
IBM Software
White Paper

June 2015

Faster, more reliable,
lower cost: agile product
development for the IoT

Executive summary
The Internet of Things (IoT) offers immense possibilities for product
development: not only for connecting existing products and harnessing
the data they generate to deliver new value and functionality, but
also for entirely new product and service concepts. However, the
‘always-connected’ nature of the IoT implies the constant generation
of data and feedback. This, in turn, means that products must move
from the traditional product development cycle—design, manufacture,
deliver—to a new world of dynamic innovation driven by deep, often
real-time, product- derived market and customer insight. Gaining
competitive advantage in this new world means maximizing the speed
and responsiveness of product-design processes. Agile approaches are
proven to deliver these benefits for software development; this paper
examines how they can be extended to provide the same benefits to the
end-to- end product design cycle.

Product Development in the IoT
Systems of all kinds—in the home, in buildings, in cars, in public
spaces—are becoming smarter. The first such smarter systems ran simple
control programs that augmented the purely mechanical and electrical
capabilities of their predecessors. They added more options, more fea-
tures, more f lexibility, and more intelligence. User controls and feedback
devices changed from mechanical analog dials to digital displays, and it
became possible to customize the behavior of systems; allowing them
to make some simple decisions based on given inputs freed up users
to focus their attention on higher-level concerns.

2

White Paper
June 2015IBM Software

The advent of the internet enabled unprecedented
collaboration—still at the “design level”—in engineering.
But until fairly recently, manufactured devices did not use
the internet, which was largely reserved for communication
between humans rather than between devices.

Many devices we now use on a daily basis are systems capable
of automating highly complex tasks on their own; it is not
uncommon for a modern car to have dozens of processors
running hundreds of megabytes of software. These formerly
disconnected devices can now connect—and collaborate—on
a global scale and with vast numbers of other systems both
similar and disparate. The ability to send and receive data
enables smart devices to diagnose their own faults, to upgrade
their own software, to identify patterns of behavior and to
respond dynamically to rapidly changing conditions.

The current generation of smart systems is enabled by a
number of key technologies. First, the devices are not only
smarter, they can also exchange information both rapidly and at
low cost over the internet. Data mining—the ability to identify
and determine subtle patterns in data streams—has progressed
to the point where a machine can out-perform human experts
in games like Jeopardy!® The combination of sensors con-
nected via the internet, cloud-based analytics services and
devices that can interact with their environment enables
the creation of systems of systems at any scale, capable of
delivering value through new functionalities and services.

Stand-alone smart devices can provide tremendous value
to consumers and businesses alike. Connected smart devices
promise to add significantly more value to users of all kinds by
improving optimization, easing product updates, automatically
determining when service or maintenance is required, and pro-
viding a new mode of communication to the service vendors.
Interconnecting the devices offers even more opportunity for

suppliers of devices and related services, because it enables the
identification of usage trends and provides a better view of how
products are actually used. It also highlights systemic problems
and enables them to be addressed before they manifest them-
selves, manages interactions with customers, and opens new
markets for services that would not otherwise be feasible.

Welcome to the Internet of Things.

Why Agile Product Development for
the IoT?
Agile development is now mainstream for many software
projects. It is particularly popular for small applications,
developed by a collocated team, with continual verification
and (very) frequent releases. This works well for environments
that can be updated easily, where the requirements are not well
understood at the start, or are likely to change, where there is
not a contractually-fixed feature set, and where it is not neces -
sary to pay significant attention to issues of regulatory approval
and certification.

Two primary benefits provided by agile development
approaches are quality and efficiency. Quality is improved
through the insistence on “developer hygiene”, which means
that the software is continuously verified as it is developed,
rather than at the end of the process (the traditional approach).
The impact on final quality is analogous to the results of
brushing one’s teeth daily rather than attempting to clean them
intensively just once a year. Test driven development (TDD) is
a key enabling practice for continuous verification. Continuous
integration (CI) practices bring together the work from multi-
ple developers so that time-consuming integration concerns
can be almost completely avoided. Frequent releases allow us
to deliver partial functionality where it can be validated by the
users to ensure that the systems actually meet their needs.

