Epics, Use cases, and User Stories, Oh My!

A Guide to Requirements in an Agile World

Bruce Powel Douglass, Ph.D.

Chief Evangelist, IBM loT
Bruce.Douglass@us.ibm.com
Twitter: @lronmanBruce

www.bruce-douglass.com
N\ REAL-TIME AGILITY

© 2019 Bruce Powel Douglass, Ph.D.

mailto:Bruce.douglass@us.ibm.com

Epics, use cases, and user stories, oh my

Months

(multiple iterations)

EPIC

An epic is a coherent set of
features, use cases, and user
stories at a strategic level.

Some epics are functional in
nature, decomposing to use cases
and user stories while others are
technical in nature, decomposing
to technical work items.

2 [Epics, Use Cases, and User Stores, Oh My!

Weeks

(single iteration)

Days
(single iteration)
Work Item

a0
o=

A small unit of work in the product
backlog, such as a user story or spike

Feature

A feature is a chunk of functionality that
delivers business value. Features can
include additions or changes to existing
functionality.

User Story

A kind of requirement, a user story
depicts a simple interaction with the
product to achieve a goal.

A use case is made up of a set of
possible sequences of interactions
between systems and actors (including
users) in a particular environment and
related to a particular goal.

Spike

Hours

(single nanocycle)

Arequirement is a
statement of what the
system must do or a
constraint.

Task

v

The technical work
that a development
team performs in order
to complete a product
backlog item.

A work item that is meant to reduce some

risk, such as a technical, project, or

business risk.

¢y

© 2019 Bruce Powel Douglass, Ph.D.

Epic User Stories Iteration Plan

L1 C1]
N
7|
)
7
Release Plan *
Roadmap
E P I c A scenario is an interaction of a system
with a set of actors; it is single path in a
* use case
——

ad

A use case is composed of a few to many
o scenarios, roughly corresponding to a few
An epic is a coherent set of]
up to 100 requirements
features, use cases, and user
stories at a strategic level. Epics

typically require 2 — 6 iterations to

complete. *
%
®
A

*
‘ A user story is a single interaction of one
or more actors with the product to achieve
Arequirement is a a goal.

testable statement of
stakeholder need.

3 Epics, Use Cases, and User Stores, Oh My! © 2019 Bruce Powel Douglass, Ph.D.

“use (" Use
) . Case
kffff’_, Use case name: Mix Gases ——3 Use case name: Monitor device health
Purpose: Allow accurate mixing of gases Purpose: Identify system failures that
. for delivery could lead to patient episode
Eplc Use Cases Example Description: PrOVides the We||-00ntl’0||ed Description: The system monitors
mixing of up to 6 different gases from wall actuators and sensors to ensure that they
supplies are operating properly.
Actors: Gas supply, breathing circuit, Actors: physician
physician Pre-conditions: system is on and has
Epic name: Surgical ventilation Pre-conditions: Gas is available, system initial POST
Goal: Establish company in the high-end surgical medical Sl iDL Rl e Post-conditions: Errors are logged and
. . Post-conditions: mixed gas is delivered i ici
device market. Also reduce the number of different g e el e SN I s
o] at the percentages and rates commanded Constraints: none
ventilation architecture platforms supported by the company . o
. . . Constraints: total output flow is limits to Risks: It may not be possible to identify gas
by creating a customizable device. :
100 L/min leaks
Purpose: Provide ventilation which is highly reliable, easy Ereles N i Use Case Points: 6
. /"""‘\ . /Use\ :
to configure, easy to maintain, and interacts with the\ Use Use Case Points: 10 KCase
Case o

Primary needs addresses:

| Use case name: CO2 Scavenging

Use case name: Monitor patient parameters

+ Simplify set up time Purpose: Remove CO2 from the expiratory Purpose: Provide the physician with timely
+ Provide highly reliable ventilation even during patient] gas information about patient health
episodes and loss of power Description: Removes almost all expired L EeE g e Sl rzpaits S, o

input flow, O2 input percentage, heart rate, and
NIBP

« Tie in reporting to hospital information network (HIN) | €©2 from expired gas but alarms if CO2

Target Group: Surgical anesthesiologist exceeds threshold. -
. S f Actors: Physician
Actors: Breathing circuit

Products: Mixologist series of ventilators, Merlin ventil Pre-conditions: system is on and has initial

POST

Pre-conditions: Connected to the

breathing circuit

Post-conditions: Removes CO2 or alerts Post-conditions: patient data displayed in a

attending physician timely fashion

Constraints: expiratory flow is limited to (SELIEUE TR I

100 L/min max Risks: Our current SpO2 OEM vendor is going

Risks: Unsure if we can meet the target out of business and it isn’t clear there is a

- CO2 concentration at high flow rate LS HED !
4 Epics, Use Cases, and User Stores, Oh My! e

.) Use Case Points: 7
Use Case Points: 4

For Every Use Case, a Description (Minispec) ...

Use Case Description Structure
— Name
— Purpose

+ |dentifies the goals of the capability and its value
to the stakeholders

— Description

« Summarizes the control and data
transformations that the use case specifies

— Preconditions
* What is true prior to the execution of the

capability?

— Postconditions

* What does the system guarantee to be true after
the execution of the use case?

— Invariants

« What relevant conditions are assumed to be
always true?

