
© 2019 Bruce Powel Douglass, Ph.D.

Epics, Use cases, and User Stories, Oh My!
A Guide to Requirements in an Agile World

Bruce Powel Douglass, Ph.D.
Chief Evangelist, IBM IoT
Bruce.Douglass@us.ibm.com
Twitter: @IronmanBruce

www.bruce-douglass.com

mailto:Bruce.douglass@us.ibm.com

© 2019 Bruce Powel Douglass, Ph.D.2 Epics, Use Cases, and User Stores, Oh My!

Epics, use cases, and user stories, oh my

Use

Case

User Story

Work Item

Task

Spike

Months
(multiple iterations)

Weeks
(single iteration)

Days
(single iteration)

Hours
(single nanocycle)

An epic is a coherent set of

features, use cases, and user

stories at a strategic level.

Some epics are functional in

nature, decomposing to use cases

and user stories while others are

technical in nature, decomposing

to technical work items.

A feature is a chunk of functionality that

delivers business value. Features can

include additions or changes to existing

functionality.

A use case is made up of a set of

possible sequences of interactions

between systems and actors (including

users) in a particular environment and

related to a particular goal.

A small unit of work in the product

backlog, such as a user story or spike

A kind of requirement, a user story

depicts a simple interaction with the

product to achieve a goal.

A work item that is meant to reduce some

risk, such as a technical, project, or

business risk.

The technical work

that a development

team performs in order

to complete a product

backlog item.

EPIC Feature

A requirement is a

statement of what the

system must do or a

constraint.

© 2019 Bruce Powel Douglass, Ph.D.3 Epics, Use Cases, and User Stores, Oh My!

Epic User Stories

An epic is a coherent set of

features, use cases, and user

stories at a strategic level. Epics

typically require 2 – 6 iterations to

complete.

Use

Case

A use case is composed of a few to many

scenarios, roughly corresponding to a few

up to 100 requirements

A user story is a single interaction of one

or more actors with the product to achieve

a goal.

*

*

A scenario is an interaction of a system

with a set of actors; it is single path in a

use case

*Roadmap
Release Plan

Iteration Plan

A requirement is a

testable statement of

stakeholder need.

**

EPIC

*

*

© 2019 Bruce Powel Douglass, Ph.D.4 Epics, Use Cases, and User Stores, Oh My!

Epic Use Cases Example

Use case name: Mix Gases

Purpose: Allow accurate mixing of gases

for delivery

Description: Provides the well-controlled

mixing of up to 6 different gases from wall

supplies

Actors: Gas supply, breathing circuit,

physician

Pre-conditions: Gas is available, system

is connected to breathing circuit

Post-conditions: mixed gas is delivered

at the percentages and rates commanded

Constraints: total output flow is limits to

100 L/min

Risks: None

Use Case Points: 10

Epic name: Surgical ventilation

Goal: Establish company in the high-end surgical medical

device market. Also reduce the number of different

ventilation architecture platforms supported by the company

by creating a customizable device.

Purpose: Provide ventilation which is highly reliable, easy

to configure, easy to maintain, and interacts with the HIN

Primary needs addresses:

• Simplify set up time

• Provide highly reliable ventilation even during patient

episodes and loss of power

• Tie in reporting to hospital information network (HIN)

Target Group: Surgical anesthesiologist

Products: Mixologist series of ventilators, Merlin ventilator

Use case name: Monitor device health

Purpose: Identify system failures that

could lead to patient episode

Description: The system monitors

actuators and sensors to ensure that they

are operating properly.

Actors: physician

Pre-conditions: system is on and has

initial POST

Post-conditions: Errors are logged and

reported to attending physician

Constraints: none

Risks: It may not be possible to identify gas

leaks

Use Case Points: 6

Use case name: Monitor patient parameters

Purpose: Provide the physician with timely

information about patient health

Description: Monitors and reports SpO2, O2

input flow, O2 input percentage, heart rate, and

NIBP

Actors: Physician

Pre-conditions: system is on and has initial

POST

Post-conditions: patient data displayed in a

timely fashion

Constraints: none

Risks: Our current SpO2 OEM vendor is going

out of business and it isn’t clear there is a

viable replacement

Use Case Points: 7

Use case name: CO2 Scavenging

Purpose: Remove CO2 from the expiratory

gas

Description: Removes almost all expired

CO2 from expired gas but alarms if CO2

exceeds threshold.

