack

Over promise, 

under deliver

No consensus

Ignore previous 

outcomes No Definition 

of Done



© 2019 Bruce Powel Douglass, Ph.D.5 Agile for Embedded Software Development

The 3rd most common mistake in planning

Planned 

cost

Cost 

overrun

Actual cost

Project  1 Project  2 Project  3 Project  4 New Project

The new project will, 

of course, come in 

as planned…

For the first time in 

our history

We ignore previous 

project outcomes

?



© 2019 Bruce Powel Douglass, Ph.D.6 Agile for Embedded Software Development

The 2nd most common mistake in planning

We pretend that we 

have infinite project 

knowledge

But really, we’re 

estimating things we really 

don’t know

The project will 

complete on May 

27, 2021 at 4:36pm 

… and 13 seconds



© 2019 Bruce Powel Douglass, Ph.D.7 Agile for Embedded Software Development

The most common mistake in planning

Accurate 

Schedule
Optimistic 

Schedule

A schedule may be use 

to motivate workers (this 

is known as an 

“optimistic schedule”

A schedule may be use 

to accurately describe 

project cost, effort and 

time
OR

Motivational – Accurate schedule Venn diagram

Optimism is the enemy of realism



© 2019 Bruce Powel Douglass, Ph.D.8 Agile for Embedded Software Development

Cone of uncertainty for traditional plans



© 2019 Bruce Powel Douglass, Ph.D.9 Agile for Embedded Software Development

Cone of uncertainty for agile plans

Initial 

Roadmap

Initial Release 

Plan

Iteration 1 Iteration 1 Iteration n Final 

Release



© 2019 Bruce Powel Douglass, Ph.D.10 Agile for Embedded Software Development

Ballistic versus dynamic planning

Planning is done 

once
Plan is constructed early, before 

analysis, design, specification, funding, 

tool selections, and team allocation

Planning is done 

with “error bars”
Plans are assumed to incomplete and 

erroneous and are based on available 

information

Assumes infinite 

knowledge
How long, exact effort, start and end 

times, interruptions, resource 

constraints, etc

Plan is done 

many times
The plan increases in accuracy as we 

gain information and incorporate it into 

our plan. 

No monitoring is 

required
Because the plan is assumed to be 

truth

Result is a 

number
The exact time, effort, and cost is 

assumed to be represented by the plan

Monitoring is 

necessary
Metrics, such as velocity and burn 

down rate, are necessary to improve 

the plan

Result is a range
The plan defines a range, the size of 

which depends on the fidelity and 

correctness of data

Ballistic Planning

Dynamic Planning

Graphic by PresentationGO.com. Used with permission.



© 2019 Bruce Powel Douglass, Ph.D.11 Agile for Embedded Software Development

Iteration 0

Focus on Work to be done

Product Create the initial vision, product plan, and release plan

Team Ready the team with knowledge, skill, tools, and processes

Environment Install, configure and test tooling; set up work spaces

Architecture Define the high‐level architecture and design goals to guide emergent and 

incremental delivery of business value

Iteration 0: Do the work that needs to be done before there is work to do

These work products guide the product 

development to come On-board the team and get them ready to begin, including, 

possible domain or tool training, familiarity with the stakeholders, 

the tooling, processes, and regulatory needs

Includes compilers, editors, and requirements, modeling, 

configuration management and other tools. Also, set up the 

individual and collaborative work spaces. 

Architectural concepts, design constraints, platform 

characteristics, and optimization criteria will drive a lot of work. 

While the architecture will change over time, define the starting 

point. 



© 2019 Bruce Powel Douglass, Ph.D.12 Agile for Embedded Software Development

Agile Roadmap
01 Purpose

The roadmap is a high level view of the series of deliverable systems 

mapped to capabilities and customer needs. 

02 Description

The product owner take into account market trajectories, value 

propositions, and engineering constraints. Once these factors are 

reasonably well-understood, they are expressed in a roadmap as 

initiatives and timelines.