— Constraints

» Additional QoS requirements or other rules or
limitations for the use case

— Use case points

5 Epics, Use Cases, and User Stores, Oh My!

Use Case : Perform Area Search in FunctionalAnalysisPkg * - B
|Gene|a|| Description |Phributes I Operations I Ports | Flow Ports I Relations | Tags | Pmpertiesl
[
Name: Perform Area Search
Purpose:
The CUAV can perform a systematic search of an area for several kinds of

target types.

Description:

» The Area search shall be able to identify up to 10 different target types. .

» Each identifies target shall be tracked as to its position within an accuracy of
1 meter and include the time of identification.

* The Area to be search shall be defined as a square area of up to 20 miles
on a side, with a grid resolution of up to 40000 points.

* The Area search can be aborted at any time by a command from the
mission ops operator.

Preconditions:

& The CUAV is inflight with at least one sensor suite activated.

= The target types are identified.

Postconditions:

= Any targets within the area are identified to the Mission Ops actor within 10s
of identification.

« Errors that inhibit target identification or area flyby shall be identified to the
Mission Ops actor within 25 of occurrence.

Constraints:

» Area search shall be able to identify up to 10 target types and up to 20
targets of a target type within the specified area.

Locate oK Apply

ludes Process
— Surveillance

S Data

WA

=

Execute Remote
controlled
reconnaissance

L LI O O
Perform Area

[Search [

ECM Target o o o

m

© 2019 Bruce Powel Douglass, Ph.D.

m

What’s a use case? 01 It’s an operational capability of a system

Stated from the user or actor’s perspective

0 * A use case organizes requirements

* Normally 10-100 textual requirements
* Normally 3-20 user stories or scenarios

Normally a few to a few dozen use cases per system

May group stakeholder, system,
L subsystems or software requirements

Returns a result visible to one or
more actors

Does not reveal or imply internal
structure of the system

Is independent of other use cases and
may be concurrent with them

May be constrained with various QoS
parameters
6 Epics, Use Cases, and User Stores, Oh My! © 2019 Bruce Powel Douglass, Ph.D.

Use Case Syntax
9

Acme Air Traffic Control System

Locate Tracks
with Surface
Reflections

Actor

Locate Tracks with
Beacon Codes

Primary Radar Aircraft Transponder
System boundary Generalization U
(optional) o L3 relation
Locate Tracks

Identify Aircraft

aincludex» |I

O |

A

Association cextends
relation

Includes /R
relation

Alarm on
Separation
Distance Violation

Display
Airspace

Accept High
Priority Flight
Plans

- Extends O
J Manage Flight re|ation
Plans —‘
Flight Planning System
National Airspace System

7 Epics, Use Cases, and User Stores, Oh My!

© 2019 Bruce Powel Douglass, Ph.D.

Use Case
Recommendations

Use short verb or verb-phrase names

Not nouns! “Move Control Surface” not “Surface Controller”

Name from problem domain vocabulary

Not solution vocabulary! “Apply Braking” not “Apply Hydraulic Disk Pressure”

Give each use case a short
specification

Describe the use case in meaningful, stakeholder terms

Aspects of use cases

QEQNQ

» Identify services in/out
* ex. Heat water(set temp), report water temp(measured temp)
* Identify data / flows in/out
* ex. Set temperature, measured temperature, alarm limit
temperature
» ldentify control/data/flow transformation
* ex. cold water in - hot water out
» ldentify levels of fidelity (precision of the input) and accuracy (precision
of the output) of the use case
* ex. temperature set in units of 0.5C, accuracy managed to 0.1C
» Specify required performance, reliability, safety, security, etc
* ex. Water must be heated to set temperature within 30s

Actors

 ldentify their goals and objectives for the use case

 ldentify which services they need from or will provide to the system while
executing the use case

* Include data and flows in/out

- . i ?
8 Epics, Use Cases, and User Stores, Oh My! What transformations are expected? © 2019 Bruce Powel Douglass, Ph.D.

Use Case Size

9

Small system

A few hundred requirements
Normally 6 — 24 use cases

Medium system

A few hundred to a few thousand requirements
Normally 10-70 use cases

Large system

Several thousands of requirements

Normally 6-24 “high-level” use cases (may be thought of as epics)

* Decomposed 1-2 levels
* Between 70 — 500 use cases total

Huge system

Tens of thousands of requirements

Normally 6-24 “high-level” use cases (may be thought of as epics

» Decomposed 3-5 levels
* Up to 1000 use cases total

Epics, Use Cases, and User Stores, Oh My!

Pace the heart

Set Pacing
Parameters

Ventilate
the patient

Configure
Ventilation

Monitor Vital
Signs

Identify
Tumor

Control Patient
Position

Perform
Tomographic
Scan

Launch
Spacecraft

Retrieve Rock
On Mars

Rendezvous with
Space Station

© 2019 Bruce Powel Douglass, Ph.D.

Estimating use case
size

Purpose

Size/work effort estimation is important because it allows us to allocate work
to iterations with some confidence of being able to achieve the work.

Description

Use case points are a common agile technique using approximate
relative, rather than absolute sizing.

