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Faster, more reliable, 
lower cost: agile product 
development for the IoT

Executive summary
The Internet of Things (IoT) offers immense possibilities for product 
development: not only for connecting existing products and harnessing 
the data they generate to deliver new value and functionality, but  
also for entirely new product and service concepts. However, the  
‘always-connected’ nature of the IoT implies the constant generation   
of data and feedback. This, in turn, means that products must move  
from the traditional product development cycle—design, manufacture, 
deliver—to a new world of dynamic innovation driven by deep, often 
real-time, product- derived market and customer insight. Gaining   
competitive advantage in this new world means maximizing the speed  
and responsiveness of product-design processes. Agile approaches are  
proven to deliver these benefits for software development; this paper 
examines how they can be extended to provide the same benefits to the 
end-to- end product design cycle. 

Product Development in the IoT
Systems of all kinds—in the home, in buildings, in cars, in public 
spaces—are becoming smarter. The first such smarter systems ran simple 
control programs that augmented the purely mechanical and electrical 
capabilities of their predecessors. They added more options, more fea-
tures, more f lexibility, and more intelligence. User controls and feedback 
devices changed from mechanical analog dials to digital displays, and it 
became possible to customize the behavior of systems; allowing them  
to make some simple decisions based on given inputs freed up users  
to focus their attention on higher-level concerns. 
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The advent of the internet enabled unprecedented  
collaboration—still at the “design level”—in engineering.  
But until fairly recently, manufactured devices did not use  
the internet, which was largely reserved for communication 
between humans rather than between devices.

Many devices we now use on a daily basis are systems capable  
of automating highly complex tasks on their own; it is not 
uncommon for a modern car to have dozens of processors  
running hundreds of megabytes of software. These formerly 
disconnected devices can now connect—and collaborate—on  
a global scale and with vast numbers of other systems both  
similar and disparate. The ability to send and receive data 
enables smart devices to diagnose their own faults, to upgrade 
their own software, to identify patterns of behavior and to 
respond dynamically to rapidly changing conditions.

The current generation of smart systems is enabled by a  
number of key technologies. First, the devices are not only 
smarter, they can also exchange information both rapidly and at 
low cost over the internet. Data mining—the ability to identify 
and determine subtle patterns in data streams—has progressed 
to the point where a machine can out-perform human experts  
in games like Jeopardy!® The combination of sensors con-
nected via the internet, cloud-based analytics services and  
devices that can interact with their environment enables  
the creation of systems of systems at any scale, capable of  
delivering value through new functionalities and services.

Stand-alone smart devices can provide tremendous value   
to consumers and businesses alike. Connected smart devices 
promise to add significantly more value to users of all kinds by 
improving optimization, easing product updates, automatically 
determining when service or maintenance is required, and pro-
viding a new mode of communication to the service vendors. 
Interconnecting the devices offers even more opportunity for 

suppliers of devices and related services, because it enables the 
identification of usage trends and provides a better view of how 
products are actually used. It also highlights systemic problems 
and enables them to be addressed before they manifest them-
selves, manages interactions with customers, and opens new 
markets for services that would not otherwise be feasible.

Welcome to the Internet of Things.

Why Agile Product Development for  
the IoT?
Agile development is now mainstream for many software  
projects. It is particularly popular for small applications,  
developed by a collocated team, with continual verification  
and (very) frequent releases. This works well for environments 
that can be updated easily, where the requirements are not well 
understood at the start, or are likely to change, where there is 
not a contractually-fixed feature set, and where it is not neces -
sary to pay significant attention to issues of regulatory approval 
and certification.

Two primary benefits provided by agile development 
approaches are quality and efficiency. Quality is improved 
through the insistence on “developer hygiene”, which means 
that the software is continuously verified as it is developed, 
rather than at the end of the process (the traditional approach). 
The impact on final quality is analogous to the results of  
brushing one’s teeth daily rather than attempting to clean them 
intensively just once a year. Test driven development (TDD) is 
a key enabling practice for continuous verification. Continuous 
integration (CI) practices bring together the work from multi-
ple developers so that time-consuming integration concerns   
can be almost completely avoided. Frequent releases allow us  
to deliver partial functionality where it can be validated by the 
users to ensure that the systems actually meet their needs.
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Efficiency is improved largely because quality is improved. In 
traditional waterfall or V-cycle processes, testing is carried out  
at the end. This results in time and effort spent at the end of 
the process (when the work is meant to be complete) identify-
ing problems both large and small. However, these expenses  
are dwarfed by the cost of discarding significant work and  
redeveloping the software when defects are discovered at  
this late stage.