3

White Paper
June 2015IBM Software

Efficiency is improved largely because quality is improved. In
traditional waterfall or V-cycle processes, testing is carried out
at the end. This results in time and effort spent at the end of
the process (when the work is meant to be complete) identify-
ing problems both large and small. However, these expenses
are dwarfed by the cost of discarding significant work and
redeveloping the software when defects are discovered at
this late stage.

Agile methods clearly have value, but how to apply agile to
product development for the IoT isn’t obvious. First, agile
methods are generally applied to small systems. Work has been
done to make agile more suited to the demands of large-scale
development, for example, Disciplined Agile Delivery1 and the
Scaled Agile Framework® (SAFe®)2. Second, relatively little
has been written on applying agile methods to embedded
software development, let alone other engineering disciplines.
Real-Time Agility3 discusses the use of agile methods for
real-time and safety- critical systems development, while the
new SAFe for Lean Systems Engineering (SAFe LSE)4 and
Agile Systems Engineering5 approaches address the application
of these techniques to disciplines other than software.

Any discussion of the IoT should consider its three primary
constituent parts. First, the “Things”—the devices or elements
that provide on-the- ground capabilities such as managing car
engines, heating homes and offices, producing power for neigh-
borhoods, and navigating aircraft. Second, the “Internet”—the
vast collection of networks that enables the interconnection of
all the devices into potentially many conglomerates. Third, the
Cloud, which—although not explicit in the IoT name—is vital
for its ability to virtualize the services that gather, integrate,
analyze, interpret, and act on the data gathered from all the
Things. In this paper, we will focus on the development of the
Things—the smart, internet-connected devices that include far
more than just software.

Continuous Engineering and the IoT
Continuous engineering is a new approach designed to
support more efficient development for products within the
IoT space—where operational insights provided through
analytics can continuously inform product creation, update
and improvement. It is supported by three conceptual
pillars—strategic reuse, continuous verification, and
engineering insight.

Strategic reuse means leveraging existing engineering data and
intellectual property to construct new systems. This isn’t just
about reusing source code; it is about reusing requirements,
architectures, interfaces, test cases, and implementation
too. This pillar is implemented primarily by Product Line
Engineering (PLE) practices, which will be discussed in the
next section.

The second pillar, continuous verification, requires that we
verify the completeness, consistency, accuracy and correctness
of engineering data as we create it. This approach dovetails
seamlessly with agile practices such as test-driven development
(TDD) and continuous integration (CI). Like the strategic
reuse pillar, continuous verification also applies not only to
implementation but to all engineering data. It requires that
we capture engineering data in ways that are fundamentally
verifiable, for which there is already a solution: models.

The third pillar, engineering insight, implies among other
things the need to acquire knowledge about the use – and
possibly misuse – of deployed systems. This includes how well
these systems function in their operational environments and
the detection of defects or violations of assumptions in those
deployments. These aspects can be managed through the
Monitor Deployment workflow of Continuous Engineering.
Another implication of this third pillar is that we must manage
engineering knowledge as a key business asset. Like many
assets, it loses value if unmanaged. The management of
engineering skill is supported by the Assess and Improve
Engineering Capability workflows.

4

White Paper
June 2015IBM Software

Figure 1 shows the primary workflows that constitute Continuous Engineering.

Portfolio Management

[always]

[always]

[always]

[always]

Improve Engineering
Capability

Engineering Policies and
Procedures Management

[new product line]

Product Line Development

[defects || improvements]

system engineering

Embedded Software Development

Product Verification

Manufacture Product

Deploy Product Operationally

Monitor Deployment

Assess
Engineering
Capability

Product Development
[new product]

Figure 1. Continuous Engineering Workflows

Agile Product Line Engineering
Product line engineering (PLE) has been around for a long
time both in the pure software realm and in certain industries
(notably automotive). The basic idea is to create a family of
products that differ in terms of features, platform, or targeted

markets. The key term here is family because that implies that
the products are highly similar. This means that it ought to be
easier to create a product within the family (commonly known
as a variant) than to create one from scratch, because much of
the required engineering is already done and can be reused.