While estimating use case points, we assign a point value to each use
@ case. Relative values are more important than the raw values. A 4-pt
@ Case oo use case would take 4 times most effort to create than a 1-pt use case.
Case Case

Use @ Alternatively, an absolute measure, such as work hours can use used
Case Case as an estimate.
S
Case H
Hints
Use case points are not generally a continuous range. It is common to use

doubled numbers such as 0, 1, 2, 3, 5, 8, 13, 20, 40 and 100 or Fibonacci
sequence: 1, 2, 3,5, 8, 13, 21, 34, 55, 89, 144

Procedure

1. List all use cases, risk spikes, and technical work items

2. Arrange them in order of effort, from smallest to largest

3. Sort them by effort required until consensus is reached on the ordering
4

That done, then assign point values to the use cases, starting at the bottom
(smallest)

5. As you move up the list, size each based on its relative size of the one below

10 Epics, Use Cases, and User Stores, Oh My! © 2019 Bruce Powel Douglass, Ph.D.

Use Case Analysis
Recommendations Eacl_m use case sh_ould have multiple user
stories or scenarios

Purpose: the purpose of use case 3 — 25 user stories or scenarios is common

analysis is, ultimately, to ensure the L
requirements are clear, complete, Initially focus on normal flows but don’t
understood, and correct. forget ...

error, exception, safety, reliability, security, and invariant-violation scenarios
(“rainy day scenarios”)
There are generally more rainy day cases than sunny day cases

Avoid adding into design detail

Focus on flows between the actors and the system

Each scenario message should
represent one or more requirements

If you trace requirements to the user stories / scenarios, then you can easily
do a ‘coverage analysis’ to be sure that no requirements are forgotten

Computable models are a great way to
validate requirements

RRQRQ Q

Building a formal, computable requirements model assists in uncovering
missing, incomplete, ambiguous and conflicting requirements. This is

normally done with activity or state models.
© 2019 Bruce Powel Douglass, Ph.D.

11 Epics, Use Cases, and User Stores, O0h My!

Understanding Purpose
PunCtlona]- P]-OW Modeling the functional flow is a useful tool to understand complex use cases

before creating user stories, especially to make user that features and options

are not neglected

Description

Activity diagrams or state machines can be used to represent, in a graphical
way, the functional flow of the system.
» Activity diagrams are preferable to represent
» Continuous flows in cyberphysical systems
» Algorithmic flow
» State machines are preferable to represent

(D D D)-}D + Use cases where behavior is highly dependent on ‘mode’

* When different behavior occurs in different circumstances

> B
G Procedure

1. Create the flows in the selected representational format

2. Derive user stories and scenarios are paths within the flow specifications

@ Hints
1. This is best done with UML/SysML or similar tools

2. Rigorously defined flows can be made executable to allow the
exploration of use case implications and ‘what if’ scenarios

12 Epics, Use Cases, and User Stores, Oh My! © 2019 Bruce Powel Douglass, Ph.D.

Action

M

Example activity diagram

act [Blodk] LoginBlodk [LogInActivity]

Fork
. J
0—\ ~~-.|Block variables
| |
Event H e |
reception N T Merge node \l/
— 1 @ - | > acceptGo AR
\41\\ \!/ | 4\
Pin | | ‘
acceptDigit |
(‘object flow’) |
ok = checkKeycode(): |

enqueue(digit);

Y

Activity Final node Decision node

Iy Guard
§
|

M\\\'/

4
©<_ {activateAlarm{);]{[retries > MAX_RETRIES]

decision

13 Epics, Use Cases, and User Stores, Oh My!

© 2019 Bruce Powel Douglass, Ph.D.

Activity diagram example

Action

AN

Control flow

/ ®

activity_1

N

Activity

print("Sum =", sum);
parameter

[count == localx]

decision

TN

xint

localX = x;

Terminal node
@ \

print{"Product =", product);

)

[else]

[sum += ++count;

isEven = (int{local¥/2)*2 == localX);

product *= ++count;

y

decision

[count == localx]

Flow merge

sum = 0;
count = 0;

Decision node

ESEVV 1
decision
J/[Else]

(
l

product = 1;
count = 0;

[else]

14 Epics, Use Cases, and User Stores, Oh My!

© 2019 Bruce Powel Douglass, Ph.D.

Initial transition

State machine example

State stm [Block] ElevatorDoorCnirl [statechart_0]

o : E ElevatorMoving evArrival
4 \ ElevatorAtFloor)
N\
Transition DoorsClosed evOpenDoors DoorsOpening)
O Reactions
[%DpenDccrsﬂ;
evDoorsClosed/
StopDoors(};
- PDoors(; tm{1000)/
Event / action list DoorStationary gen(evOpenDoars)
¢ evDoorsOpen/ Timeout event
StopDoors();
evObstructionf
StopDoaors(); Guard
" DoorsOpen /)
(100}/
/ Stable =AssessLoadStability ()
DoorsClosing evCloseDoorsf [5table==true]/
: en(evCloseDoors);
CloseDoors(); e gen(; A EEE
. _J

L

15 Epics, Use Cases, and User Stores, Oh My!

© 2019 Bruce Powel Douglass, Ph.D.

