Improving System Requirements With
Use Cases

Harmony aMBSE Deskbook Version 1.00
Agile Model-Based Systems Engineering Best Practices with IBM Rhapsody

Bruce Powel Douglass, Ph.D.
Chief Evangelist,
IBM Internet of Things (IoT)

Twitter: @IlronmanBruce :
www.bruce-douglass.com n

E '© Copyright 1BM Corporation 2017. All Rights Reserved Harmony y aMBSE Deskbook 1

Black Edition:
Rhapsody Only

REAL-TIME AGILITY

mE O or m
= ° ° AGILE SYSTEMS
e O ENGINEERING
o =
B y Y
~4 u
= \
o
°

http://www.bruce-douglass.com/
http://www.bruce-douglass.com/
http://www.bruce-douglass.com/

Requirement

= Arequirement is about what needs to happen and not about how it happens

= A functional requirement is a statement about input - output control or data
transformation

= A quality of service requirement is a statement about how well that functionality must be
performed.

—
—

Characteristics of Good Requirements

. Achievable

. Verifiable

. Unambiguous and Consistent

. Complete and Correct

. |dentifies the Need (What) — Not the Solution (How)
. Appropriate for Level of Design

. Ranked / Prioritized

. Traceable

Requirement Verb Usage

= SHALL indicates a normative requirement that will be verified

— Example: The system shall move the aircraft control surfaces within a range of 0 and
30 degrees in compliance to a pilot command.

= SHOULD indicates goals and non-mandatory, but recommended, provisions
— Example: The flight data should be easily available to the pilot.

= WILL indicates a statement of fact which will not be verified, such as a factual statement
about another system

— Example: The system connects to a hose which will provide water.
= MAY indicates an optional provision without specifying a recommendation
— Example: The system may use a standard display or a custom display

Other requirements recommendations

= \/oice

— Use active, rather than passive voice

(PASSIVE) Data shall be acquired by the system at a rate of 100 samples/sec
(ACTIVE) The system shall acquire data at a rate of 100 samples/sec.

= Every functional requirement should have one or more quality of service qualifier
requirements

— Example: The system shall move the robot arm in compliance with user command.

Range: The system shall move the robot are in compliance with user command in
the range of — 30 degrees and + 45 degrees.

Accuracy: The system shall move the robot arm in compliance with the user
command with an accuracy *= 0.1 degrees (accuracy is precision of the output)

Fidelity: The user shall be able to specify the robot arm position to within 0.05
degrees (fidelity is the precision of the input)

Responsiveness: The system shall move the robot arm to the specified position
within 300ms.

Exception: The system shall reject movement commands that are outside of the
allowable range and raise a Caution Alert.

Exception: The system shall raise a Warning Alert if the required accuracy or timing
of the robot arm movement is not compliant upon completion of movrement.

Types of Requirements - examples

» Stakeholder requirements
— The aircraft should be steady during flight
Functional requirements

— The system shall maintain airframe stability in all three rotational axes in the presence of
steady winds.

Functional quality of service (Qo0S)

— The system shall maintain airframe stability in all three rotational axes within 0.5 degrees
of arc in the presence of steady winds and within 2 degrees of arc in the presents of gusts
up to 40 kph.

System parametrics
— The system shall weigh no more than 30 kg when fully loaded with hydraulic fluid.
— The system shall have a maximum current draw of 0.5 amps at 240V.
— The airframe shall be painted green and prominently display the corporate logo.
Project QoS
— The system design shall use existing hydraulic components from the FlightMagic system.

— The system shall support the MagicCarpet series of vehicles and fit within the chassis
housing attitude control component housing.

Certification Requirements
— The system shall be certifiable under DO-178B.

So now we’re done, right?

As tradition requires, | now do the engineer’s victory dance ...

Why aren’t we done?

Requirements are incomplete:
- all functionality?
- “edge cases”™?
- built in test?
- safety?
- performance?
- security?

Requirements are complex:
- all combination of inputs values,
sequences and timing?
- what happens for invalid inputs
or conditions?

1 2.2.2. 2.2 2

Customers often don’t know what
they want

Requirements may not meet the
actual need

Requirements are volatile

Requirements may be unachievable

Requirements may be untestable

Requirements may be ambiguous

Requirements may be inconsistent

Poor requirements have a huge impact

Cost for fixing a defect
$1IM |
T
&
=
£ $10K
&
e
8
$30
Reguirements Desizn Development Testing Implementation

The Three Ways of Verifying “Goodness”

Review / Inspection
2 | Test

3 | Formal methods

[«](~] (=)

With textual requirements you can really only apply #1; with use cases,
you can apply all three

What’s A Use Case?

