
Improving System Requirements With

Use Cases

Bruce Powel Douglass, Ph.D.

Chief Evangelist,

IBM Internet of Things (IoT)

Twitter: @IronmanBruce
www.bruce-douglass.com

http://www.bruce-douglass.com/
http://www.bruce-douglass.com/
http://www.bruce-douglass.com/

2

Requirement

 A requirement is about what needs to happen and not about how it happens

 A functional requirement is a statement about input  output control or data

transformation

 A quality of service requirement is a statement about how well that functionality must be

performed.

3

Characteristics of Good Requirements

• Achievable

• Verifiable

• Unambiguous and Consistent

• Complete and Correct

• Identifies the Need (What) – Not the Solution (How)

• Appropriate for Level of Design

• Ranked / Prioritized

• Traceable

4

Requirement Verb Usage

 SHALL indicates a normative requirement that will be verified

 Example: The system shall move the aircraft control surfaces within a range of 0 and

30 degrees in compliance to a pilot command.

 SHOULD indicates goals and non-mandatory, but recommended, provisions

 Example: The flight data should be easily available to the pilot.

 WILL indicates a statement of fact which will not be verified, such as a factual statement

about another system

 Example: The system connects to a hose which will provide water.

 MAY indicates an optional provision without specifying a recommendation

 Example: The system may use a standard display or a custom display

5

Other requirements recommendations

  Voice

 Use active, rather than passive voice

• (PASSIVE) Data shall be acquired by the system at a rate of 100 samples/sec

• (ACTIVE) The system shall acquire data at a rate of 100 samples/sec.

 Every functional requirement should have one or more quality of service qualifier

requirements

 Example: The system shall move the robot arm in compliance with user command.

• Range: The system shall move the robot are in compliance with user command in

the range of – 30 degrees and + 45 degrees.

• Accuracy: The system shall move the robot arm in compliance with the user

command with an accuracy ± 0.1 degrees (accuracy is precision of the output)

• Fidelity: The user shall be able to specify the robot arm position to within 0.05

degrees (fidelity is the precision of the input)

• Responsiveness: The system shall move the robot arm to the specified position

within 300ms.

• Exception: The system shall reject movement commands that are outside of the

allowable range and raise a Caution Alert.

• Exception: The system shall raise a Warning Alert if the required accuracy or timing

of the robot arm movement is not compliant upon completion of movrement.

6

Types of Requirements - examples

 Stakeholder requirements

 The aircraft should be steady during flight

 Functional requirements

 The system shall maintain airframe stability in all three rotational axes in the presence of

steady winds.

 Functional quality of service (QoS)

 The system shall maintain airframe stability in all three rotational axes within 0.5 degrees

of arc in the presence of steady winds and within 2 degrees of arc in the presents of gusts

up to 40 kph.

 System parametrics

 The system shall weigh no more than 30 kg when fully loaded with hydraulic fluid.

 The system shall have a maximum current draw of 0.5 amps at 240V.

 The airframe shall be painted green and prominently display the corporate logo.

 Project QoS

 The system design shall use existing hydraulic components from the FlightMagic system.

 The system shall support the MagicCarpet series of vehicles and fit within the chassis

housing attitude control component housing.

 Certification Requirements

 The system shall be certifiable under DO-178B.

7

So now we’re done, right?

As tradition requires, I now do the engineer’s victory dance …

8

Why aren’t we done?

Requirements are incomplete:

 - all functionality?

 - “edge cases”?

 - built in test?

 - safety?

 - performance?

 - security?

Requirements are complex:

 - all combination of inputs values,

sequences and timing?

 - what happens for invalid inputs

or conditions?