State machine example

ePawerOn’ ! ShutDown !
NoPower itsLight->setColor{GREEN, FLASH), And-state border
L’l # 1m(120000y
| itsLight->setColonfRED, FLASH)
| Powered |
(I
- Ready 1 | / Event [guard] chtion list
.w |
R art |
| e | evControllingBadly[1S |IN(ChntrollingBadly)y
{ ‘ tsLight->SetColor(RED, STEADY) {j
_ [ControllingBadly L__f:p] WailjnngUpdamLigmsl
evControlling QK
itsLight->seColor(GREEM, STEADY) ‘ ‘ |
__;I Controlling | |
C | | |
. . | tm(E00)
| ControllingMarginally | | updateLights();
| | |
And-state border I :
\ A |
%lrullingfdaminallw |
itsLight->setColor(YELLOW, STEADY) |
_________________________ l
[err>_1)/GEMN{evControllingBadly)
- . anan
WaitingtoEval e [emr=02 || err<=_1)/GEN{evControllingMarginally)
| [err <=0.2)/GEN{evControllingOK)]
tm{ 175} actual = mySensor->getActual();
expected = myActuator->getExpected():
err=abs{expected-actualabs{expected):
L9 r

16 Epics, Use Cases, and User Stores, Oh My! © 2019 Bruce Powel Douglass, Ph.D.

User Story

Purpose

Characterize the stakeholder need through understanding the

necessary interactions of the system with its environment

@ Description

A user story is a tool used in Agile software development to capture

a description of a software feature from an end-user perspective. The
user story describes the type of user, what they want and why. A

user story helps to create a simplified description of a requirement

G Detailed procedure

A user story is often captured in a canonical form

As a <role>, | want <feature> so that <reason>

This leads to the discovery and development of system and software
requirements.

User stories are equivalent to scenarios which may be detailed using UML
sequence diagrams.

Examples of user stories

04

Canonical form for a user story: + Asapilot, | want to control the rudder of the aircraft using foot

pedals so that | can set the yaw of the aircraft.

* Asapower supply, | want to provide constant power at +15V +/-

“As a” <user> “| want” <feature> “so that

0.1V with a current of 5 amps +/- 0.05 amps to power the rotor.
<reason>
* As anavigation system, | want to report the position of the

aircraft in 3 dimensions with an accuracy of +/- 1 m every 0.5s

17 Epics, Use Cases, and User Stores, Oh My! so thatlcanfly to the destination. o 15 B e Powel Douglass, Ph.D.

Use case or user story? User Story

4

A user story is a single interaction of one

or more actors with the product to achieve
A use case is composed of a few to many
a goal.
scenarios, roughly corresponding to a few

up to 100 requirements

Scenarios are approximately
equivalent to user stories

A scenario is an interaction of a system with a

set of actors; it is single path in a use case

18 Epics, Use Cases, and User Stores, Oh My! © 2019 Bruce Powel Douglass, Ph.D.

Use Cases to Stories to Requirements

uc [Package] MixGasesPkg [Mix Gasses User Stories]

7] [——

19 Epics, Use Cases, alin user Swres, unmy!

Stories

= JserStory»

Deliver Oxygen Only \‘

<l JserStorys

Deliver Air Only

= JserStory»

Deliver Valid Mixture

= JserStory»

Refuse Hypoflow

= JserStory»

Refuse Hypoxic Mixture
= JserStory»

Alarm on Machine Fault

e N A «Requirenents
straces. requirement_2
% The user shall be able to select gas
\‘ flow with a fidelity of 10 ml/min
'\‘ r——
8, requirement_3
siraces
The system shall deliver selected gas
flow with an accuracy of 5 mljmin
X «Reuirements
3 requirement_4
The system shall provide delivery
provide 100%: air flow selectable by
the user.
n"‘*-_‘_ FrT—
«fraces Foos :> requirement_5
fraces 3 The system shall refuse to deliver a

[rrp—
requirement_0

by the user,

The system shall provide delivery
provide 100% oxygen flow selectable

«Reuirements
requirement_1

of 0 to 1500L/min.

The system shall gas flow in the range

gas mixture of < 21%: oxygen

- «Regqirements

requirement_g

or 02 concentration.

The system shall send an alert to the
user if they select an invalid flow rate

Requirements

© 2019 Bruce Powel Douglass, Ph.D.

User story or scenario?

User Story

They often are cast in a standardized form:
As a <role>, | want <feature> so that <reason>
For example,
As a pilot, I want the pedal to control the rudder

in arange of -30 to +30 degrees so that | can steer left or right.

= Simple
= No special tools needs
= Easy to review with stakeholders

= It may be difficult or impossible to write a user
story for a complex interaction

= [tis difficult to state qualities of service within a
user story

20 Epics, Use Cases, and User Stores, Oh My!

Scenario

Supported in UML, the show the user story as a set of message

interactions and services among a set of roles, once of which is the

system

Vv

V

Can represent far more complex interactions than
textual user stores

Supported by many UML/SysML tools

Can support model-based trace to requirements and
design elements with summary table generation

QoS requirements can be added as annotations and
constraints

Requires a tool (although simple drawing tools
can be used)

A little bit more complex to read and
understand

Not in ‘natural language’

© 2019 Bruce Powel Douglass, Ph.D.

Developing user
stories from use
cases

°
= o
A

21 Epics, Use Cases, and User Stores, Oh My!

Purpose

Decompose the use case into small pieces of functionality that meet a specific

system-user need that can be delivered in a few days of work.