Actors: Breathing circuit

Pre-conditions: Connected to the

breathing circuit

Post-conditions: Removes CO2 or alerts

attending physician

Constraints: expiratory flow is limited to

100 L/min max

Risks: Unsure if we can meet the target

CO2 concentration at high flow rate

Use Case Points: 4

© 2019 Bruce Powel Douglass, Ph.D.5 Epics, Use Cases, and User Stores, Oh My!

For Every Use Case, a Description (Minispec) …

▪ Use Case Description Structure

− Name

− Purpose

• Identifies the goals of the capability and its value

to the stakeholders

− Description

• Summarizes the control and data

transformations that the use case specifies

− Preconditions

• What is true prior to the execution of the

capability?

− Postconditions

• What does the system guarantee to be true after

the execution of the use case?

− Invariants

• What relevant conditions are assumed to be

always true?

− Constraints

• Additional QoS requirements or other rules or

limitations for the use case

− Use case points

© 2019 Bruce Powel Douglass, Ph.D.6 Epics, Use Cases, and User Stores, Oh My!

What’s a use case?
01 It’s an operational capability of a system

Stated from the user or actor’s perspective

02
A use case organizes requirements

• Normally 10-100 textual requirements

• Normally 3-20 user stories or scenarios

• Normally a few to a few dozen use cases per system

03

May group stakeholder, system,

subsystems or software requirements

04

Returns a result visible to one or

more actors

05

Does not reveal or imply internal

structure of the system

06

Is independent of other use cases and

may be concurrent with them

07
May be constrained with various QoS

parameters

© 2019 Bruce Powel Douglass, Ph.D.7 Epics, Use Cases, and User Stores, Oh My!

Use Case Syntax

Use case

Actor

System boundary

(optional)

Association

relation

Generalization

relation

Includes

relation

Extends

relation

© 2019 Bruce Powel Douglass, Ph.D.8 Epics, Use Cases, and User Stores, Oh My!

Use Case

Recommendations
Use short verb or verb-phrase names

Not nouns! “Move Control Surface” not “Surface Controller”

Name from problem domain vocabulary

Not solution vocabulary! “Apply Braking” not “Apply Hydraulic Disk Pressure”

Give each use case a short

specification

Aspects of use cases

Actors

Describe the use case in meaningful, stakeholder terms

• Identify services in/out

• ex. Heat water(set temp), report water temp(measured temp)

• Identify data / flows in/out

• ex. Set temperature, measured temperature, alarm limit

temperature

• Identify control/data/flow transformation

• ex. cold water in → hot water out

• Identify levels of fidelity (precision of the input) and accuracy (precision

of the output) of the use case

• ex. temperature set in units of 0.5C, accuracy managed to 0.1C

• Specify required performance, reliability, safety, security, etc

• ex. Water must be heated to set temperature within 30s

• Identify their goals and objectives for the use case

• Identify which services they need from or will provide to the system while

executing the use case

• Include data and flows in/out

• What transformations are expected?

© 2019 Bruce Powel Douglass, Ph.D.9 Epics, Use Cases, and User Stores, Oh My!

Use Case Size

Pace the heart

Ventilate
the patient

Set Pacing
Parameters

Monitor Vital
Signs

Configure
Ventilation

Control Patient
Position

Perform
Tomographic

Scan

Identify
Tumor

Launch
Spacecraft

Retrieve Rock
On Mars

Rendezvous with
Space Station

Small system

• A few hundred requirements

• Normally 6 – 24 use cases

Medium system

Large system

Huge system

• A few hundred to a few thousand requirements

• Normally 10-70 use cases

• Several thousands of requirements

• Normally 6-24 “high-level” use cases (may be thought of as epics)

• Decomposed 1-2 levels

• Between 70 – 500 use cases total

• Tens of thousands of requirements

• Normally 6-24 “high-level” use cases (may be thought of as epics

• Decomposed 3-5 levels

• Up to 1000 use cases total

© 2019 Bruce Powel Douglass, Ph.D.10 Epics, Use Cases, and User Stores, Oh My!

Estimating use case

size
01 Purpose

Size/work effort estimation is important because it allows us to allocate work

to iterations with some confidence of being able to achieve the work.

02 Description

Use case points are a common agile technique using approximate

relative, rather than absolute sizing.

While estimating use case points, we assign a point value to each use

case. Relative values are more important than the raw values. A 4-pt

use case would take 4 times most effort to create than a 1-pt use case.

Alternatively, an absolute measure, such as work hours can use used

as an estimate.