)] . Speed Demon™ Treadmill Use Cases
IS an operational capability of a system

— why the user interacts with the system o et r— e

IS an organizational unit for requirements /
— Normally 10-100 textual requirements // g v
— Normally a few to a few dozen use cases

per System Define Protocol Y‘
Online Store Manage Protocols
. «extend»

may group stakeholder, system,

subsystems or software requirements / e N s
returns a result visible to one or / T

Execute Protocol

more actors T ————
. . > Control Elevation
does not reveal or imply internal structure T -

; -, sincudes
Trainer
=)
Control Speed

of the system ‘

is independent of other use cases and
may be concurrent with them

May be constrained with various QoS
parameters Athlete

Race Run Factory-Defined

Execute Pre-planned
Remote Treadmil Protocol

11

Use cases group requirements into coherent sets

= There are a number of ways to think about what constitutes a use case

— Itis a named operational capability of a system

— lItis a collection of related specific usage scenarios of a system

— It is a collection of requirements around a system usage

— It is a coherent set of interactions of the system with a set of external elements (actors)
= Properties of good use cases

— Coherence

— Independence (from other use cases in terms of requirements (not necessarily in terms
of implementation))

 In the great majority of cases, a requirement is allocated to a single use case
— Coverage — all functions and QoS requirements are allocated
— Size

* 10-100 requirements

« 3-25 scenarios
— Exceptions for large systems

» Abstract use cases can be used to organize the use cases for large systems using
+ Generalization
* Inclusion
» Extension

12

Categories of use cases uses

13

Stakeholder use cases group stakeholder requirements
System use cases group system requirements

Note: there is normally a 1:1 relationship between stakeholder and system use cases, and
they often have similar or identical names and have «trace» relations between them

Subsystem use cases group subsystem requirements
— Note: Subsystem use cases are logically included by system use cases via «include»

Software use cases group software requirements and are logically included by system or
subsystem use cases via «include»

Abstract use cases contain no requirements themselves but are used to organize the
taxonomy of use cases via relations

= Generalization
= |[nclusion
= Extension

Concrete use cases have allocated requirements and may optionally also be used to
organize the taxonomy of use cases

Leaf use cases do not own any use case relations

Use Case Recommendations

= Use short verb or verb-phrase names
— Not nouns! “Move Control Surface” not “Surface Controller”
= Name from problem domain vocabulary
— Not solution vocabulary! “Apply Braking” not “Apply Hydraulic Disk Pressure’
» Give each use case a short specification (more on this later)
= Aspects of use cases
— ldentify services (“system functions”) in/out
» ex. Heat water(set temp), report water temp(measured temp)
— ldentify data / flows in/out
« ex. Set temperature, measured temperature, alarm limit temperature
— ldentify control/data/flow transformation
» ex. cold water in = hot water out
— ldentify levels of fidelity (precision of the input) and accuracy (precision of the output) of the use case
» ex. temperature set in units of 0.5C, accuracy managed to 0.1C
— Specify required performance, reliability, safety, security, etc
« ex. Water must be heated to set temperature within 30s
= Actors
— ldentify their goals and objectives for the use case
— ldentify which services they need from or will provide to the system while executing the use case
— Include data and flows in/out
— What transformations are expected?

14

Use Case Syntax
9

Primary Radar

Airline

O

MNational Airspace System

15

Acme Air Traffic Control System

Locate Tracks
with Surface
Reflections

Locate Tracks with
Beacon Codes

«includes

——
—

|dentify Aircraft

aincludex |I

Alarm on
Separation

\ aincludes T

Aircraft Transponder

Secondary Radar

Distance Violation

Display
Airspace

Accept High
Priority Flight
Plans
aextends
-

-

Manage Flight
Plans

Controller

U

N

Flight Planning System

For Every Use Case, a Description (Minispec) ...

» Use Case Description Structure

16

Name
Purpose

« Identifies the goals of the capability
and its value to the stakeholders

Description

 Summarizes the control and data
transformations that the use case
specifies
Preconditions

* What is true prior to the execution
of the capability?

Postconditions

» What does the system guarantee
to be true after the execution of the
use case?

Invariants

+ What relevant conditions are
assumed to be always true?

Constraints

+ Additional QoS requirements or
other rules or limitations for the use
case

-
\

AMS

\D Control Air Surfaces
o

Pilot_Display

Maintainer

Shut Down

\

Start Up
Update Status

[m] =) [m]
(=] 0 (=]

Configure System

\ Manage Data

Use Case: Control Air Surfaces in ControlAirSurfacesPkg - n
Relations Tags Properties
General Description Value Properties Operations Ports Flow Ports Q5LC Links
al -] [0 v] AxBrualEsazA | F
Name- Control Air Surface ~

Purpose: This use case provides the primary functional behavior of the system’
specifically to move the various control surfaces to their commanded positions,
maintain them in their commanded positions and report status and errors to the AMS
and Pilot Display.