Description

A user story is often captured in a canonical form
As a <role>, | want <feature> so that <reason>

This leads to the discovery and development of system and software
requirements.

User stories may also be detailed using UML sequence diagrams.

Procedure

1. Take the use case and identify different user-system interactions
2. Cast each as a user story sentence or paragraph

3. Alternatively, if you’ve done functional flow diagrams for the use case,
capture each separate path as a user story or scenario

4. Review to make sure

1. Each flow — and each requirement — is represented in at least one
user story or scenario

2. Exceptions, misuse, and error cases are handled

Hints

1. If you build an executable functional flow, then scenarios can be captured by
executing the various branch cases. In the Rhapsody UML tool, these are
called “animated sequence diagrams”

© 2019 Bruce Powel Douglass, Ph.D.

User Story Guidelines

22

Focus on the users

We want to avoid referencing or
discussing design, but instead focus
on achieving user goals

Use personae to discover the
stories

Most systems have many
stakeholders with needs to be met.
Represent all the relevant ones

Develop user stories
collaboratively

User stores are a lightweight analytic
technique and can foster good
discussions amongst the product
owner and the developer.

Keep stories simple and precise
The story should be easy to
understand yet fit the need. If a story
is complex, break it up into multiple
stories.

Start with Epics or Use Cases
User stories are small, finely
grained things, while epics and
use cases provide the larger
context

Refine stories

As your understanding deepens and
improves, this should be reflected in
the stories

Add acceptance criteria
Acceptance criteria complete the
narrative with clear statements about
what it means to actually meet the
need

Paper cards are a great way to do
lightweight user stories

Post-it notes work too. Cards can be
easily sorted and grouped. And
they're cheap.

10

Don’t solely rely on user stories
Not all needs are easily captured in
user stories, such as workflows,
visual interactions, safety, reliability,
security and other qualities of
services

Keep your user stories visible and
accessible

The should foster communication and
collaboration

© 2019 Bruce Powel Douglass, Ph.D.

Developing Purpose

SCenarios from use Decompose the use case into small pieces of functionality that meet a specific
cases system-user need that can be delivered in a few days of work.

Description

A scenario is usually modeled in a sequence diagram. Vertical lines
represent actors, the system or the use case; flows between the lifelines
indicate messages or interactions

Procedure

> 1. If you've done a functional flow, walk through the branch points and
represent a complete path as a single scenario on one sequence diagram

Y

2. Repeat until every path in the functional flow is represented in at least one
scenario

3. Start with primary or ‘sunny day’ scenarios first
4. Later, add secondary scenarios and exception, error, and misuse paths

5. Add annotations or constraints for quality of service requirements

Hints

1. Every requirement traced to the use case should be represented in at least
one scenario. If not, then add a lifeline, message, or scenario to get coverage

23 Epics, Use Cases, and User Stores, 0h My! © 2019 Bruce Powel Douglass, Ph.D.

Sequence Diagrams

Re'|aly
Message

~
startUp()

ENV An&s&h‘n&s_io_logist: Mixer:Gas_Mixer N2:Gas_Supply 02:Gas_Supply N2Sensor:How_Sensor 02Sensor:How_Sensor patient:Person
YSIClan

/// Z | | | | |

7 7

f// é “ - Message | | |

/// / lifeline

% % parameters | | |

é é setO2Flow(200, M\LLPER_M]N) I St%te or I

Z : :: |

% % /! enable() | \! vatue |

é Actor é i i I Asynchronous
ifeli 7

é lifeline é | setFlow(200, ML_PER_MIN) = . Message

% é K— - B _! evon() \!

// %

7 7

é é

Z 7

I
P _i__
I

i |

24" Epics, Use Cases, and User Stores, Oh My!

ML_PER_MIN)
|
|
|
|
|

: 7 |
Z ‘Ilil;:l'i‘:;ent% setN2Flow(400, M}L_!rPER_MIN} I synrhronous Mesrage
é Z I enable() \| I I
/ % Enabled
<~ : :
% é | setFlow (400, | |

——————

é é | evon() | \|
% Z I : < startUp()
é % |
7 7 I

© 2019 Bruce Powel Douglass, Ph.D.

Use Case Scenario
Recommendations

The key lifeline is the use case

» It could be ‘The System’ but more commonly it is the use case being
analyized

Describe the scenario context

* Purpose

» Description

* Preconditions
» Postconditions
e Invariants

When commenting on specific scenarios only discuss the special conditions
for this scenario. The use case context is “inherited” and needn’t be repeated

Time isn’t a lineline

Represent timeouts as a time-triggered ‘message to self’

Add state marks when the functional
flow is state-based

Y,
Y,
@ You need’t repeat the use case context
Y,
Y,

State marks show the change of state when appropriate

25 [Epics, Use Cases, and User Stores, 0h My! © 2019 Bruce Powel Douglass, Ph.D.