5

White Paper
June 2015IBM Software

The primary barrier to effective PLE is that reuse is harder
than it sounds because it involves not just reusing code. In
product development, we produce many different sets of corre-
lated, but distinct, engineering data. These data sets include
vision, requirements, architecture, design, implementation,
test cases, test environments, documentation, safety/reliability/
security analyses, and so on. Complicating the process is the
fact that we cannot just naively reuse the engineering data;
these are, after all, variants, and so we will partially reuse the
engineering data and partially create new engineering data.
And doing that, without making mistakes, is hard.

Figure 2. Managing PLE Variants

Product Line

Component A

Component B

Component C

Product or System is
made up of components

Each of which has
versions/variants

Approach 1: “Clone and Own”
The most common way to reuse engineering data today is sim-
ply to copy and modify (also known as “clone and own”). This
has the advantage of being conceptually simple, but results in
divergent systems where identifying and fixing a defect shared
by multiple products in the product line is difficult. The
complexity of analyzing the impact of a feature change or
repairing defects across variants with completely isolated
data sets makes this approach very challenging.

6

White Paper
June 2015IBM Software

Approach 2: Streams
A more effective strategy is to use configured streams to
manage both the core platform data and the variant-specific
data. This strategy allows for ad hoc addition of new variants
and is done primarily via branching streams. Because the core
platform data is kept centrally, changes to elements isolated
within the core can easily propagate into builds of the affected
variants. Figure 2 shows a product line composed from three
different components, each of which has streams for its
engineering data (requirements, design, and so on). Specific
products are shown as the variants within the product line.

Approach 3: Parametric Configuration
A rather more advanced strategy is to build in pre-defined
extension points known as variant parameters. For example,
a car might have a gasoline or diesel engine, three trim levels
(Basic, Modern, and Luxury) and come with a manual or auto-
matic gearbox. These three configuration parameters alone
generate 12 variants (2 x 3 x 2). It would be fairly easy to then
add a new kind of engine or a new trim level because those
changes would align well with the predefined extension points.
However, deciding late that you want to also produce variation
around the roof type (hard, soft, sun roof and convertible) is
relatively hard because this requires that all the other existing
variants be retrofitted with that variation point. In this way,
the parametric configuration approach simplifies the production
of complex variations and generally has a higher level of reuse
than the multiple stream approach, but makes it more difficult
to product variants that do not align well with the predefined
extension points.

Adding agility to the process helps avoid making decisions
unnecessarily early in the project, keeping the process respon-
sive to changes in market and customer needs. Here, the
parametric approach (in which there are clear, predetermined
extension points) is combined with the use of branching
streams to allow the components to be shared. In addition,
the development of a core platform and all associated data
(with properties that are unlikely to be volatile) merged with
branching streams for variant-specific data gives us the best
of both worlds. Agile practices such as continuous verification
via product simulation and frequent refactoring will benefit the
development of product lines.

Agile Systems Engineering
Systems engineering focuses on the characterization of systems
in terms of their essential properties without regard for which
engineering discipline will implement those properties. For
product development, systems engineering leads the way with
a hand-off of engineering data to “downstream engineering” for
detailed design and implementation. For product lines, there
will be systems engineering at multiple sub-levels of abstraction,
both at the final product level and at the core and variant levels.

The key activities for systems engineering include:

●● System requirements specification
●● Architectural trade-off analysis
●● Architectural design
●● Hand-off to downstream engineering

7

White Paper
June 2015IBM Software

In traditional systems engineering, all systems engineering data must be complete before downstream engineering is allowed to begin.
However, with an agile approach, we can focus the work on coherent clusters of requirements—usually use cases or user stories—
develop the systems data around that, hand that data off to downstream engineering, and then work on the remaining requirements.
Agile systems engineering is iterative and incremental. Figure 3 shows the high-level workf low for agile systems engineering. In it we
see an iteration loop, in which a small number of use cases is developed, analyzed and handed off, before the next set of use cases is
developed. In addition, there are ongoing activities, such as project management (in the Control Project activity), quality-assurance
auditing when required, and management of changes.