Description:

The system received movement commands from the AMS. The system verifies that
they are valid commands and then executes them. Verification includes that the
position of the control surfaces are in a valid range. Then system then moves the
control surfaces to those position within the timing and accuracy constraints. If the
system is unable to meet either the positional accuracy or the timing, errors are
reported to the AMS and pilot display.

Movement can be control in degraded mode if non-critical surfaces fail. If critical
surface fail, the system enters a fail safe mode of operation.

Special behavior is defined for warm-restarts to permit inflight shut down-restart
sequences. See the requirements for the details.

Security Constraints:
MNone. The system is expected to be enclosed within a security boundary.

Preconditions:
The system is powered and has successfully passed Power On Self Test.

Post-conditions;
The system has properly executed all movement commands or appropriately handled
all errors.

Invariants:
Electrical and hydraulic power are continuously available from the aircraft.

Locate 0K

Outcomes of Functional Analysis

= Primary

Demonstrably correct and complete set of textual requirements
Logical Interfaces between the system and the actors

= Secondary

17

Use Case Model
Use Case Execution Context
Executable Use Case Models (one form of a Digital Twin)
Specification Sequence Diagrams
Specification Activity Diagrams
Specification State Machine
Trace links
« System Requirements - Stakeholder Requirements
» Use Case - System Requirements
» Use Case actions - System Requirements

The Requirements Modeling Approach

= The approach we will take to perform verification and validation on our requirements before

satisfying them with our design

This is an important point:
When we model messages,
activities, actions, states,
transitions, etc., we are simply re-
writing the requirements in a more
precise language.

We are not modeling non- /

requirements or design.
Put another way, our requirements

model is just a precisely worded
restatement of the requirements.

18

IS to:

——

—~7

Model

[elke]

i
i
L

|

IModel the Requirements

Execute the Requirements

Identify_Requirement_Defect

decisi

[verified all requirements]

Get First Cut Textual
®———> Requirements

|

J

4<—

|

Identify_Requirement_Defect

|

Update Textual
Requirements

It is also important to note that
requirements are black box for
the element being specified.
That means that we can
specify the inputs, outputs and
what the transformations must
be, but not how they are
performed.

Requirements Workflow

/ Identify System
% Use Cases

Stakeholder
Needs

System Requirements

System Use
Case Model

System Logical Interfaces
19

LS

¥
(O 2
|‘i_—f_li1

Analyze Use Case

o
o
o
Y @
b 4

-~

Generate/Update
System Requirements

W
LS
Create/Update

Logical Data
Schema

Analyze Dependability

L
Lo
Create/Update
Verification Plan

[else]

[more use cases in this iteration]

Harmony aMBSE: System Requirements Analysis Alternatives

20

The purpose of the activity
diagram here is to identify
the system functions

[continuous fows, algorithmic, or flow based]
[discrete fiows]
_ =

This workfow is for when the use case is
heaily state-based and you're well-ersed
in state modeling

[Harmony Classic legacy model]

[system function based]

The purpose of the activity The purpose of the activity
diagram here is to model diagram here is to

the use case behavor summarnze the sequences

o5

[interaction-based]

)

Create sequence

Derive scenarios Use Harmony Use SysML activity diagrams
"constrained” diagram Construct state
activities machine
[contral loop] [algorithmic fiow based]
SRR (O3
S o5

Derive scenarios Derive scenarios
continuous|(but no simulink

£3 £

Generate sequences
Construct fom state execution

EY

) =) 3 —r
Construct hybrid Construct polling Execute activity l X J executable state
state-simulink model state machine diagram - Construct executable machine
model Construct executable state machine

state machine

[more requirements] more requirements]

[more requirements] [more requirements
[else]
i [else] [else] This flow is when working
[more reguirements] [else] with non-technical
[else] stakeholders or interaction-

heawy use cases

o —fa——®

Add trace links Review

System-Function Based (most common)

21

Properties

Activity diagrams model incomplete

« They only show primary control flows

« May not be completely “well formed”

» Actions map to system functions
Activity diagram’s purpose is to identify
and characterize system functions and
their sequencing
Scenarios and state machines hold the
“source of truth”

When to use
The primary complexity or concern occurs
in the set of system functions that
implement the use case
Continuous or value flows hold less
concern
System engineers are primary
contributors to system understanding

[system function basgd]

The purpose ofthe actiuty
diagram here is to identify

the system functions
/

=L 2]

Use SysML activity
diagram

3

d)

Derive scenarios

.