Producing Scenarios from Functional Flow

act [Activity View] Start UpBlackBoxView [activity_0]

Select_Battery_As_Source

.
asU_AircraftPower sd [Package] StartlipBBScenariosPkg [Start UpBlackBoxView4]
[Determine;ﬁmeis\nceiLastiRestart j :a5U_Aircraftfo :aSU_AMS :Uc_Startlp
wer

v e o | | Select Battery_As_Source()
T o e | |

. { evSelect 1l§attery As_Source()
Scenario: Warm restart

Determine_Time_Since_Last_Restart()

|
|
| Time_Since_Last_Reset <
|
|

[Time_Since_L ast_Reset < NORMAL_START_TIME] |
Description:
[noErrors] System is restarted in less

that NORMAL_START_TIME

|
|
|
|
|
|
|
A
|
|
|
|
|
[
!

NORMAL_START_TIME

| Enter_waRM_State(

|
|
|
|
; |
E[EnterﬁWARMfState J Postconditions: | evw_]
| :
B System enters operational | @%.‘Mm;@fﬁ
|
|
|
|
|

| Preconditions:

7 [fese) Warm start condition.
state. | EMABLE_Command()
Invariants: ;
| Enter_Operating_State()

Aircraft power is supplied.
Aircraft hydraulic pressure is
supplied.

evEnhEi%QEraﬁng State()
| |

25U_AMS ENABLE_Command

v

aSU_AMSE‘ Enter_Operating_State J f

26 [Epics, Use Cases, and User Stores, 0h My! © 2019 Bruce Powel Douglass, Ph.D.

Let’s talk about requirements ...

O
& | A requirement should be a simple, testable statement of need not of design

It is common to use shall to indicate a requirement, should to indicate a
recommendation, and will to indicate a requirement that will not be verified

E.g. “The system shall control the motor torque from 0.0 to 10,000.0 Newton-
meters with an accuracy of 0.1NM. “

Requirements are organized by use case and allocated to user stories
A use case is a coherent grouping of requirements around a usage of a system
Contains many requirements (often 10 — 100 requirements || 3 — 25 scenarios)
A use case may be thought of as a chapter within a requirements spec

Requirements are most commonly textual and captured in a word processing,
spreadsheet or requirements management tool (e.g. Rational DOORS ™)

The big advantage of requirement management tools is that they provide
traceability between requirements and between requirements and other work
products.

27 Epics, Use Gases, and User Stores, Oh My! © 2019 Bruce Powel Douglass, Ph.D.

Stakeholder vs System Requirements

[

Stakeholder requirement

Arequirement is a statement of stakeholder need. It
is a problem oriented statement.

Stakeholder requirements are generally less
guantitative than system requirements

Requirements are developed in combination with
the customer or subject matter expert and the
requirements analyst

E.g. “The patient shall receive enough oxygen to
sustain life for patients ranging from neonates to full
adults in size and mass.”

28 Epics, Use Cases, and User Stores, Oh My!

System requirement

A requirement is a statement of what a system is required to do. It is a
solution oriented statement with states qualities of service.

System requirements tend to be more quantitative than stakeholder
requirements

E.g “The system shall deliver oxygen from 50 ml/minute to 1,500
ml/minute settable

Requirements are developed in combination with the subject matter
expert and the system engineer

System requirements should trace to stakeholder requirements

That is saying “What the system does should meet a stakeholder need”

© 2019 Bruce Powel Douglass, Ph.D.

Types of Requirements

Typically e
allocated to Mﬁm
use cases _ =

B text:String

I

p jonalRequi " \ DesignReguirement
LogisticRequirement ¢ Ceriﬁnatinnllmirekﬂs
\ MaintainabiltyRequirement
FunctionalRequirement QualityofServiceRequirement UGl L ant Te L L ILE s
i
A‘X ProjectRequirements
PerformanceRequirement
Useal irement UserInterface irement
— bilityRequire ¥ Require
SafetyReguirement rityl =

29 [Epics, Use Cases, and User Stores, 0h My! © 2019 Bruce Powel Douglass, Ph.D.

Types of requirements

= Operational (such as environmental conditions within which the
system will function),

» Logistics, such as how the system will support business logistics
flow or the logistics information provide by a system

» Usability — requirements about the ease of use and level of
required skill and training of users

» User interface — requirements about how information or control
features are presented to and controlled by the user; this includes
languages and labeling

= Parametric requirements — requirements about static properties of
the system such as weight or color

» Maintainability Requirements — requirements about the
maintenance, repair, and upkeep of the system

= Certification requirements — requirements about what standards
must be met and how the system will meet and be certified against
them

» Project requirements — requirements about the development of
the system itself, such as time, cost, and deliverables

» Design requirement — these are constraints levied against the
design such as materials or the reuse of existing designs

= Quality of Service Requirement — qualifies “how well” a functional
requirements must be performed

30 Epics, Use Gases, and User Stores, Oh My! © 2019 Bruce Powel Douglass, Ph.D.

Typical Quality of Service (QoS) Requirements

» Flows (data, materiel, fluids, energy...)

— Extent — what is the range of permitted values? Are all values within
this range permitted or are there explicitly excluded values? What
should happen if these ranges are violated?

— Accuracy — what is the level of precision required for output?
— Fidelity — what level of precisions is required for input?
= Performance

— Worst case performance — what is the longest time this behavior
should take to perform?

— Average performance — on average, how long should this behavior
take to perform?

— Bandwidth — what is the rate of information or materiel transfer?

— Throughput — what is the rate of successful information or materiel
transfer?

— Maximal delay — what is the longest time this behavior can be
delayed?