03
Hints

Use case points are not generally a continuous range. It is common to use

doubled numbers such as 0, 1, 2, 3, 5, 8, 13, 20, 40 and 100 or Fibonacci

sequence: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144

04
Procedure

1. List all use cases, risk spikes, and technical work items

2. Arrange them in order of effort, from smallest to largest

3. Sort them by effort required until consensus is reached on the ordering

4. That done, then assign point values to the use cases, starting at the bottom

(smallest)

5. As you move up the list, size each based on its relative size of the one below

© 2019 Bruce Powel Douglass, Ph.D.11 Epics, Use Cases, and User Stores, Oh My!

Use Case Analysis

Recommendations Each use case should have multiple user

stories or scenarios

3 – 25 user stories or scenarios is common

Initially focus on normal flows but don’t

forget …

error, exception, safety, reliability, security, and invariant-violation scenarios

(“rainy day scenarios”)

There are generally more rainy day cases than sunny day cases

Avoid adding into design detail

Each scenario message should

represent one or more requirements

Focus on flows between the actors and the system

If you trace requirements to the user stories / scenarios, then you can easily

do a ‘coverage analysis’ to be sure that no requirements are forgotten

Purpose: the purpose of use case

analysis is, ultimately, to ensure the

requirements are clear, complete,

understood, and correct.

Computable models are a great way to

validate requirements

Building a formal, computable requirements model assists in uncovering

missing, incomplete, ambiguous and conflicting requirements. This is

normally done with activity or state models.

© 2019 Bruce Powel Douglass, Ph.D.12 Epics, Use Cases, and User Stores, Oh My!

Understanding

Functional Flow
01 Purpose

Modeling the functional flow is a useful tool to understand complex use cases

before creating user stories, especially to make user that features and options

are not neglected

02 Description

Activity diagrams or state machines can be used to represent, in a graphical

way, the functional flow of the system.

• Activity diagrams are preferable to represent

• Continuous flows in cyberphysical systems

• Algorithmic flow

• State machines are preferable to represent

• Use cases where behavior is highly dependent on ‘mode’

• When different behavior occurs in different circumstances

03
Procedure

1. Create the flows in the selected representational format

2. Derive user stories and scenarios are paths within the flow specifications

04
Hints

1. This is best done with UML/SysML or similar tools

2. Rigorously defined flows can be made executable to allow the

exploration of use case implications and ‘what if’ scenarios

© 2019 Bruce Powel Douglass, Ph.D.13 Epics, Use Cases, and User Stores, Oh My!

Example activity diagram

Action

Fork

Guard

Decision node

Pin

(‘object flow’)

Event

reception

© 2019 Bruce Powel Douglass, Ph.D.14 Epics, Use Cases, and User Stores, Oh My!

Activity diagram example

Action

Flow merge

Decision node

Terminal node

Control flow

Activity

parameter

© 2019 Bruce Powel Douglass, Ph.D.15 Epics, Use Cases, and User Stores, Oh My!

State machine example

State

Transition

Event / action list

Guard

Timeout event

Initial transition

© 2019 Bruce Powel Douglass, Ph.D.16 Epics, Use Cases, and User Stores, Oh My!

State machine example

And-state border

Event [guard] / action list

And-state border

© 2019 Bruce Powel Douglass, Ph.D.17 Epics, Use Cases, and User Stores, Oh My!

User Story
01 Purpose

Characterize the stakeholder need through understanding the

necessary interactions of the system with its environment

02 Description

A user story is a tool used in Agile software development to capture

a description of a software feature from an end-user perspective. The

user story describes the type of user, what they want and why. A

user story helps to create a simplified description of a requirement

03
Detailed procedure

04
Examples of user stories

• As a pilot, I want to control the rudder of the aircraft using foot

pedals so that I can set the yaw of the aircraft.

• As a power supply, I want to provide constant power at +15V +/-

0.1V with a current of 5 amps +/- 0.05 amps to power the rotor.

• As a navigation system, I want to report the position of the

aircraft in 3 dimensions with an accuracy of +/- 1 m every 0.5s

so that I can fly to the destination.

A user story is often captured in a canonical form

As a <role>, I want <feature> so that <reason>

This leads to the discovery and development of system and software

requirements.

User stories are equivalent to scenarios which may be detailed using UML

sequence diagrams.

“As a ” <user> “I want” <feature> “so that ”

<reason>

Canonical form for a user story:

© 2019 Bruce Powel Douglass, Ph.D.18 Epics, Use Cases, and User Stores, Oh My!