/1

Construct executable
state machine

requirements

[else]

Scenario-based (aka “Interaction —-Based”)

22

Properties
Skips activity modeling

Captures all requirements associated with

the use case including
* Quality of service
« Edge/exception cases
Scenaios are primarily used to elicit
requirements
State machine is the “source of truth”

When to use
Primary concern is the interaction
between the system (running the use
case) and the actors
Non-technical stakeholders are primary
contributors to system understanding

/ \[interaction-based]

2l
Create seguence
diagrams

A

Construct
executable state
machine

[more requirements]

~ \

Medical Ventilator

23

V, Rate I:E PEEP

Inspiratory Pressure

800 10 1:2 Off

(@]
o o O e} 0O 0.0 (@) e} o 0 O (@) > o
o O O O o O O o
o O O O o O O 9
o 0] e) (@] o) O (@) 9

Silence

A Alerts

10:24am Pressure Off alert
10:22am Self Test Pass
10:22am System On Warning

Off

InspP [\ Exp P

|

o, Spo, Exp CO,
4@ 98% 4%}

66 45

AN

O, N, He Air

00| ("o |("0 |[az20
sz) s J 1o JLCseas
O O I D

O

Bal
Mode

Enable

@ﬂ q@]ﬂ@

Use Cases

24

Monitor Patient Sp0O2

Monitor NonInvasive
Blood Pressure

Monitor System Status Patient

1*

Gas Supply Configure Ventilation

7

Configure M »w

w

Monitor Breathing Circuit

BioMed Engineer

Breathing Circuit

Requirements for Mix Gases Use Case

Eﬂrequiremerrt_ﬂ The system shall mix gases 02, N2, He, and Air from the input gas manifold

Eﬂrequiremerrtj The system shalldelivery 02 and Air concentration of between 0 and 100.

Eﬂrequiremerrt_?.’ The system shall support delivenyt of He, M2 to between 0 and 753% concentration.

Eﬂrequirement_.’-] The System shall not deliver a gas flow that has less than 217% 02,

Eﬂrequiremerrt_-l The system shall not deliver a flow rate of less than 200 ml/min.

E ﬂrequiremerrt_ﬁ The system shall deliver a tidal volume of between 50 ml and 1500 ml..

Eﬂrequiremerrt_ﬁ The system shall deliver a breath with an |:E ratio of between 5:1 and 1:5 (default shall be 1:1).

Eﬂrequirement_? The system shall default to gas concentation mode, in which the flow settins of each gas are set and the total flow is set independently.

Eﬂrequiremerrt_ﬂ The system shall support a balance gas mode in which the 02 supply shall deliver 21% or maore of the gas concentraion and the rest will be supplied by the balance gas.

Eﬂrequirement_ﬂ' The system shall alert f they command an 02 concentration, flow, |:E. tidal volume, ar respiration rate out of range.

25

The system shall
mix gases 02, N2,
He, and Air from
the input gas
manifald

«Repinenente
reguirement_1

The system shall
delivery 02 and Air
concentration of
between 0 and 100,

eReqirenents
reguirement_2

The system shall
support deliveryt of
He, M2 to between
0and 79%
concentration.

pETr—
reguirement_4

The system shall
not deliver a flow
rate of less than
200 mlfmin,

«Regirements
requirement_5

The system shall
deliver a tidal
volume of between
50 ml and 1500 ml..

The System shall
not deliver a gas
flow that has less
than 21% 02.

i traces "
xtrauelﬁ

ErIr—

deliver a breath
with an LE ratio of
between 5:1and
1:5 {default shall be
1:1).

ETr—
requirement_8

The system shall
support a balance
gas mode in which
the 02 supply shall
deliver 21% or
more of the gas
concentraion and
the rest will be
supplied by the
balance gas.

reguirement_8

The system shal

“Requirements
requirement_7

The system shall
default to gas
concentation mode,
in which the flow
settins of each gas
are set and the
total flow is set

indanandant

Create Analysis Context (block diagram)

26

1

itsO2WallSupply “2,

1

itsN2WallSupply =

itsAPhysician:aPhysician

1 itsABreathingCircuit:aBreathingCircuit 0&'

=
pMixGases pMixGases
pWalD2 pWallN2
1 jtsUcMixGases:ucMixGases 1 itsHeWallSupply 32
D‘%' WallHe pMixGases
= (1]
pPhysician
L1 L]
pMixGases
pWallAir pMixGasaI 1 itsAirWallSupply %
L
BC g itsO2TankSupply
1 i M pTankO2 pMix
pMixGases L
1 itsN2TankSupply
pTankN2 pMixGases
[‘]—[]
1 1
pTankAir pTankHe I
pMixGases l“% pMixGases
1 H2TankS I
L it:lr..AirTanIt.Sup|r||Jyr aniupply