Agile methods clearly have value, but how to apply agile to 
product development for the IoT isn’t obvious. First, agile 
methods are generally applied to small systems. Work has been 
done to make agile more suited to the demands of large-scale  
development, for example, Disciplined Agile Delivery1 and the 
Scaled Agile Framework® (SAFe®)2. Second, relatively little 
has been written on applying agile methods to embedded  
software development, let alone other engineering disciplines. 
Real-Time Agility3 discusses the use of agile methods for  
real-time and safety- critical systems development, while the  
new SAFe for Lean Systems Engineering (SAFe LSE)4 and  
Agile Systems Engineering5 approaches address the application  
of these techniques to disciplines other than software.

Any discussion of the IoT should consider its three primary 
constituent parts. First, the “Things”—the devices or elements 
that provide on-the- ground capabilities such as managing car  
engines, heating homes and offices, producing power for neigh-
borhoods, and navigating aircraft. Second, the “Internet”—the 
vast collection of networks that enables the interconnection of 
all the devices into potentially many conglomerates. Third, the 
Cloud, which—although not explicit in the IoT name—is vital 
for its ability to virtualize the services that gather, integrate, 
analyze, interpret, and act on the data gathered from all the 
Things. In this paper, we will focus on the development of the 
Things—the smart, internet-connected devices that include far  
more than just software.

Continuous Engineering and the IoT
Continuous engineering is a new approach designed to  
support more efficient development for products within the 
IoT space—where operational insights provided through  
analytics can continuously inform product creation, update  
and improvement. It is supported by three conceptual  
pillars—strategic reuse, continuous verification, and  
engineering insight.

Strategic reuse means leveraging existing engineering data and 
intellectual property to construct new systems. This isn’t just 
about reusing source code; it is about reusing requirements, 
architectures, interfaces, test cases, and implementation  
too. This pillar is implemented primarily by Product Line 
Engineering (PLE) practices, which will be discussed in the 
next section.

The second pillar, continuous verification, requires that we  
verify the completeness, consistency, accuracy and correctness 
of engineering data as we create it. This approach dovetails 
seamlessly with agile practices such as test-driven development  
(TDD) and continuous integration (CI). Like the strategic 
reuse pillar, continuous verification also applies not only to 
implementation but to all engineering data. It requires that  
we capture engineering data in ways that are fundamentally  
verifiable, for which there is already a solution: models.

The third pillar, engineering insight, implies among other 
things the need to acquire knowledge about the use – and  
possibly misuse – of deployed systems. This includes how well 
these systems function in their operational environments and 
the detection of defects or violations of assumptions in those 
deployments. These aspects can be managed through the 
Monitor Deployment workflow of Continuous Engineering. 
Another implication of this third pillar is that we must manage 
engineering knowledge as a key business asset. Like many 
assets, it loses value if unmanaged. The management of  
engineering skill is supported by the Assess and Improve 
Engineering Capability workflows.
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Figure 1 shows the primary workflows that constitute Continuous Engineering.
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Figure 1. Continuous Engineering Workflows

Agile Product Line Engineering
Product line engineering (PLE) has been around for a long 
time both in the pure software realm and in certain industries 
(notably automotive). The basic idea is to create a family of 
products that differ in terms of features, platform, or targeted 

markets. The key term here is family because that implies that 
the products are highly similar. This means that it ought to be 
easier to create a product within the family (commonly known 
as a variant) than to create one from scratch, because much of 
the required engineering is already done and can be reused.
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The primary barrier to effective PLE is that reuse is harder 
than it sounds because it involves not just reusing code. In 
product development, we produce many different sets of corre-
lated, but distinct, engineering data. These data sets include 
vision, requirements, architecture, design, implementation,  
test cases, test environments, documentation, safety/reliability/  
security analyses, and so on. Complicating the process is the 
fact that we cannot just naively reuse the engineering data; 
these are, after all, variants, and so we will partially reuse the 
engineering data and partially create new engineering data.  
And doing that, without making mistakes, is hard.