Use case or user story?

Use

Case

A use case is composed of a few to many

scenarios, roughly corresponding to a few

up to 100 requirements

A user story is a single interaction of one

or more actors with the product to achieve

a goal.

User Story

A scenario is an interaction of a system with a

set of actors; it is single path in a use case

Scenarios are approximately

equivalent to user stories*

*

© 2019 Bruce Powel Douglass, Ph.D.19 Epics, Use Cases, and User Stores, Oh My!

Use Cases to Stories to Requirements

Stories

Use Case

Requirements

© 2019 Bruce Powel Douglass, Ph.D.20 Epics, Use Cases, and User Stores, Oh My!

User story or scenario?

User Story

They often are cast in a standardized form:

As a <role>, I want <feature> so that <reason>

For example,

As a pilot, I want the pedal to control the rudder

in a range of -30 to +30 degrees so that I can steer left or right.

▪ It may be difficult or impossible to write a user

story for a complex interaction

▪ It is difficult to state qualities of service within a

user story

Scenario

Supported in UML, the show the user story as a set of message

interactions and services among a set of roles, once of which is the

system

▪ Simple

▪ No special tools needs

▪ Easy to review with stakeholders

▪ Requires a tool (although simple drawing tools

can be used)

▪ A little bit more complex to read and

understand

▪ Not in ‘natural language’

▪ Can represent far more complex interactions than

textual user stores

▪ Supported by many UML/SysML tools

▪ Can support model-based trace to requirements and

design elements with summary table generation

▪ QoS requirements can be added as annotations and

constraints

© 2019 Bruce Powel Douglass, Ph.D.21 Epics, Use Cases, and User Stores, Oh My!

Developing user

stories from use

cases

01 Purpose

Decompose the use case into small pieces of functionality that meet a specific

system-user need that can be delivered in a few days of work.

02 Description

A user story is often captured in a canonical form

As a <role>, I want <feature> so that <reason>

This leads to the discovery and development of system and software

requirements.

User stories may also be detailed using UML sequence diagrams.

03
Procedure

1. Take the use case and identify different user-system interactions

2. Cast each as a user story sentence or paragraph

3. Alternatively, if you’ve done functional flow diagrams for the use case,

capture each separate path as a user story or scenario

4. Review to make sure

1. Each flow – and each requirement – is represented in at least one

user story or scenario

2. Exceptions, misuse, and error cases are handled

04
Hints

1. If you build an executable functional flow, then scenarios can be captured by

executing the various branch cases. In the Rhapsody UML tool, these are

called “animated sequence diagrams”

© 2019 Bruce Powel Douglass, Ph.D.22 Epics, Use Cases, and User Stores, Oh My!

Focus on the users

We want to avoid referencing or

discussing design, but instead focus

on achieving user goals

1

3

2

4

Use personae to discover the

stories

Most systems have many

stakeholders with needs to be met.

Represent all the relevant ones

Develop user stories

collaboratively

User stores are a lightweight analytic

technique and can foster good

discussions amongst the product

owner and the developer.

Keep stories simple and precise

The story should be easy to

understand yet fit the need. If a story

is complex, break it up into multiple

stories.

Start with Epics or Use Cases

User stories are small, finely
grained things, while epics and
use cases provide the larger
context

5

7

6

8

Refine stories

As your understanding deepens and

improves, this should be reflected in

the stories

Add acceptance criteria

Acceptance criteria complete the

narrative with clear statements about

what it means to actually meet the

need

Paper cards are a great way to do

lightweight user stories

Post-it notes work too. Cards can be

easily sorted and grouped. And

they’re cheap.

Don’t solely rely on user stories

Not all needs are easily captured in

user stories, such as workflows,

visual interactions, safety, reliability,

security and other qualities of
services

9

10
Keep your user stories visible and

accessible

The should foster communication and

collaboration

User Story Guidelines

© 2019 Bruce Powel Douglass, Ph.D.23 Epics, Use Cases, and User Stores, Oh My!

Developing

scenarios from use

cases

01 Purpose

Decompose the use case into small pieces of functionality that meet a specific

system-user need that can be delivered in a few days of work.