Create Scenarios

]
Use Case: Mix Gases
Scenario: Deliver 02 Only

Preconditions:

- System is initialized

- All gas flows turned off
- Patient is connected to
breathing circuit

Post condition:

02 is delivered until
procedure is complete and
then 02 delivered is stopped
by the physician

27

itsPhysician

itsUcMixGases its02WallSupply itsBreathingCircuit
selectGas(02)
gasSelected(02)
-
setFlow(10000)
flowset(10000)
enableGasFlow()
setFlow(10000) ;

loop

setFlowDelivery()

[iuntil disabled]

tm{updateTime)

measuredGasOutputFlow foutputFlow)

measured020utputConcentration{02Conc)

stopFlow{ALL)

setFlow (D) ;

stopFlowDelivery()

Discovered Requirements

The user shall select the desired gas.

The system shall indicate to the user the currently
selected gas.

Once selected, the user shall be able to set a valid flow
rate of the gas.

The user shall set the desired flow with user action.
The system shall acknowledge with the set value when
the flow is set.

The system shall report the measured total flow and
measured oxygen concentration every 1.0s + 0.25s

The use shall be able to command flow to stop.
The system shall acknowledge the user command to stop
flow.

Create Scenarios

S
Use Case: Mix Gases
Scenario: Deliver N2
Only

Preconditions:

- System is initialized

- All gas flows turned off
- Patient is connected
to breathing circuit

Post condition:

lllegal flow command is
rejected with an alert
sent to the physician

28

itsUcMinGases

its02WallSupply

itsM2wWallSupply

itsBreathingCircuit itsPhysician

|
L

electGas(02) |

I gasSelected(032)

setFlow(d) |

setFlow(0

flowset(0)

|
«

gasSelected(M2)

L

setFlow{12000) |

b=
lgﬂzlow(lzooo}

flowset(12000)

[

enableGasFlow ()

[5=

| alert(HYPOXIC_GAS MIXTURE COMMAND REJECTED)

>

|
|
|
|
|
|
T
|
| selectGas(M2) |
|
|
|
|
[
|
I
|
|
|

Discovered Requirements

The system shall alert the user if they command a hypoxic
gas mixture and reject the command.

Delivering

T

Build up formal computational model of use case

setFlow(02Flow) to pWalo2

| Operational ‘
- ~ setFlow(N2Flow) to pwallN2
alert(FLOW_TOO_LOW_COMMAND_REJECTED) to pPhysician
\.I/ setFlow(HeFlow) to pWallHe
[fowOk()] -
‘ NotDeliveing J— Delivering (é) ‘
enablGasFow CheckingSettings ?
[eke] [g GEN(begnMeasuring);
e —
% setFlow{AirFlow) to pWallAir
[ryposxicMbdure()]
alert(HYPOXIC_GAS_MIXTURE_COMMAND_REIJECTED) to pPhysician
setFlowDelivery to pBC
stopFlowDelivery to pBC stopFlow
________ sekctGas/
sekctedGas = params->gas; | WaitingToStop ‘
gasSelected(selectedGas) to pPhysician
selectGas/
selectedGas = params->gas;
\J/ selectGas/
WaitingForFlowCommand GasSelected selectedGas = params->gas; CheckingFlows @‘
stopFow
setFlow [g cmdFow = params->flow
/P MeasuringFlows
alert(FLOW_OUT_OF RANGE_COMMAND_REJECTED) to pPhys [fowO.0Range{cmdPow)] C
WaitingToMeasure
flowset(cmdFlow) to pPhysician
[ebe]/
setCommandedGasHow(sekctedGas, crndFlow);
tm(UPDATE_TIME)
measuredGasOutputFlow(getTotalFlow()) to pPhysician
Inactiv MeasuringFlows
nadve begnMeasuring i J/
K stopFow
Dé.) measured020utputConcentration{getO2Concentration()) to pPhysician
A

29

Delivering

T

Build up formal computational model of use case

Discovered Requirements

- The system shall reject a flow

that is too low or too high

A

‘ NotDeliveing

setFlow(02Flow) to pWalo2

setFlow(N2Flow) to pwallN2

alert(FLOW_TOO_LOW_COMMAND_REJECTED) to pPhysician

CheckingSettings

! flow
[fowOK0) Delivering

&)

[eke]

: @: (& GEN(begiMeastring);

[hypoxdMicure()]