Figure 2. Managing PLE Variants

Product Line

Component A

Component B

Component C

Product or System is
made up of components

Each of which has
versions/variants

Approach 1: “Clone and Own”
The most common way to reuse engineering data today is sim-
ply to copy and modify (also known as “clone and own”). This 
has the advantage of being conceptually simple, but results in 
divergent systems where identifying and fixing a defect shared 
by multiple products in the product line is difficult. The  
complexity of analyzing the impact of a feature change or 
repairing defects across variants with completely isolated  
data sets makes this approach very challenging.
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Approach 2: Streams
A more effective strategy is to use configured streams to  
manage both the core platform data and the variant-specific  
data. This strategy allows for ad hoc addition of new variants 
and is done primarily via branching streams. Because the core 
platform data is kept centrally, changes to elements isolated 
within the core can easily propagate into builds of the affected 
variants. Figure 2 shows a product line composed from three 
different components, each of which has streams for its  
engineering data (requirements, design, and so on). Specific 
products are shown as the variants within the product line.

Approach 3: Parametric Configuration
A rather more advanced strategy is to build in pre-defined  
extension points known as variant parameters. For example,  
a car might have a gasoline or diesel engine, three trim levels 
(Basic, Modern, and Luxury) and come with a manual or auto-
matic gearbox. These three configuration parameters alone 
generate 12 variants (2 x 3 x 2). It would be fairly easy to then 
add a new kind of engine or a new trim level because those 
changes would align well with the predefined extension points. 
However, deciding late that you want to also produce variation 
around the roof type (hard, soft, sun roof and convertible) is 
relatively hard because this requires that all the other existing 
variants be retrofitted with that variation point. In this way,  
the parametric configuration approach simplifies the production 
of complex variations and generally has a higher level of reuse 
than the multiple stream approach, but makes it more difficult 
to product variants that do not align well with the predefined 
extension points.

Adding agility to the process helps avoid making decisions 
unnecessarily early in the project, keeping the process respon-
sive to changes in market and customer needs. Here, the  
parametric approach (in which there are clear, predetermined 
extension points) is combined with the use of branching  
streams to allow the components to be shared. In addition,  
the development of a core platform and all associated data  
(with properties that are unlikely to be volatile) merged with 
branching streams for variant-specific data gives us the best   
of both worlds. Agile practices such as continuous verification 
via product simulation and frequent refactoring will benefit the 
development of product lines.

Agile Systems Engineering
Systems engineering focuses on the characterization of systems 
in terms of their essential properties without regard for which 
engineering discipline will implement those properties. For 
product development, systems engineering leads the way with  
a hand-off of engineering data to “downstream engineering” for  
detailed design and implementation. For product lines, there 
will be systems engineering at multiple sub-levels of abstraction,  
both at the final product level and at the core and variant levels.

The key activities for systems engineering include:

●● System requirements specification
●● Architectural trade-off analysis 
●● Architectural design
●● Hand-off to downstream engineering  
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In traditional systems engineering, all systems engineering data must be complete before downstream engineering is allowed to begin. 
However, with an agile approach, we can focus the work on coherent clusters of requirements—usually use cases or user stories—
develop the systems data around that, hand that data off to downstream engineering, and then work on the remaining requirements. 
Agile systems engineering is iterative and incremental. Figure 3 shows the high-level workf low for agile systems engineering. In it we 
see an iteration loop, in which a small number of use cases is developed, analyzed and handed off, before the next set of use cases is 
developed. In addition, there are ongoing activities, such as project management (in the Control Project activity), quality-assurance  
auditing when required, and management of changes.

Figure 3. Harmony Agile Systems Engineering Workflow
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Besides the large iteration loop for incrementally developing the systems engineering data, there are also agile practices going on 
within the activities. For example, an activityf low-based analysis of the use case within the System Requirements Definition and 
Analysis activity constructs verifiable models of the use cases that can be evaluated as they are being created for their consistency,  
correctness, completeness and accuracy. This workflow is shown in Figure 4.