03
Hints

1. Initial roadmap is usually done in a day or less

2. Roadmap and release plans are updated continuously – or at least 

very frequently.

3. Note that an iteration produces an increment which is a potential 

release, while a release is delivered to relevant stakeholders.

4. This is done prior to the start of the actual development work, 

during a period of time often called iteration 0



© 2019 Bruce Powel Douglass, Ph.D.13 Agile for Embedded Software Development

Roadmap or Release Plan?

Roadmap

Strategic product plan

Characteristic

Planning Horizon

12-24 months

Contents

Release goals, high-level 

features, product capabilities

Release Plan

Tactical project plan

Characteristic

Planning Horizon

3-9 months

Contents

Product backlog, features, 

and user stories



© 2019 Bruce Powel Douglass, Ph.D.14 Agile for Embedded Software Development

Time-Based Product Roadmap

Product Roadmap
As of Sept 20

Iteration 1
Jan 15

Iteration 2
Feb 21

Iteration 3
Mar 31

Iteration4
Apr 20

Iteration 5
May 28

Iteration 6
Jun 22

Release

Mar 30

Release

Jun 21

Simulation Platform

HW Platform
Simulation Platform

Hand built HW

Factory built HW

Epics
Basic Patient Monitoring Advanced diagnostics Therapy recommendation

Communicate over HIN
Internet 

comm
Cloud comm

Cloud storage

Cloud dashboards

Cloud active controlCloud-based reporting

Therapy planning

Predictive maintenance

Priority

High

Medium

Low



© 2019 Bruce Powel Douglass, Ph.D.15 Agile for Embedded Software Development

Roadmaps in Rational Team Concert

Which 

team?

Which 

iteration?

Work 

breakdown

WSJF = Weighted Shortest Job First



© 2019 Bruce Powel Douglass, Ph.D.16 Agile for Embedded Software Development

Roadmap views



© 2019 Bruce Powel Douglass, Ph.D.17 Agile for Embedded Software Development

Roadmaps – Drilling into the details

Proposed 

and Planned 

PI targets

Program work: 

Summary, Status

Support for agile 

and waterfall 

Programs

Program doing 

the work



© 2019 Bruce Powel Douglass, Ph.D.18 Agile for Embedded Software Development

Defining Epics

An epic is a coherent set of features, use cases, and 

user stories at a strategic level. Epics typically 

require 2 – 6 iterations to complete.

Epic name: <name>

Goal: <company benefit>

Purpose: <stakeholder benefit>

Primary needs addresses: <customer needs>

Target Group: <roles that care>

Products: <affected products>

EPIC

BUSINESS EPIC

“Functional”

TECHNICAL EPIC

“Enabler”



© 2019 Bruce Powel Douglass, Ph.D.19 Agile for Embedded Software Development

Example Epic

Epic name: Surgical ventilation

Goal: Establish company in the high-end surgical medical 

device market. Also reduce the number of different 

ventilation architecture platforms supported by the company 

by creating a customizable device. 

Purpose: Provide ventilation which is highly reliable, easy 

to configure, easy to maintain, and interacts with the HIN

Primary needs addresses: 

• Simplify set up time

• Provide highly reliable ventilation even during patient 

episodes and loss of power

• Tie in reporting to hospital information network (HIN)

Target Group: Surgical anesthesiologist

Products: Mixologist series of ventilators, Merlin ventilator

Epic name: Satellite navigation

Goal: Enter into the market for aircraft and ground craft 

manual and autonomous vehicle navigation

Purpose: Provide navigation that can use GPS, BDS, and 

GLASNOS satellite systems for global navigation. Can 

provide displays for manual navigation control or digital 

information for autonomous control. 

Primary needs addresses: 

• Short configuration time (<10s)

• Highly accurate position and velocity in 3 dimensions

• Short lag (<50ms)

• Pre-certified for DO-178 and ISO 26262

• Can provide highly detailed map display

• Can provide digital coordinate and velocity data for 

autonomous navigation

Target Group: Military and commercial aircraft and 

ground craft integrators

Products: Pathfinder

Medical Device

Navigation Device



© 2019 Bruce Powel Douglass, Ph.D.20 Agile for Embedded Software Development

Agile Release Plan
01 Purpose

The goal of the Release Plan is to show how the product backlog 

maps to the set of iterations and releases, especially in the near term. 