3

stopFlowDelivery to pBC

alert(HYPOXIC_GAS_MIXTURE_COMMAND_REJECTED) to pPhysician

stopFow

gasSelected(selectedGas) to pPhysician

setFlow(HeFlow) to pWallHe

setFlow{AirFlow) to pWallAir

setFlowDelivery to pBC

| WaitingToStop ‘

MeasuringFlows

selectGas/
selectedGas = params->gas;
\J/ selectGas/
WattingForFlowCommand GasSelected selectedGas = params->gas; CheckingFlow @‘
stopFow
setFlow [g cmdFow = params->flow
alert(FLOW_OUT_OF RANGE_COMMAND_REJECTED) to pPhys [fowO.0Range{cmdPow)] C
flowset(cmdFlow) to pPhysician
[eel/
setCommandedGasHow(sekctedGas, crndFlow);
Inactive begiMeasuring MeasuringFlows
K stopFow

30

WaitingToMeasure

tm(UPDATE_TIME)

measuredGasOutputFlow(getTotalFlow()) to pPhysician

L

measured020utputConcentration{getO2Concentration()) to pPhysician

Instrument the context for execution

31

statechart_1

02 N2 He Air
selStart
enableGasFow to pMixGases
selStop)
stopFlow to pMixGases
& I/— Select 02
« Y
state 0 measuredGasOutputFlow/ Push
td::cout << "Measured Total Gas How = " << params->flow << std:zend|;
measured020utput Concentration/
:d::cmt << "Measured 02 Concentration = " << params->concentration << std::endl; Push
Select He
flowset/

; std::oout << "Seledted Gas Flow Set To = " << params->flow << std::end; Push
gasSelected/ =
switch (params->gas) { Send Enable Select Air
case 02_GAS: std::cout << "02 ";break;
case N2_GAS: std::oout << "N2"; break; Push Push
case HE_GAS: std::oout << "He"; break;

(}:a;e AIR_GAS: std::cout << "Air "; break; Send Stop Set 02 Flow
std::cout << "gas selected " == std::endl; Push Push
sel02)
selectGas(02_GAS) to pMixGases Set N? Flow
selN2)
selectGas(N2_GAS) to pMixGases Push
selHe
selectGas(HE_GAS) to pMixGases Set He Flow
selAir
selectGas(AIR_GAS) to pMixGases Push
Set Air Flow
iiLiL setFlow(02) to pMixGases
sendN2 Push
setFlow(N2) to pMixGases
sendHe
setFlow(He) to pMixGases
sendAir]]
setFlow(Air) to pMixGases
e

Physician Actor

Running the model

14l Sequence Disgram: Animated Animated Gas rmxing template *] | 2 " s =8]% =R
S. statedhart_1 02 N2 H A
I e 1 selStart 0] L] []
enableGaslon 10 pMxGases
imuonGases | | mozvalsuply | | isnzwaluon! irealsunol tsArvalsupoly reaeh
e S{FLOW,_TE0 L OW_FOMMAND REECTED) ts piymcen. » et ~ stopFiow to pMixGases.
I N (Select 02
P Fom A State_0
~ = X measredGasOutpLFow/ Push
e, - . ——! sidszoaut << Measured Total Gas Flow = * << porams->fow << sidsendl;
i | = — Select N2
- 2 ‘meanired020upuCancentration)
sid:zcout << ‘Measured 02 Concentration = <. params->oncentation << sid:zend; Push
mmmmmmm
| Fe Select He
R A CTUR SOV AEETTED) i . str:icout << "Selected Gas Flow Set To = << params->fow << sid:zend; i
3 P
mopFowbsivery to 380 Send Enable Select Air
e T N N Push Push
Stz paamss i
. oo S —— o AT recout << *Ai s break; Send Stop Set 02 Flow
x S e %
I ety Ed:zcout << "gas selected " < ;
T P Salcaudin = parar. gai e . | Push Push
e e 1 — kil] =02
< R ., o = pmamasf [| seleciGas(02 _GAS) n pMixCases Sat N2 Flow
ez ~J
| selectsasinz_Gas) 1o piaases Push
| L
setie |
e T e o tesntton] o selectfiasHE_GAS) to pixGases Sat He Flow
selar
| selectGas(AIR_GAS) to pMixGeses Push
L FamzesiamdFlon] o pPayscies — | w02 02 b G Set Air Flow
SarCommsedadGasFbw|salc B, cmdFion] 1
sendh2 - Push
———————————————————————————————————— E— LT
= [serdrie
begriessuring P setFiow({He) to pMixGases
{ b———
s sercdai
1 3 setFlow(Ar] to pMxGases

Physician actions Physician actions

Select the O2 gas 7. Select the He gas

Set the flow to 20000 I/min 8. Set the flow to 5000 I/min

Push the Set O2 flow button 9. Push the Set H2 Flow button

Select the N2 gas 10. Enable mixing

Set the flow to 10,000 I/min System determines mixture is not hypoxic
Push the Set N2 Flow button and with valid ranges and so starts