Figure 4. Flow- based Use Case Analysis

Define Use-Case System Context Add Traceability Links

Nanocycle development of
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20-60 minutes and verifying
the use case and updating
the textual requirements

Verify and Validate Functional Requirements

Derive Use-Case State Behavior

[else]

Perform Review
[more reqs]

Derive Use-Case Functional Flow

Define Use-Case Scenarios

Define Ports and Interfaces
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This figure shows that we define some functional f low—as 
described by the textual requirements—derive from this f low a 
small number of scenarios, construct a normative state machine, 
and then—through execution—verify the correctness of the 
requirements. This is done in very short nanocycles, which  
are typically 20 to 60 minutes in duration. A complex use case 
might require many such cycles before being fully understood 
(and specified) and each cycle will typically result in the identifi-
cation of new or changed requirements. The point is that we 
are continuously verifying the correctness of the requirements 
as we specify them to ensure their high quality. 

Agile Embedded Software Development
Virtually all of the literature on agile practices deals with apply-
ing these practices to the development of small applications 
running on general-purpose computers. A general- purpose  
computer, such as a personal computer, is designed to be f lexi-
ble and to meet a wide range of end-user needs. By contrast,   
an embedded system is:

●● A computer system designed to perform one or a few dedicated 
functions, often with real-time computing constraints, embedded   
as part of a complete device that often includes hardware and 
mechanical parts. 

●● [A system] that contains at least one CPU but does not provide 
general computing services to the end-users. A cell phone is  
considered an embedded computing platform because it contains  
one or more CPUs but provides a dedicated set of services3 

Embedded systems control many devices in common use 
today6. Many embedded systems are very resource-constrained,  
performance-intensive, and have rigorous safety , reliability, and 
security needs. None of these issues are dealt with in the exten-
sive literature on agile except in a very few cases. Nonetheless, 
agile can be—and has been—applied very successfully to the 
development of embedded systems. The Agile Harmony 
Embedded Software Development Process (Harmony ESW) 
uses iteration workflows to develop software design models  
and source code implementation while simultaneously  
applying the agile practices of Test-Driven Development and  
Continuous Integration. An example of an iteration workflow is 
shown in Figure 5. This workflow is executed on one or a small 
number of use cases (or user stories) and delivers a verified and 
working implementation. These iterations normally range from 
as little as a week to as long as a month to execute. Subsequent 
iterations elaborate additional use cases.

The detailed agile practices execute within the activities shown 
in Figure 5. For example, Figure 6 shows the High Fidelity 
Modeling workflow.
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Figure 5. Harmony Embedded Software Development Iteration Workflow
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Perform
Retrospective

Detailed Design - RT
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In this workflow, a single (analyzed) use case is designed, implemented, and subjected to continuous developer testing and frequent 
integration testing. First, a few software elements are identified, test cases are defined for them and these elements are added into the 
evolving collaboration of software elements. Then, in the “translate” step, source code is generated7 and subjected to the tests just 
defined. Any identified defects are fixed immediately. If necessary, test coverage analysis is performed (this is required in safety critical 
environments) and the next set of software elements is identified. Similar to the discussion of requirements analysis in the section on 
Agile Systems Engineering, this work is done in a short nanocycle, generally ranging from 20 to 60 minutes in duration. Once testing 
reveals no defects, the software is released to team configuration management so that continuous integration testing can be done  
(see Figure 5).
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Figure 6. High Fidelity Modeling Workflow
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Agile for Highly Dependable Systems
While it would be incorrect to say for IoT systems that “failure 
is not an option”, it is certainly never a good option. And for 
many of these systems, it is a potentially dangerous and harmful 
option. IoT products control automotive braking systems, 
deliver electricity to major metropolitan areas and perform 
remote-controlled surgery . Failures in such systems cost more 
than money; they potentially cost lives. Can we really use agile 
methods to develop systems like these?

First, we need to understand more about what is involved. 
Dependability—literally defined as “our ability to depend  
upon the system”—has three primary aspects. Safety is defined 
as “freedom from harm”. Specifically, even if the system mal-
functions, people will not be harmed by a safe system. Reliability 
refers to the likelihood that a system will properly deliver its 
services. Security is defined as protection against intrusion, theft 
or interference. These aspects are distinct but do overlap to a 
degree. Each provides one pillar of dependability and all must 
be considered for highly dependable systems.