— Jitter — what variability in performance is allowed?

— Signal to noise ratio — what is the proportional of the signal that is
information?

31 Epics, Use Cases, and User Stores, Oh My! © 2019 Bruce Powel Douglass, Ph.D.

Typical QoS Requirements
= Safety

32

Criticality — how critical is this system property?
Is there an appropriate safety objective (such as a Safety Integrity
Level) required by a relevant safety standard?

= Reliability

Epics, Use Cases, and User Stores, Oh My!

Error rate — what is the rate at which unhandled errors may occur?

Mean time between failure (MTBF) — on average, how long should the
system operate before failing?

Availability — what is the percentage of time the system aspect is
available?

= Security

Value of assets — what is the value of features of the system that
should be protected from interference, intrusion or theft?

Threats — what threats should the system handle?
Vulnerability — how easy should it be to attack aspects of the system?

Assurance — what is the level of guarantee that the system will not be
successfully attacked?

© 2019 Bruce Powel Douglass, Ph.D.

Requirement Canonical Form

13 ”

“The” <system> “shall” <key word> “a” <flow | > | adjective | “adhering to the following constraints:”

« <constraint>
* <constraint>
[when subject to the following conditions: >
« <flow> | condition

« <flow> | condition

Compare this to the canonical form for a user story:

- “As a” <user> “l want” <feature> “so that ” <reason>

33 Epics, Use Gases, and User Stores, Oh My! © 2019 Bruce Powel Douglass, Ph.D.

Types of Requirements - examples

“The” <system> “shall” <key word> “a” <flow | > | adjective | “adhering to the following constraints:
* <constraint>

. <constraint>

Stakeholder requirements
— The aircraft shall control smoothly
Functional requirements
— The system shall maintain
when subject to the following conditions: steady winds.
Functional quality of service (QoS)

— The system shall maintain
adhering to the following constraint: within 2 degrees of arc
when subject to the following conditions: in the presence of gusts up
to 40 kph.

System parametrics

— The system shall weigh no more than 30 kg when subject to the
following conditions: fully loaded with hydraulic fluid.

[when subject to the following conditions: >

+ <flow> | condition

+ <flow> | condition”

— The system shall have a adhering to the
following constraint: 0.5 amps at 240V.
» Project QoS
— The system design shall use adhering

to the following constraint: from the FlightMagic system.

34 [Epics, Use Cases, and User Stores, 0h My! © 2019 Bruce Powel Douglass, Ph.D.

Representing Requirements

wRequirements

wRaguirements Automatic Wiping

aRegquirements

Mame ~ | Specification
Wi Modes Wiping Speed Selecti | -

- ID = ROOL 'ping Ectien Eﬂrequlrememj 6 The proximity detection shall classify three levels of promity alerts at the identified object level: informational Jow), waming (moderate), and dangerous (high).
ID = R4S ID = ROM4 2 1]requirement_17 The promity detect capabilty will identfy objects within the proximity field and provide range, posttion, and size

The system shal astomatically wipe the
windshi eld in the rain Eﬂrequiremerrt_'l 8 The proximity detection capability will be automatically enabled when the system has passed power on seff test and enters operational mode or under explicit user

The wiper system shall The system shell of & thee

offes Ma_n\al (default) o a sdertable speeds in manud [t lrequirement_19 The proximity detection capability shall be disabled only when then system is powered down or by explicit user command
ELEE mades of mode, [0 1 requirement_20 | The proxomity detection capability shall support range. object size threshold, and senstivity (noise rejection) all combinations of CLUTTERED, SPARSE, and CLE
operztion. speeds of SLOW_MOVING and FAST_MOVING.
[0 1requirement_21 The system shall notffy the Pilot of cument proximity detectionn corfiguration values
aRequirements

Eﬂrequiremem_ﬂ Proximity detect range shall be corfigurable in the range of 1 meterto 20 meters in 0.5 meter increments

Eﬂrequlrememj:k Object size detection threshold shall be settable in apparent diameters from 20 cm to 100 cm, settable in 5 cm increments.

[0)Jrequirement_24 Proximity detection sensitivity shall detemine the level of noise rejection and shall be settable in the range of LOW, MEDIUM, and HIGH
Eﬂrequirememjs When the proximity detection capability is operational, faults that prevent proximity detection shall be idertified and the user shall be alerted within 1.0 seconds of
Eﬂrequiremerrtj? When active, alert tones shall sound and alert messages shall flash every every 3 seconds.

EﬂrequlrememjD The system shall employ & "deadman switch” approach to ensure that mowement only occurs with active Pilot contral.

[2 1requirement_50... The system shall provide a suface level Emergency Shutdown function that is shways available to the Pilat

Eﬂrequiremem_BD Default proximity field size shall vary according with system velocity but may be overidden with explicit Filot command.