30 delivering.

oOghkwbdrE

Output (Animated Sequence Diagram)

33

*

] Seq e Diag A 1 A
itsUchixGases |its02wallSupply| itsh2wallSupply| itsHetwallSupply| itsAindaliSupply |

1 Gas mxing

=5 Eo ==

iteAPhysician |

] Seq e Diag A | A
itsUchixGases |its02wallSupply| itsh2wallSupply| itsHetwallSupply] itsAindalSupply |

| Gas mxing template *

(=N Eo =~

iteAPhysician |

k

selectGas(gas = 1)

gasSelected(gas = 1)
I

Ll

[hrnnfmoo)

etTotalFlow()

&

measuredGasOug:_uﬁlowjﬂow = 34957) |

Ll

%eflowjﬂow = 20000)

ﬂowDutOﬂlange(ﬂoJﬂ = 20000)
L__| |

etOZConcenhaﬁonq}

measuredOZOuEEFnoentrationjmnoem_riation = 0.600423)

SEtComrnandedGasHT)w(gas =1, flow = ZZTZJOO)

|
tm(1000) |
|

ith

easuredGasOumuﬂLIow(ﬂow = 34992)

W

t02Concentration()

ll:

measured020u

|
|
|
etTotalFlow() | |
|
|
|

ncentration{concentjation = 0.577429)

|
|
|
1
|
|
| |
| |
| |
flowset({flow = 2000[J|} I I I
|_/ | | | | selectGas(gas = 2)
| | | | | |
I.QM = le | | | |
| | | | etFlow(flow = 10000) |
[~ | | | |
:\o_ilZ‘)umﬂlange(ﬂng = 10000) | | | |
| | | | |
:%‘ommanded(;asﬂ?w(gas =2, flow = 1(1300) | | |
flowset(flow = 1UUU[J|} I I I I
L | | | | selectGes(aas =3) |
| | | | | |
gasSelected(gas = 3) | | | |
I 1 1 1 1
| | | | |setF|owjﬂow = 5000) |
[~ | | | | |
ﬂowDutOﬂlange(ﬂoJﬂ = 5000) | | | |
| | | | |
:%‘ommanded(;asﬂ?w(gas =3, flow = 5(130) | | |
flowset({flow = SOOO}I I I I I
|_/ | | | | enableGasFlow()
| | | | | |
;:h[i‘md\‘limreﬂ | | | | |
oo | | | | |
| | | | |
| becinMeasurina | | | | | v
£ >

00)

i

etTotalFlow()

measuredGasOug:_uqlowjﬂow = 34981)

|
|
|
|
|
|
femxoncenhaﬁon? |

measured020u IﬂLnoenhaﬁon mnoennlaﬁon =0.572429)

stopFlow()

|
|
|
|
|
|
Il
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1
|
|
| |
| |
| |
1 1
| |
| |
| |
| |
| |
| |
| |
.

|
|
|
1
|
|
|
|
|
|
|
1 .

I'_______F'___

1
|
|
|
|
|
|
|
1 .

Logical Interfaces are a natural outcome of use case analysis

O O
o R
e G

Gas Supply

@m Patent sw ‘ ‘

- iortontnsss ™ ‘
o et

) v

g —
=\ ¢

=

Configure Mixer

~

sotted Enr

Interfaces can be detailed
with behavioral views ~—

itsUchMixGases itsO;

rcuit ‘ ‘ itsPhysi ‘

o |

02 is delivered until
| setFlowDelivery()
k

| lectGas(02) |
Use Case: Mix Gases | ‘ ‘
Scenario: Deliver 02 Only |na elected(02) ‘
Preconditions- L~ | setFlow(10000)
- System is initialized I U
- All gas flows turned off | flowset(10000) | |
- Patient is connected to | ‘
breathing circuit enableGasFlow()