Systems do not become dependable by accident. Significant 
planning, analysis, and oversight is required during develop-
ment to ensure that the system meets its dependability  
concerns. For example, safety analysis is required by all stan-
dards for safety critical systems, and normally safety-relevant  
data is captured with fault-tree diagrams and hazard analysis.  
Reliability is normally represented by means of Failure Modes 

and Effect Analysis (FMEA). There is no standard way of  
representing security analysis yet, although the development  
of a standard is underway8.

Highly dependable systems generally require certification and, 
to become certified, the project must provide proof that the 
certification objectives have been met. This means that your 
development process must produce engineering data that  
demonstrates compliance. This includes not only the analytic 
data mentioned above, but also traceability to prove the consis-
tency of the disparate data. For example, the requirements must 
represent (i.e. trace to) the safety analysis which must trace to 
the design, which must trace to the implementation, which 
must trace to the test cases, and so on. Figure 7 shows the 
required traceability between different sets of engineering  
data. Links labelled “R” are required for standard high-quality  
systems, “S” are required for safety-critical systems and   
“O” might be valuable but are considered optional.

These sets of data—the analyses and traceability—can be  
developed in an agile way. The keys to doing this are to  
develop the data incrementally and to continuously verify the 
correctness of that data. Looking back to Figure 4, it can be 
seen that traceability links are made as the requirements for  
a use-case stabilize. That is, the traceability data is developed  
incrementally along with the use-case data and requirements.  
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Figure 7. Lifecycle Data Trace Matrix
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Agile Product Development
Product development teams are coming under increasing  
pressure to reduce development costs and improve time-to-  
market while simultaneously improving product quality and 
capabilities. To achieve these outcomes, we need to more 
broadly apply the principles of agile methods to aspects of 
product development beyond just software. We need to develop 
electronic and mechanical aspects in a more agile way as well. 
Even more challenging, we need to improve the speed and 
quality with which we integrate the work products from  
different engineering disciplines.

Applying agile methods to whole-product development implies  
the ability to verify the engineering data, the engineering 
implementation within the various disciplines, and the inte-
grated systems. Some good news is that new technology is 
available to support this kind of multi-disciplinary verification.  
High-fidelity UML and SysML modeling allows model   
development, execution and verification. Beyond that, the 
Functional Mockup Interface (FMI)9 supports multi-modal   
co-simulation, so it is possible to build a single simulation   
that integrates UML for the software, SysML for the systems 
model, Simulink for the control model, and SimulationX for 
the mechanical physics model. These models may be developed 
both individually and collectively with agile practices, so that 
they can be developed incrementally with high quality and 
evolving capability.

Summary and Conclusion
Agile is a proven approach in software development. As  
software has become a primary differentiator between products, 
the use of agile has spread to embedded systems—which have 
their own challenges and needs3.

The advent of the IoT brings with it shorter development 
cycles and a need for global and secure interconnection—but 
also new markets and opportunities. The IoT is accelerating 
not only the number of products that incorporate software and 
the amount of software they contain—but also the need for 
design that is responsive to operational insight, to drive both 
product updates and new and incremental designs.

These new conditions demand that agile is applied to other 
parts of the continuous engineering lifecycle, especially systems 
engineering and PLE. Applying agile in these domains is  
little discussed in the literature but it has been done. To achieve 
the promise of IoT and to meet its severe constraints, agile  
is a necessity.

Agile principles can also apply to non-software development  
disciplines—mechanical, electrical and so on—making it easier 
for practitioners in these disciplines to collaborate with agile 
software and systems engineering.

To successfully scale agile across the product development  
process will require teams to create and share information  
efficiently, and to have clear collaborative workflows and 
metrics-based insight into status and performance. 

The IBM Internet of Things Continuous Engineering Solution 
comprises the tools, best practices and services needed to help 
you adopt an agile product development approach.