Eﬂrequlrememflﬁ To prevent spoofing, the GPS system shall identify a spoofing attempt f the GPS-computed position changes mare than 100m within 1 second

2 1requirement_E1 To prevent spoofing, the GPS shall use miltary encryption for the military version of the system

Eﬂrequiremem_BD If more than 4 satelites are available, the redundancy shall be used to refine GPS time and position. Required GPS position accuracy shall be =/~ 1m.
Eﬂrequiremerrtj& The system GPS receiver shall operate in 30 GPS mode, and require at least 4 satellites of minimal signal strength to determine 30 position

[0)Jrequirement_58 The accuracy of the GPS receiver clock shall be accurate within 1.0ns.

requirement_57 & syste, radio frequency shall center aroun: 7 iz (but be able to receive signals between an z) (L1 signal) an 7 iz but
57 Th GPS radio f hall d 1575.42 MHz (but be abl ls b 1560 and 1610 MHz) (L1 I and 1227 60 MHz b
signals between 1150and 1400 Mhz (L2 signal) using military band of 10.23 million CDMA chips/second

Systemn Initialization
ID = RDI5
aRequirements

Sysem nitidzstion shall inchde Automatic Enablement

POST andcomplete within3 ID = ROLL
seconds of powver on
The system shal automaticzlly
bagin when rain is detected and the
system ison and sngaged,

wRegquirements /

Automate Disable / Raguirements

ID = RO1Z Speed Adapation to Rain Intensity

The wiping system shall astomatically ID = ROIZ
return the Hades to nomind position and

stop within 2 second of system off /
command.

Wiper speed shall automaticzlly adjist
/ depending on sensed rain inensty,

7 K / S
*, / e

Requirements Table

;{UJ tracen

wRequiramEnts [0 7] requirement_3 ‘Eﬂ requirement_4 |Eﬂ requirement_5 |Eﬂ requirement_6& |E 1] requirement_7 ‘Eﬂ requirement_

Manual Disable C?EREqP'u | | 3| requirement_24

_ . deriv | 3] requirement_25

ID=RA aderives \ wderives / derives pre—— s
The wser shall be shleto svitch Requirements aFequirements . requirement_4

between manual and automatic
mades of wiper operation,

Core Wiping Fundtions et o ction

D = ROE ID = OB
The systams shzl be zblk to contel

The wiper sysem shdl povide coe the movenen o the wiperblades

haEtaEs with var gble spesds,
«Requirements ﬁE:u"E"ml.
Sensing Fundtion Control Function
ID = RO ID = RDM

The system shall ke conrollzble by

The system shall be able to detert the usa into maneal and atomatc

rain and ran intensity

Requirements Diagram

35 Epics, Use Cases, and User Stores, Oh My!

Eﬂrequirementj&

Eﬂrequirement_?ﬂ

“., requirement_3

Eﬂrequirement_.?ﬂ

., requirement_

[[§requirement_31

=
7
*+, requirement_7

| jrequirement_32

", requirement_3

Eﬂrequirementf.?;?'

“, requirement_3

Eﬂrequirement_.?r‘l

~, requirement _5

Eﬂrequirement_?ﬁ

., requirement_£

[jjrequirement_36

*, requirement_&

| 3 requirement_37

", requirement_3

[—— L]

Trace between stakeholder and system requirements

© 2019 Bruce Powel Douglass, Ph.D.

Allocation requirements

= Method: associate a traceable relation between the use case
(pointing to) the requirement(s). Possibilities include:

— «satisfy»
— «allocate»
— «trace»
— Unadorned dependency
» Approach 1: Use case diagram
— For each use case,
 Create a use case diagram,
» add relevant requirements, and
 add relations
= Approach 2: Use case allocation matrix

— Create a use case-requirements matrix type (best if use cases
are columns) of the appropriate cell relation type

— Click in the cells to add/remove the relation

= Note: regardless of the approach taken, you will probably want to
create a use case-requirements trace matrix to look for orphan
requirements

36 Epics, Use Gases, and User Stores, O0h My! © 2019 Bruce Powel Douglass, Ph.D.

Download Papers, Presentations, Models, & Profiles for Free

Real-Time Agile Systems and Software Development
Welcome to www.bruce-douglass.com

You've found yourself on www.bruce-
douglass.com, my web site on all things real-time
and embedded.

On this site you will find papers, presentations,
models, forums for questions / discussions, and
links (lots of links) to areas of interest, such as
® Developing Embedded Software
e Model-Driven Development for Real-Time
Systems
Model-Based Systems Engineering
Safety Analysis and Design
Agile Methods for Embedded Software
Agile Methods for Systems Engineering
The Harmony agile Model-Based Systems
Engineering process
The Harmony agile Embedded Software
Development process
Models and profiles I've developed and
authored
e List and links to many of my books.

The menu at the top of each page either takes
you to the relevant page or to a list of relevant
pages.

There is even a members only site for those who
want to access to even more stuff. | teach and
consult on all these topics - see my About page.

Policy on Using These Materials

All materials on this web site are free for reuse
and distribution, provided their source (me or this
web site) is appropriately attributed. | retain sole
copyright.

AGILE SYSTEMS R
ENGINEERING EAL TiviE UML
)) Trmrp Epition
s T o

Reu-Toa Sismes

REAL-TIME UML
WORKSHOP FOR
EMBEDDED SYSTEMS

il
it
st

e

o b
37 Epics, Use Cases, and User Stores, Oh My!

»

Agile Product V 5?‘;‘151\'3951“
Develpmen B

DESIGN PATTERNS ron
EMBEDDED SYSTEMSm C
1 (e Soltmare Kngemeting Toon

DUMMIES

=

© 2019 Bruce Powel Douglass, Ph.D.