02 Description

A scenario is usually modeled in a sequence diagram. Vertical lines

represent actors, the system or the use case; flows between the lifelines

indicate messages or interactions

03
Procedure

1. If you’ve done a functional flow, walk through the branch points and

represent a complete path as a single scenario on one sequence diagram

2. Repeat until every path in the functional flow is represented in at least one

scenario

3. Start with primary or ‘sunny day’ scenarios first

4. Later, add secondary scenarios and exception, error, and misuse paths

5. Add annotations or constraints for quality of service requirements

04
Hints

1. Every requirement traced to the use case should be represented in at least

one scenario. If not, then add a lifeline, message, or scenario to get coverage

© 2019 Bruce Powel Douglass, Ph.D.24 Epics, Use Cases, and User Stores, Oh My!

Sequence Diagrams

lifeline

Actor

lifeline

Environment

lifeline

Asynchronous

Message

Synchronous Message

Reply

Message

State or

value

Message

parameters

© 2019 Bruce Powel Douglass, Ph.D.25 Epics, Use Cases, and User Stores, Oh My!

Use Case Scenario

Recommendations

Describe the scenario context

• Purpose

• Description

• Preconditions

• Postconditions

• Invariants

You need’t repeat the use case context

When commenting on specific scenarios only discuss the special conditions

for this scenario. The use case context is “inherited” and needn’t be repeated

Time isn’t a lineline

Add state marks when the functional

flow is state-based

Represent timeouts as a time-triggered ‘message to self’

State marks show the change of state when appropriate

The key lifeline is the use case

• It could be ‘The System’ but more commonly it is the use case being

analyized

© 2019 Bruce Powel Douglass, Ph.D.26 Epics, Use Cases, and User Stores, Oh My!

Producing Scenarios from Functional Flow

© 2019 Bruce Powel Douglass, Ph.D.27 Epics, Use Cases, and User Stores, Oh My!

Let’s talk about requirements …

A requirement should be a simple, testable statement of need not of design

It is common to use shall to indicate a requirement, should to indicate a

recommendation, and will to indicate a requirement that will not be verified

E.g. “The system shall control the motor torque from 0.0 to 10,000.0 Newton-

meters with an accuracy of 0.1NM. “

Requirements are organized by use case and allocated to user stories

A use case is a coherent grouping of requirements around a usage of a system

Contains many requirements (often 10 – 100 requirements || 3 – 25 scenarios)

A use case may be thought of as a chapter within a requirements spec

Requirements are most commonly textual and captured in a word processing,

spreadsheet or requirements management tool (e.g. Rational DOORS™)

The big advantage of requirement management tools is that they provide

traceability between requirements and between requirements and other work

products.

© 2019 Bruce Powel Douglass, Ph.D.28 Epics, Use Cases, and User Stores, Oh My!

Stakeholder vs System Requirements

Stakeholder requirement

A requirement is a statement of stakeholder need. It

is a problem oriented statement.

Stakeholder requirements are generally less

quantitative than system requirements

Requirements are developed in combination with

the customer or subject matter expert and the

requirements analyst

E.g. “The patient shall receive enough oxygen to

sustain life for patients ranging from neonates to full

adults in size and mass.”

System requirement

A requirement is a statement of what a system is required to do. It is a

solution oriented statement with states qualities of service.

System requirements tend to be more quantitative than stakeholder

requirements

E.g “The system shall deliver oxygen from 50 ml/minute to 1,500

ml/minute settable

Requirements are developed in combination with the subject matter

expert and the system engineer

System requirements should trace to stakeholder requirements

That is saying “What the system does should meet a stakeholder need”

© 2019 Bruce Powel Douglass, Ph.D.29 Epics, Use Cases, and User Stores, Oh My!

Types of Requirements

Typically

allocated to

use cases

© 2019 Bruce Powel Douglass, Ph.D.30 Epics, Use Cases, and User Stores, Oh My!

Types of requirements

▪ Operational (such as environmental conditions within which the

system will function),

▪ Logistics, such as how the system will support business logistics

flow or the logistics information provide by a system

▪ Usability – requirements about the ease of use and level of

required skill and training of users

▪ User interface – requirements about how information or control

features are presented to and controlled by the user; this includes

languages and labeling

▪ Parametric requirements – requirements about static properties of

the system such as weight or color

▪ Maintainability Requirements – requirements about the

maintenance, repair, and upkeep of the system

▪ Certification requirements – requirements about what standards

must be met and how the system will meet and be certified against

them

▪ Project requirements – requirements about the development of

the system itself, such as time, cost, and deliverables

▪ Design requirement – these are constraints levied against the

design such as materials or the reuse of existing designs

▪ Quality of Service Requirement – qualifies “how well” a functional

requirements must be performed

© 2019 Bruce Powel Douglass, Ph.D.31 Epics, Use Cases, and User Stores, Oh My!