Customers often don’t know what

they want

Requirements are volatile

Requirements may be unachievable

Requirements may be untestable

Requirements may be ambiguous

Requirements may be inconsistent

Requirements may not meet the

actual need

9

Poor requirements have a huge impact

$30

$10K

$1M

10

The Three Ways of Verifying “Goodness”

With textual requirements you can really only apply #1; with use cases,

you can apply all three

11

What’s A Use Case?

 is an operational capability of a system

 why the user interacts with the system

 is an organizational unit for requirements

 Normally 10-100 textual requirements

 Normally a few to a few dozen use cases

per system

 may group stakeholder, system,

subsystems or software requirements

 returns a result visible to one or

more actors

 does not reveal or imply internal structure

of the system

 is independent of other use cases and

may be concurrent with them

 May be constrained with various QoS

parameters

12

Use cases group requirements into coherent sets

 There are a number of ways to think about what constitutes a use case

 It is a named operational capability of a system

 It is a collection of related specific usage scenarios of a system

 It is a collection of requirements around a system usage

 It is a coherent set of interactions of the system with a set of external elements (actors)

 Properties of good use cases

 Coherence

 Independence (from other use cases in terms of requirements (not necessarily in terms

of implementation))

• In the great majority of cases, a requirement is allocated to a single use case

 Coverage – all functions and QoS requirements are allocated

 Size

• 10-100 requirements

• 3-25 scenarios

 Exceptions for large systems

• Abstract use cases can be used to organize the use cases for large systems using

• Generalization

• Inclusion

• Extension

13

Categories of use cases uses

 Stakeholder use cases group stakeholder requirements

 System use cases group system requirements

 Note: there is normally a 1:1 relationship between stakeholder and system use cases, and

they often have similar or identical names and have «trace» relations between them

 Subsystem use cases group subsystem requirements

 Note: Subsystem use cases are logically included by system use cases via «include»

 Software use cases group software requirements and are logically included by system or

subsystem use cases via «include»

 Abstract use cases contain no requirements themselves but are used to organize the

taxonomy of use cases via relations

 Generalization

 Inclusion

 Extension

 Concrete use cases have allocated requirements and may optionally also be used to

organize the taxonomy of use cases

 Leaf use cases do not own any use case relations

14

Use Case Recommendations
 Use short verb or verb-phrase names

 Not nouns! “Move Control Surface” not “Surface Controller”

 Name from problem domain vocabulary

 Not solution vocabulary! “Apply Braking” not “Apply Hydraulic Disk Pressure”

 Give each use case a short specification (more on this later)

 Aspects of use cases

 Identify services (“system functions”) in/out

• ex. Heat water(set temp), report water temp(measured temp)

 Identify data / flows in/out

• ex. Set temperature, measured temperature, alarm limit temperature

 Identify control/data/flow transformation

• ex. cold water in  hot water out

 Identify levels of fidelity (precision of the input) and accuracy (precision of the output) of the use case

• ex. temperature set in units of 0.5C, accuracy managed to 0.1C

 Specify required performance, reliability, safety, security, etc

• ex. Water must be heated to set temperature within 30s

 Actors

 Identify their goals and objectives for the use case

 Identify which services they need from or will provide to the system while executing the use case

 Include data and flows in/out

 What transformations are expected?

15

Use Case Syntax

16

For Every Use Case, a Description (Minispec) …

 Use Case Description Structure

 Name

 Purpose

• Identifies the goals of the capability

and its value to the stakeholders

 Description

• Summarizes the control and data

transformations that the use case

specifies

 Preconditions

• What is true prior to the execution

of the capability?

 Postconditions

• What does the system guarantee

to be true after the execution of the

use case?

 Invariants

• What relevant conditions are

assumed to be always true?

 Constraints

• Additional QoS requirements or

other rules or limitations for the use

case

17

Outcomes of Functional Analysis

 Primary

 Demonstrably correct and complete set of textual requirements

 Logical Interfaces between the system and the actors

 Secondary

 Use Case Model

 Use Case Execution Context

 Executable Use Case Models (one form of a Digital Twin)

 Specification Sequence Diagrams

 Specification Activity Diagrams

 Specification State Machine

 Trace links

• System Requirements  Stakeholder Requirements

• Use Case  System Requirements

• Use Case actions  System Requirements

18

The Requirements Modeling Approach

 The approach we will take to perform verification and validation on our requirements before

satisfying them with our design is to:

This is an important point:
When we model messages,

activities, actions, states,

transitions, etc., we are simply re-

writing the requirements in a more

precise language.