02 Description

The release plan is a high level plan for a set of iteration and reflects 

expectations about when various product features will be released. 

The release plan is used to decide whether or not the project will 

produce enough ROI to at least pay for itself, and therefore whether 

or not we should proceed.

03
Hints

1. Start by breaking down epics into use case and features (and if necessary, 

those into user stories). Be more detailed for near term than far-term 

iterations

2. Release plan is updated continuously – or at least very frequently.

3. Note that an iteration  produces an increment which is a potential release, 

while a release is delivered to relevant stakeholders.  

4. High priority epics and user stories are developed in earlier iterations than 

those of low priority

5. It is usually better to put use cases (or features) in a release plan than 

stories, as the latter may be too granular

6. Care should be taken to ensure that the use cases can be delivered within a 

single iteration

7. It is at this time that the Risk Plan should be done as well



© 2019 Bruce Powel Douglass, Ph.D.21 Agile for Embedded Software Development

Epic Use Cases

An epic is a coherent set of 

features, use cases, and user 

stories at a strategic level. Epics 

typically require 2 – 6 iterations to 

complete.

Use 

Case

A use case is composed of a few to 

many scenarios, roughly corresponding to 

a few up to 100 requirements 

A user story is a single interaction of 

one or more actors with the product to 

achieve a goal. 

*

*

A scenario is an interaction of a 

system with a set of actors; it is single 

path in a use case

*
Roadmap

Release Plan

Iteration Plan

EPIC



© 2019 Bruce Powel Douglass, Ph.D.22 Agile for Embedded Software Development

Epic Use Cases Example

Use case name: Mix Gases

Purpose: Allow accurate mixing of gases 

for delivery

Description: Provides the well-controlled 

mixing of up to 6 different gases from wall 

supplies

Actors: Gas supply, breathing circuit, 

physician

Pre-conditions: Gas is available, system 

is connected to breathing circuit

Post-conditions: mixed gas is delivered 

at the percentages and rates commanded

Constraints: total output flow is limits to 

100 L/min

Risks: None

Use Case Points: 10

Epic name: Surgical ventilation

Goal: Establish company in the high-end surgical medical 

device market. Also reduce the number of different 

ventilation architecture platforms supported by the company 

by creating a customizable device. 

Purpose: Provide ventilation which is highly reliable, easy 

to configure, easy to maintain, and interacts with the HIN

Primary needs addresses: 

• Simplify set up time

• Provide highly reliable ventilation even during patient 

episodes and loss of power

• Tie in reporting to hospital information network (HIN)

Target Group: Surgical anesthesiologist

Products: Mixologist series of ventilators, Merlin ventilator

Use case name: Monitor device health

Purpose: Identify system failures that 

could lead to patient episode

Description: The system monitors 

actuators and sensors to ensure that they 

are operating properly. 

Actors: physician

Pre-conditions: system is on and has 

initial POST

Post-conditions: Errors are logged and 

reported to attending physician

Constraints: none

Risks: It may not be possible to identify gas 

leaks

Use Case Points: 6

Use case name: Monitor patient parameters

Purpose: Provide the physician with timely 

information about patient health

Description: Monitors and reports SpO2, O2 

input flow, O2 input percentage, heart rate, and 

NIBP

Actors: Physician

Pre-conditions: system is on and has initial 

POST

Post-conditions: patient data displayed in a 

timely fashion

Constraints: none

Risks: Our current SpO2 OEM vendor is going 

out of business and it isn’t clear there is a 

viable replacement

Use Case Points: 7

Use case name: CO2 Scavenging 

Purpose: Remove CO2 from the expiratory 

gas

Description: Removes almost all expired 

CO2 from expired gas but alarms if CO2 

exceeds threshold. 