Typical Quality of Service (QoS) Requirements

▪ Flows (data, materiel, fluids, energy…)

− Extent – what is the range of permitted values? Are all values within

this range permitted or are there explicitly excluded values? What

should happen if these ranges are violated?

− Accuracy – what is the level of precision required for output?

− Fidelity – what level of precisions is required for input?

▪ Performance

− Worst case performance – what is the longest time this behavior

should take to perform?

− Average performance – on average, how long should this behavior

take to perform?

− Bandwidth – what is the rate of information or materiel transfer?

− Throughput – what is the rate of successful information or materiel

transfer?

− Maximal delay – what is the longest time this behavior can be

delayed?

− Jitter – what variability in performance is allowed?

− Signal to noise ratio – what is the proportional of the signal that is

information?

© 2019 Bruce Powel Douglass, Ph.D.32 Epics, Use Cases, and User Stores, Oh My!

Typical QoS Requirements

▪ Safety

− Criticality – how critical is this system property?

− Is there an appropriate safety objective (such as a Safety Integrity

Level) required by a relevant safety standard?

▪ Reliability

− Error rate – what is the rate at which unhandled errors may occur?

− Mean time between failure (MTBF) – on average, how long should the

system operate before failing?

− Availability – what is the percentage of time the system aspect is

available?

▪ Security

− Value of assets – what is the value of features of the system that

should be protected from interference, intrusion or theft?

− Threats – what threats should the system handle?

− Vulnerability – how easy should it be to attack aspects of the system?

− Assurance – what is the level of guarantee that the system will not be

successfully attacked?

© 2019 Bruce Powel Douglass, Ph.D.33 Epics, Use Cases, and User Stores, Oh My!

Requirement Canonical Form

“The” <system> “shall” <key word> “a” <flow | attribute> | adjective | “adhering to the following constraints:”

• <constraint>

• <constraint>

[when subject to the following conditions: >

• <flow> | condition

• <flow> | condition

Compare this to the canonical form for a user story:

“As a ” <user> “I want” <feature> “so that ” <reason>

© 2019 Bruce Powel Douglass, Ph.D.34 Epics, Use Cases, and User Stores, Oh My!

Types of Requirements - examples

▪ Stakeholder requirements

− The aircraft shall control roll, pitch and yaw smoothly

▪ Functional requirements

− The system shall maintain all three rotational axes of airframe

stability when subject to the following conditions: steady winds.
▪ Functional quality of service (QoS)

− The system shall maintain airframe stability in all three rotational

axes adhering to the following constraint: within 2 degrees of arc

when subject to the following conditions: in the presence of gusts up

to 40 kph.

▪ System parametrics

− The system shall weigh no more than 30 kg when subject to the

following conditions: fully loaded with hydraulic fluid.

− The system shall have a maximum current draw adhering to the

following constraint: 0.5 amps at 240V.

▪ Project QoS

− The system design shall use existing hydraulic components adhering

to the following constraint: from the FlightMagic system.

“The” <system> “shall” <key word> “a” <flow | attribute> | adjective | “adhering to the following constraints:

• <constraint>

• <constraint>

[when subject to the following conditions: >

• <flow> | condition

• <flow> | condition ”

© 2019 Bruce Powel Douglass, Ph.D.35 Epics, Use Cases, and User Stores, Oh My!

Representing Requirements

Trace between stakeholder and system requirements

Requirements Table

Requirements Diagram

© 2019 Bruce Powel Douglass, Ph.D.36 Epics, Use Cases, and User Stores, Oh My!

Allocation requirements

▪ Method: associate a traceable relation between the use case

(pointing to) the requirement(s). Possibilities include:

− «satisfy»

− «allocate»

− «trace»

− Unadorned dependency

▪ Approach 1: Use case diagram

− For each use case,

• create a use case diagram,

• add relevant requirements, and

• add relations

▪ Approach 2: Use case allocation matrix

− Create a use case-requirements matrix type (best if use cases

are columns) of the appropriate cell relation type

− Click in the cells to add/remove the relation

▪ Note: regardless of the approach taken, you will probably want to

create a use case-requirements trace matrix to look for orphan

requirements

© 2019 Bruce Powel Douglass, Ph.D.37 Epics, Use Cases, and User Stores, Oh My!

Download Papers, Presentations, Models, & Profiles for Free