Notes



 

 

 

 

  

 

 

   

 

        
    

    

      

 

Please Recycle

For more information
To learn more visit: ibm.com/continuousengineering

About the authors
Bruce Powel Douglass has a doctorate in neurocybernetics and 
over 35 years of experience designing safety-critical real- time  
applications in a variety of hard real-time environments.   
He has designed and taught courses in agile methods,  
object-orientation, MDA, real- time systems and safety- critical  
systems development, and is the author of over 6,000 book 
pages from a number of technical books, including Agile Systems 
Engineering (in press), Real-T ime UML, Real-T ime UML 
Workshop for Embedded Systems, Real-T ime Design Patterns,  
Doing Hard Time, Real-T ime Agility and Design Patterns for 
Embedded Systems in C. The Chief Evangelist at IBM Rational, 
he is a thought leader in the systems space, consulting with  
and mentoring IBM clients around the world; representing 
IBM at numerous conferences; and authoring tools and  
processes for the embedded real-time industry . Bruce  
contributed to both the UML and SysML specifications  
as well as a number of other standards. He can be followed  
on Twitter @BruceDouglass. Papers and presentations are  
available at his Real-T ime UML Yahoo technical group  
(http://tech.groups.yahoo.com/group/RT-UML) and from his 
IBM page (ibm.com/software/rational/leadership/thought/
brucedouglass.html).

 

     
     

© Copyright IBM Corporation 2015

Software Group 
Route 100 
Somers, NY 10589

Produced in the United States of America 
June 2015

IBM, the IBM logo, ibm.com, and Rational are trademarks of International 
Business Machines Corp., registered in many jurisdictions worldwide. 
Other product and service names might be trademarks of IBM or other 
companies. A current list of IBM trademarks is available on the web at 
“Copyright and trademark information” at ibm.com/legal/copytrade.shtml

This document is current as of the initial date of publication and may be 
changed by IBM at any time. Not all offerings are available in every 
country in which IBM operates.

THE INFORMATION IN THIS DOCUMENT IS PROVIDED  
“AS IS” WITHOUT ANY WARRANTY, EXPRESS OR  
IMPLIED, INCLUDING WITHOUT ANY WARRANTIES  
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE AND ANY WARRANTY OR CONDITION OF  
NON-INFRINGEMENT . IBM products are warranted according to the 
terms and conditions of the agreements under which they are provided.

1 Ambler, Scott and Lines, Mark Disciplined Agile Delivery, IBM Press, 2012
2 Scaled Agile Framework http://www.scaledagileframework.com/

3 Douglass, Bruce Powel Real-Time Agility Addison-W esley, 2009
4 Scaled Agile Framework for Lean Systems Engineering  

http://www.scaledagileframework.com/safe-for-lean-systems-engineering- 
safe-lse-news-update/

5 Douglass, Bruce Powel Agile Systems Engineering Elsevier Press,  
2015 (in press)

6 http://en.wikipedia.org/wiki/Embedded_system

7 This can be done manually with a code editor but, if the modeling is  
done in a highly capable tool such as IBM Rhapsody, it will be more 
convenient to automatically generate the code from the design. 

8 http://www.omg.org/hot-topics/threat-modeling.htm

9 Functional Mockup Interface ps: www.fmi-standard.org

WWW12345-USEN-00

http://www.ibm.com/legal/copytrade.shtml
http://www.scaledagileframework.com/
http://www.scaledagileframework.com/safe-for-lean-systems-engineering-safe-lse-news-update/
http://www.scaledagileframework.com/safe-for-lean-systems-engineering-safe-lse-news-update/
http://en.wikipedia.org/wiki/Embedded_system
http://www.omg.org/hot-topics/threat-modeling.htm
http://www.fmi-standard.org
http://www.ibm.com/continuousengineering
http://tech.groups.yahoo.com/group/RT-UML
http://www.ibm.com/software/rational/leadership/thought/brucedouglass.html
http://www.ibm.com/software/rational/leadership/thought/brucedouglass.html
http://www.ibm.com/software/rational/leadership/thought/brucedouglass.html

	Untitled
	Faster, more reliable, lower cost: agile
	Executive summary
	Product Development in the IoT
	Why Agile Product Development for  the I
	Continuous Engineering and the IoT
	Agile Product Line Engineering
	Approach 1: “Clone and Own”
	Approach 2: Streams
	Approach 3: Parametric Configuration
	Agile Systems Engineering
	Agile Embedded Software Development
	Agile for Highly Dependable Systems
	Agile Product Development
	Summary and Conclusion
	For more information
	About the authors