Actors: Breathing circuit

Pre-conditions: Connected to the 

breathing circuit

Post-conditions: Removes CO2 or alerts 

attending physician

Constraints: expiratory flow is limited to 

100 L/min max

Risks: Unsure if we can meet the target 

CO2 concentration at high flow rate

Use Case Points: 4



© 2019 Bruce Powel Douglass, Ph.D.23 Agile for Embedded Software Development

Estimating use case / 

user story size
01 Purpose

Size/work effort estimation is important because it allows us to allocate work 

to iterations with some confidence of being able to achieve the work. 

02 Description

Use case points are a common agile technique using approximate 

relative, rather than absolute sizing. 

While estimating use case points, we assign a point value to each use 

case. Relative values are more important than the raw values. A 4-pt 

use case would take 4 times most effort to create than a 1-pt use case.

Alternatively, an absolute measure, such as work hours can use used 

as an estimate. 

03
Hints

Use case points are not generally a continuous range. It is common to use 

doubled numbers such as 0, 1, 2, 3, 5, 8, 13, 20, 40 and 100 or Fibonacci 

sequence: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

04
Procedure

1. List all use cases, risk spikes, and technical work items

2. Arrange them in order of effort, from smallest to largest

3. Sort them until consensus is reached on the ordering

4. That done, then assign point values to the use cases, starting at the bottom 

(smallest)

5. As you move up the list, size each based on its relative size of the one below



© 2019 Bruce Powel Douglass, Ph.D.24 Agile for Embedded Software Development

Points          vs  Hours

▪ Use case or story points 

− Are a relative size estimation technique

− Avoid the problem of being overly specific about effort estimation when information is 

unavailable to accurately estimate work effort

− The higher the level the work item, the more sense relative estimating makes

• Use cases and stories are often estimated with points

• Work tasks are usually estimated with hours

▪ Velocity is the rate at which points are delivered. On early iterations, this is estimated, but 

the accuracy of velocity is improved in later iterations because we can calibrate it based on 

actual evidence. 

▪ Velocity varies based on

− Team size

− Team skill

− Domain knowledge

− Use case complexity

− Tools and technology (e.g. automation)

− Development environment factors

− Regulation factors

76
18

50

42



© 2019 Bruce Powel Douglass, Ph.D.25 Agile for Embedded Software Development

Planning Poker
01 Purpose

Planning poker is a quick and easy design game for estimating effort 

for work items.

02 Description

1. The moderator will also need to prepare the list of use cases to size, and 

a set of planning cards to provide to each player.

• The number of cards in this set depends on the number of 

estimating categories. Commonly the cards have values like  0, 

1, 2, 3, 5, 8, 13, 20, 40 and 100

2. Estimation  is performed:

1. The estimators discuss the feature, asking questions of the 

product owner as needed.

2. Each estimator privately selects one card to represent his or her 

estimate.

3. When all participants have made their choice, all the cards are 

turned over at the same time. 

4. If all estimators selected the same value, that becomes the 

estimate. If not, the estimators discuss their estimates. The high 

and low estimators should especially share their reasons.

5. Repeat this process until consensus is achieved or it is decided 

that more information is required. 