We are not modeling non-

requirements or design.

Put another way, our requirements

model is just a precisely worded

restatement of the requirements. It is also important to note that

requirements are black box for

the element being specified.

That means that we can

specify the inputs, outputs and

what the transformations must

be, but not how they are

performed.

19

Requirements Workflow

Stakeholder

Needs

System Requirements

System Use

Case Model

System Logical Interfaces

20

Harmony aMBSE: System Requirements Analysis Alternatives

21

System-Function Based (most common)

Properties

• Activity diagrams model incomplete

• They only show primary control flows

• May not be completely “well formed”

• Actions map to system functions

• Activity diagram’s purpose is to identify

and characterize system functions and

their sequencing

• Scenarios and state machines hold the

“source of truth”

When to use

• The primary complexity or concern occurs

in the set of system functions that

implement the use case

• Continuous or value flows hold less

concern

• System engineers are primary

contributors to system understanding

22

Scenario-based (aka “Interaction –Based”)

Properties

• Skips activity modeling

• Captures all requirements associated with

the use case including

• Quality of service

• Edge/exception cases

• Scenaios are primarily used to elicit

requirements

• State machine is the “source of truth”

When to use

• Primary concern is the interaction

between the system (running the use

case) and the actors

• Non-technical stakeholders are primary

contributors to system understanding

23

Medical Ventilator

Vt Rate I:E
PEEP

800 10 1:2 Off

Inspiratory Pressure

SpO2 Exp CO2
Insp P Exp P

Alerts
10:24am Pressure Off alert

10:22am Self Test Pass

10:22am System On Warning

Silence

On/

Off

98% 4%
66 45

O2 N2 He Air

3280 0 0 4720

O2

41%

3250 0 0 4680

Bal

Mode

Enable

24

Use Cases

25

Requirements for Mix Gases Use Case

26

Create Analysis Context (block diagram)

27

Create Scenarios

The user shall select the desired gas.

The system shall indicate to the user the currently

selected gas.

Once selected, the user shall be able to set a valid flow

rate of the gas.

The user shall set the desired flow with user action.

The system shall acknowledge with the set value when

the flow is set.

Discovered Requirements

The system shall report the measured total flow and

measured oxygen concentration every 1.0s ± 0.25s

The use shall be able to command flow to stop.

The system shall acknowledge the user command to stop

flow.

28

Create Scenarios
Discovered Requirements

The system shall alert the user if they command a hypoxic

gas mixture and reject the command.

29

Build up formal computational model of use case

30

Build up formal computational model of use case

Discovered Requirements

- The system shall reject a flow

that is too low or too high

31

Instrument the context for execution

Physician Actor

32

Running the model

Physician actions

1. Select the O2 gas

2. Set the flow to 20000 l/min

3. Push the Set O2 flow button

4. Select the N2 gas

5. Set the flow to 10,000 l/min

6. Push the Set N2 Flow button

Physician actions

7. Select the He gas

8. Set the flow to 5000 l/min

9. Push the Set H2 Flow button

10. Enable mixing

System determines mixture is not hypoxic

and with valid ranges and so starts

delivering.

33

Output (Animated Sequence Diagram)

34

Logical Interfaces are a natural outcome of use case analysis

Resulting interfaces

Use case-actor associations indicate

the existence of interfaces

Interfaces can be detailed

with behavioral views

35

Download Papers, Presentations, Models, & Profiles for Free

www.bruce-douglass.com

http://www.bruce-douglass.com/
http://www.bruce-douglass.com/
http://www.bruce-douglass.com/