Figure 3. Harmony Agile Systems Engineering Workflow

Harmony aMBSE Delivery Process

Initiate Project

System Requirements
Definition and Analysis

Define Stakeholder
Requirements

Handoff to Downstream
Engineering

Perform Iteration Retrospective

Architectural DesignArchitectural Analysis

Control Project

Perform QA Audit

Manage Change

[more reqs]

[ready for hand off]

[else]

[done]

8

White Paper
June 2015IBM Software

Besides the large iteration loop for incrementally developing the systems engineering data, there are also agile practices going on
within the activities. For example, an activityf low-based analysis of the use case within the System Requirements Definition and
Analysis activity constructs verifiable models of the use cases that can be evaluated as they are being created for their consistency,
correctness, completeness and accuracy. This workflow is shown in Figure 4.

Figure 4. Flow- based Use Case Analysis

Define Use-Case System Context Add Traceability Links

Nanocycle development of
use case performs this
cycle in iterations lasting
20-60 minutes and verifying
the use case and updating
the textual requirements

Verify and Validate Functional Requirements

Derive Use-Case State Behavior

[else]

Perform Review
[more reqs]

Derive Use-Case Functional Flow

Define Use-Case Scenarios

Define Ports and Interfaces

9

White Paper
June 2015IBM Software

This figure shows that we define some functional f low—as
described by the textual requirements—derive from this f low a
small number of scenarios, construct a normative state machine,
and then—through execution—verify the correctness of the
requirements. This is done in very short nanocycles, which
are typically 20 to 60 minutes in duration. A complex use case
might require many such cycles before being fully understood
(and specified) and each cycle will typically result in the identifi-
cation of new or changed requirements. The point is that we
are continuously verifying the correctness of the requirements
as we specify them to ensure their high quality.

Agile Embedded Software Development
Virtually all of the literature on agile practices deals with apply-
ing these practices to the development of small applications
running on general-purpose computers. A general- purpose
computer, such as a personal computer, is designed to be f lexi-
ble and to meet a wide range of end-user needs. By contrast,
an embedded system is:

●● A computer system designed to perform one or a few dedicated
functions, often with real-time computing constraints, embedded
as part of a complete device that often includes hardware and
mechanical parts.

●● [A system] that contains at least one CPU but does not provide
general computing services to the end-users. A cell phone is
considered an embedded computing platform because it contains
one or more CPUs but provides a dedicated set of services3

Embedded systems control many devices in common use
today6. Many embedded systems are very resource-constrained,
performance-intensive, and have rigorous safety , reliability, and
security needs. None of these issues are dealt with in the exten-
sive literature on agile except in a very few cases. Nonetheless,
agile can be—and has been—applied very successfully to the
development of embedded systems. The Agile Harmony
Embedded Software Development Process (Harmony ESW)
uses iteration workflows to develop software design models
and source code implementation while simultaneously
applying the agile practices of Test-Driven Development and
Continuous Integration. An example of an iteration workflow is
shown in Figure 5. This workflow is executed on one or a small
number of use cases (or user stories) and delivers a verified and
working implementation. These iterations normally range from
as little as a week to as long as a month to execute. Subsequent
iterations elaborate additional use cases.

The detailed agile practices execute within the activities shown
in Figure 5. For example, Figure 6 shows the High Fidelity
Modeling workflow.

10

White Paper
June 2015IBM Software

Figure 5. Harmony Embedded Software Development Iteration Workflow

Plan Iteration

High-Fidelity Modeling

Architectural Design - RT

Collaboration Design - RT
Prepare for

Verification and
Validation

This Development Iteration
(“Microcyele”) is normally 4-6 weeks
in duration, resulting in a verified and
validated build of the system in
compliance with the mission of the
iteration.