3. Repeat for all items to be estimated



© 2019 Bruce Powel Douglass, Ph.D.26 Agile for Embedded Software Development

Time-Based Product Release Plan

Product Release Plan
As of Sept 20

Iteration 1
Jan 15

Iteration 2
Feb 21

Iteration 3
Mar 31

Iteration4
Apr 20

Iteration 5
May 28

Iteration 6
Jun 22

Release

Mar 30

Release

Jun 21

Priority

High

Medium

Low

Mix 

Gases

Scavenge 

CO2

Monitor 

Device 

Status

Monitor 

Patient 

Parameters

Assist-

controlled 

ventilation 

mode

Identify 

means to 

detect leaks

Display 

Flow Data

Allow 

entry of 

patient 

info

Power On 

Self Test

Alarm on 

HR and 

SPO2

Alarm on 

NIBP and 

CO2 

Show 

data from 

ECG 

Trend 

display of 

patient 

data

Get 

patient 

data from 

HIN 

T
Integrate with 

factory 

mechanicals

Get 

patient 

data from 

Cloud

Add 

internet 

connectivity

Display 

cloud 

patient 

dashboard

T
Integrate with 

hand built 

mechanicals

T
Integrate with 

medically 

approved RTOS

pressure 

controlled 

ventilation 

mode

Airway 

controlled 

ventilation 

mode

Pressure 

regulated 

ventilation 

mode

Jet 

ventilation 

mode

Preventative 

maintenance 

notifications



© 2019 Bruce Powel Douglass, Ph.D.27 Agile for Embedded Software Development

Release Plan in Team Concert

Drag & Drop to

Plan Iterations



© 2019 Bruce Powel Douglass, Ph.D.28 Agile for Embedded Software Development

Use Case Prioritization 01 Purpose

A key aspect of release planning is determining what work items should be 

done when. This is known as prioritization. 

02 Description

Priority is used to order a set of work tasks with the basic rule that higher priority 

items should be worked before lower priority items. In some systems a lower 

numeric value indicates a higher priority, while in others, the rule is reversed. I 

recommend lower number == higher priority. Priority can be used to optimize 

work efforts using a number of different criteria, all potentially simultaneously. 

03
Criteria

1. Cost of Delay, which includes

1. Criticality – how important it is to the product success

2. Usefulness - how useful it is to the user

3. Urgency - when customer needs it

4. Risk – reduction or project risk or opportunity loss

2. Difficulty/ Time/ Effort – how hard is it to develop?

3. Sensical sequencing

4. Dependency (on other features, infrastructure or hardware/platform 

capability)

5. Congruency to the theme of the iteration, including the features of the 

hardware being co-developed

6. Availability of necessary resources - such as subject matter expert or 

specialized equipment for development, verification, or validation

1

2

3

Weighted Shortest Job First Prioritization



© 2019 Bruce Powel Douglass, Ph.D.29 Agile for Embedded Software Development

Prioritization with MoSCoW Method

▪ MoSCoW analysis is the prioritization technique that is recommended for business 

analysts in the IIBA BABOK and originating from the DSDM (dynamic software development 

method). According to this method, a list of use case, user stories, requirements or other 

work items should be categorized into the following 4 groups:

M

S

C

W

M: Must. Describes a requirement that must be satisfied in the final solution 

for the solution to be considered a success.

S: Should. Represents a high-priority item that should be included in the 

solution if it is possible. This is often a critical requirement but one which can 

be satisfied in other ways if absolutely necessary.

C: Could. Describes a requirement which is considered desirable but not 

necessary. This will be included if time and resources permit.

Won’t. Represents a requirement that stakeholders have agreed will not be 

implemented in a given release, but may be considered in the future.

BABOK Guide - IIBA | International Institute of Business Analysis

www.iiba.org/babok-guide.aspx

A Guide to the Business Analysis Body of Knowledge (BABOK Guide).

http://www.iiba.org/babok-guide.aspx


© 2019 Bruce Powel Douglass, Ph.D.30 Agile for Embedded Software Development

Priority Poker
01 Purpose

Priority poker is a quick and easy design game for prioritizing items. 

It’s called priority poker because it’s very similar to planning poker.

02 Description

1. The moderator will also need to prepare the list of tasks to prioritize, and 

a set of priority cards to provide to each player.

• The number of cards in this set depends on how many levels of 

priority are useful to use in this particular case. It could be 3,5, or 

even 10-level scale. 

2. Gather all the people that need to be involved in the prioritization process, 

such as stakeholders, product owners, designers, developers, domain 

experts and perhaps even users. 

3. Prioritization is performed:

1. The moderator reads the work item, such as a use case. 

2. Each participant chooses the card that they think is the most 

appropriate ranking for that task and places the card face down 

on the table. 

3. When all participants have made their choice, all the cards are 

turned over at the same time. 