I
Post condition: setFlow(10000,

procedure is complete and

|
- then 02 dell d is st :d
B \/ ~\ Use case-actor associations indicate | iosimdssms —
W e \ the existence of interfaces e
_/ ,‘ | ‘ =
v (=y | :
NS } }
5'“‘_';‘"9 creut «interfaceBlocks» 1 itsO2WallSupply ‘-‘% 1 itsN2WallSupply Dé
iaPhysician_ucMixGases
E,D prov selectGas(gas:DELIVERY_GAS._TYPE) L setFiow [setFlow
: I reqd gasSdected(gas:DELIVERY_GAS_TYPE) —
B [InterfacesPkg E1P prov setFlow(flow:unsigned int)
H iaPhysician_ucMixGases Ealert Efimsg 1P read flowset(flow:unsigned in)
Q iaPhysician_ucMixGases Eﬁ'enableGas Flow E"" prov enableGasFow()
H iaPhysician_ucMixGases £ flowset Eiyflow =i reqd Aet{msgiALERT_TYPE) pWalo2 pwallN2 —
E iaPhysician_ucMixGases Eﬁ'gassdeded ﬁ]gas 1 cMixGases:ucMixGases — =, Wallie . itsHeWallsupply 2,
H iaPhysician_ucMixGases £ measuredGasOutput low iy flow 1 itsAPhysician:aPhysician 3 = «ValueProperty» selectedGas:DELIVE...
E iaPhysician_ucMixGases Eﬁ'measuredOZOutputConcentmﬁon ﬁ]concentmﬁon = vl » OZint pPhysician = «ValueProperty» cmdFlowint @
Q iaPhysician_ucMixGases Eﬁ'selectGas ﬁ]gas = «valueProperty» N2:int -1 = «ValueProperty» O2Flowsirt '
E iaPhysician_ucMixGases Eﬁvset Flow ﬁ]ﬂcw — pMixGases E «ValueProperty>» N2Flow:int
] iaPhysician_ucMixGases £ stopFlow E’:vgassdijl(gas:lDEIJV.ERY_GAS_TYPE) = «ValueProperty> HeFlowint | wotar) [1 sAuwallsupply 2|
E iucMixGases_N2Wall Supply Eﬁvset Fow ﬁ]ﬂcw Efp flowset(flow wnsigned in) H <YalueProperty> Ailowint []—FE]—
Q iucMixGases_02WallSupply Eﬁise{ Flow ﬁ]ﬂow
E iucMixGases_aBreathingCircuit Eﬁ'set FowDelivery £t setflow(flow-unsigned int) £l setflow
Q iucMixGases_aBreathingCircuit EﬁistopFlowDelivery - — i — Eﬁ'eﬂable@-asﬂoﬂ()
' — B reuit 3, L1P selectGas(gas: DELIVERY_GAS_TYPE)
po P stopow() 1 its02TankSupply
£ setflowDelivery() P 1 El flowset(flow:unsigned int) pTank02 pMixGases,
1 stopFowDelvery() pMixGases £l beginMeastiingO 1
E flowOk{}:RhpBcolean
hypoxicMixture():RhpBoolean
I i L getTotalFlow():Rhpirkeger -
Resulting interfaces e e TSy
dnterfaceBiocks [settommandedGasFow(gas:DELIVER... -
_ rcuit = flowouofRange(flowint):RhpBodean
pTankAir pTankHe
£ prov setfiawDelvery()
I MixGa:
ET:’WSWONDQNE\/O i - p = H2TankSupply
34

Download Papers, Presentations, Models, & Profiles for Free

www.bruce-douglass.com

Bruce Powel Douglass, Ph.D.

Resources Blog Events Forum Contact About Comments Members

Real-Time Agile Systems and Software Development

~ (“,‘.xuwnlnie '

ﬁr’ﬁ"ﬁﬂ‘l a v
Hannony?fi REAL-TI ’

Harmony aMBSE Deskbook Version 1.00
Agile Model-Based Systems Engineering Best Practices with IBM Rhapsody

Bruce PweIDo uglass, Ph.D.

Black Edition:
Rhapsody Only

FEEL UM
FRENMET:
TRCR, Ry "
m§”| ﬁ)\ﬂ##ﬁli { l. ’ © Copyright IBM Corporation 2017. All Rights Reserved Harmony aMBSE Deskbook 1

(=) sEippe

= ERAR: maKey F ,
| ke B
M@ sR1eR

A

» B k
AGILESYSTEMS | [NV : S = D
N - A GILITY L
ENGINEERING | Reeas Toge U Do Haro Trve d Agile Product : B R o Desioy
THirp EpITion DEVELOPING REAL-TIME e Ag ent A PAT]'ERNS »
sy rml\ll = SysTEMS Wit UML, OBJECTS, Developm 5:):[‘!}“‘%;:\???\2#3::1}(11“,

FRAMEWORKS, AND PATTERNS

DESIGN PATTERNS ror
EMBEDDED SYSTEMSinC

An Embedded Software Engineering Toolkit

REAL-TIME UML
WORKSHOP FOR
EMBEDDED SYSTEMS

!
s
| FHRERUGH

ey |||
SREAESH
RUMBRECK

BRUCE POWEL DOUGLASS o

I

http://www.bruce-douglass.com/
http://www.bruce-douglass.com/
http://www.bruce-douglass.com/