Continuous
Integration

Verification and Validation

Perform
Retrospective

Detailed Design - RT

Use Case / User
Story Analysis

In this workflow, a single (analyzed) use case is designed, implemented, and subjected to continuous developer testing and frequent
integration testing. First, a few software elements are identified, test cases are defined for them and these elements are added into the
evolving collaboration of software elements. Then, in the “translate” step, source code is generated7 and subjected to the tests just
defined. Any identified defects are fixed immediately. If necessary, test coverage analysis is performed (this is required in safety critical
environments) and the next set of software elements is identified. Similar to the discussion of requirements analysis in the section on
Agile Systems Engineering, this work is done in a short nanocycle, generally ranging from 20 to 60 minutes in duration. Once testing
reveals no defects, the software is released to team configuration management so that continuous integration testing can be done
(see Figure 5).

11

White Paper
June 2015IBM Software

Figure 6. High Fidelity Modeling Workflow

Identify software elements Develop test cases [more requirements]

[all requirements implemented]

[stable and usable]

[else]

Make Change Set
Available

Perform Coverage
Analysis

Refine Collaboration

Translate

Run Tests

Analyze Outcomes

Fix Defects

[defect]

[no defect]

Nanocycle:
Each loop is
typically 20 - 60
minutes in
duration

12

White Paper
June 2015IBM Software

Agile for Highly Dependable Systems
While it would be incorrect to say for IoT systems that “failure
is not an option”, it is certainly never a good option. And for
many of these systems, it is a potentially dangerous and harmful
option. IoT products control automotive braking systems,
deliver electricity to major metropolitan areas and perform
remote-controlled surgery . Failures in such systems cost more
than money; they potentially cost lives. Can we really use agile
methods to develop systems like these?

First, we need to understand more about what is involved.
Dependability—literally defined as “our ability to depend
upon the system”—has three primary aspects. Safety is defined
as “freedom from harm”. Specifically, even if the system mal-
functions, people will not be harmed by a safe system. Reliability
refers to the likelihood that a system will properly deliver its
services. Security is defined as protection against intrusion, theft
or interference. These aspects are distinct but do overlap to a
degree. Each provides one pillar of dependability and all must
be considered for highly dependable systems.

Systems do not become dependable by accident. Significant
planning, analysis, and oversight is required during develop-
ment to ensure that the system meets its dependability
concerns. For example, safety analysis is required by all stan-
dards for safety critical systems, and normally safety-relevant
data is captured with fault-tree diagrams and hazard analysis.
Reliability is normally represented by means of Failure Modes

and Effect Analysis (FMEA). There is no standard way of
representing security analysis yet, although the development
of a standard is underway8.

Highly dependable systems generally require certification and,
to become certified, the project must provide proof that the
certification objectives have been met. This means that your
development process must produce engineering data that
demonstrates compliance. This includes not only the analytic
data mentioned above, but also traceability to prove the consis-
tency of the disparate data. For example, the requirements must
represent (i.e. trace to) the safety analysis which must trace to
the design, which must trace to the implementation, which
must trace to the test cases, and so on. Figure 7 shows the
required traceability between different sets of engineering
data. Links labelled “R” are required for standard high-quality
systems, “S” are required for safety-critical systems and
“O” might be valuable but are considered optional.

These sets of data—the analyses and traceability—can be
developed in an agile way. The keys to doing this are to
develop the data incrementally and to continuously verify the
correctness of that data. Looking back to Figure 4, it can be
seen that traceability links are made as the requirements for
a use-case stabilize. That is, the traceability data is developed
incrementally along with the use-case data and requirements.

13

White Paper
June 2015IBM Software

Figure 7. Lifecycle Data Trace Matrix

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Stakeholder Requirements

System Requirements

Subsystem Requirements

SW/EE/ME Requirements

Dependability analyses

System Architecture

Control Model(s)

SW/EE/ME Design1

SW/EE/ME Implementation1

Validation Tests

System Verification Tests

Component/Integration Tests

SW/EE/ME Tests

QA Records

CM Index

Validation Test Results

Verification Test Results2

1 These are usually in separate work products, so this is really multiple items
2 Tests occur at unit, component, integration, and system levels; again
multiple items

Notation

R

S

o

Interpretation

Required for reliable, repeatable system development

Required for safety critical / high reliability / high security

Optional

1615141312111 1098765432

RSoRRR

17

SSSRRoSRRRSR R

SSRRRooR R

SSRRRo R

SSoo R

SSo R

SS R

S S

SS

R

SSRRRR R

SSRRoRR R

SSRoRoSRRRS R

SSoSSoSSSS o S

R

R R

SSSRRoRRSoR R

14

White Paper
June 2015IBM Software

Agile Product Development
Product development teams are coming under increasing
pressure to reduce development costs and improve time-to-
market while simultaneously improving product quality and
capabilities. To achieve these outcomes, we need to more
broadly apply the principles of agile methods to aspects of
product development beyond just software. We need to develop
electronic and mechanical aspects in a more agile way as well.
Even more challenging, we need to improve the speed and
quality with which we integrate the work products from
different engineering disciplines.