4. The differences are discussed and the game goes on until the 

priorities are all around the same level. This may involve each 

player discussing which criteria they used to set the priority. 

4. Repeat for the next work item



© 2019 Bruce Powel Douglass, Ph.D.31 Agile for Embedded Software Development

Allocating work items using priority

01 Prioritize

Prioritize the work items using your selected approach and criteria

02 Allocate

Allocate work items to iterations, including

• Use cases

• Spikes

• Technical work items

• Defects in the backlog

03
Evaluate

1. Does the increment trajectory make sense?

2. Is each iteration scope reasonable?

04
Revise

Improve the release plan by

1. Moving work items around

2. Updating the team

3. Modifying the work item scope (e.g. is a use case is too large?)



© 2019 Bruce Powel Douglass, Ph.D.32 Agile for Embedded Software Development

Agile Iteration Plan
01 Purpose

The Iteration or Sprint Planning meeting is for team members to plan and agree 

on the stories or backlog items they are confident they can complete during the 

sprint and identify the detailed tasks and tests for delivery and acceptance

02 Description

The Iteration Plan focuses detailed attention on the work to be done in the 

upcoming sprint. The Release plan identifies the proposed set, but this is 

when the team evaluates it in detail and commits to the work. Primarily 

focused on use cases or user stories, the iteration plan also grabs spikes, 

planned technical work, and defects off the product backlog for iteration.

03
Hints

1. Use cases are broken down into user stories (scenarios are another way of 

representing user stories – as we will see)

1. User stories are typically small 4 hr – 2 days in duration

2. During this time, it may be discovered that a user case was woefully 

undersized – in this case, it can be decomposed into smaller use 

cases and those are prioritize and pushed back to the product 

backlog

3. If the meaning or purpose of a story isn’t clear, the team can resolve 

this with the customer or domain expert

2. The user stores are expected to be developed using practices like

1. Test Driven Development

2. Continuous integration



© 2019 Bruce Powel Douglass, Ph.D.33 Agile for Embedded Software Development

Agile Iteration 

Planning
01 Gather your team

The planning session should include the product own, iteration master, and the 

agile development team members

02 Select work items from product backlog

Select the highest priority items in the product backlog that seem to fit within 

the iteration. Change its work item priority if appropriate. 

03
Break use cases into user stories

For each use case, break the use case into stories (or scenarios). Each 

user story should be a small number of days to complete and identify 

related requirements. 

04
Break user stories into tasks

Each user story will be performed as a set of work tasks, each of which is 4 hr –

2 days in duration. 

05
Estimate work effort for tasks

The duration of each task should be estimated in work hours. 

06
Put tasks into iteration backlog

Put the tasks into the backlog in priority order – highest priority to be done first. 

07
Evaluate team loading

Examine the work allocated to the team for the iteration and determine if the task 

loading is reasonable. 



© 2019 Bruce Powel Douglass, Ph.D.34 Agile for Embedded Software Development

Use Cases to Stories to Requirements

Mix 

Gases

Deliver Oxygen Only

Deliver Air Only Only

Delivery Valid mixture

Refuse hypoxic 

mixture cmd

Refuse hypoflow

mixture flow cmd

Alarm on machine fault

Gas supply fault, mixer fault, leak, 

obstruction 

Stories

Use Case

The system shall provide delivery 

provide 100% oxygen flow 

selectable by the user. 

The system shall gas flow in the 

range of 0 to 1500L/min. 

The user shall be able to select 

gas flow with a fidelity of 10 

ml/min

The system shall deliver selected 

gas flow with an accuracy of 5 

ml/min

The system shall refuse to 

deliver a gas mixture of < 21% 

oxygen

The system shall provide delivery 

provide 100% air flow selectable 

by the user. 

The system shall send an alert to 

the user if they select an invalid 

flow rate or O2 concentration.

Requirements



© 2019 Bruce Powel Douglass, Ph.D.35 Agile for Embedded Software Development

Download Papers, Presentations, Models, & Profiles for Free