Applying agile methods to whole-product development implies
the ability to verify the engineering data, the engineering
implementation within the various disciplines, and the inte-
grated systems. Some good news is that new technology is
available to support this kind of multi-disciplinary verification.
High-fidelity UML and SysML modeling allows model
development, execution and verification. Beyond that, the
Functional Mockup Interface (FMI)9 supports multi-modal
co-simulation, so it is possible to build a single simulation
that integrates UML for the software, SysML for the systems
model, Simulink for the control model, and SimulationX for
the mechanical physics model. These models may be developed
both individually and collectively with agile practices, so that
they can be developed incrementally with high quality and
evolving capability.

Summary and Conclusion
Agile is a proven approach in software development. As
software has become a primary differentiator between products,
the use of agile has spread to embedded systems—which have
their own challenges and needs3.

The advent of the IoT brings with it shorter development
cycles and a need for global and secure interconnection—but
also new markets and opportunities. The IoT is accelerating
not only the number of products that incorporate software and
the amount of software they contain—but also the need for
design that is responsive to operational insight, to drive both
product updates and new and incremental designs.

These new conditions demand that agile is applied to other
parts of the continuous engineering lifecycle, especially systems
engineering and PLE. Applying agile in these domains is
little discussed in the literature but it has been done. To achieve
the promise of IoT and to meet its severe constraints, agile
is a necessity.

Agile principles can also apply to non-software development
disciplines—mechanical, electrical and so on—making it easier
for practitioners in these disciplines to collaborate with agile
software and systems engineering.

To successfully scale agile across the product development
process will require teams to create and share information
efficiently, and to have clear collaborative workflows and
metrics-based insight into status and performance.

The IBM Internet of Things Continuous Engineering Solution
comprises the tools, best practices and services needed to help
you adopt an agile product development approach.

Notes

Please Recycle

For more information
To learn more visit: ibm.com/continuousengineering

About the authors
Bruce Powel Douglass has a doctorate in neurocybernetics and
over 35 years of experience designing safety-critical real- time
applications in a variety of hard real-time environments.
He has designed and taught courses in agile methods,
object-orientation, MDA, real- time systems and safety- critical
systems development, and is the author of over 6,000 book
pages from a number of technical books, including Agile Systems
Engineering (in press), Real-T ime UML, Real-T ime UML
Workshop for Embedded Systems, Real-T ime Design Patterns,
Doing Hard Time, Real-T ime Agility and Design Patterns for
Embedded Systems in C. The Chief Evangelist at IBM Rational,
he is a thought leader in the systems space, consulting with
and mentoring IBM clients around the world; representing
IBM at numerous conferences; and authoring tools and
processes for the embedded real-time industry . Bruce
contributed to both the UML and SysML specifications
as well as a number of other standards. He can be followed
on Twitter @BruceDouglass. Papers and presentations are
available at his Real-T ime UML Yahoo technical group
(http://tech.groups.yahoo.com/group/RT-UML) and from his
IBM page (ibm.com/software/rational/leadership/thought/
brucedouglass.html).

© Copyright IBM Corporation 2015

Software Group
Route 100
Somers, NY 10589

Produced in the United States of America
June 2015

IBM, the IBM logo, ibm.com, and Rational are trademarks of International
Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other
companies. A current list of IBM trademarks is available on the web at
“Copyright and trademark information” at ibm.com/legal/copytrade.shtml

This document is current as of the initial date of publication and may be
changed by IBM at any time. Not all offerings are available in every
country in which IBM operates.

THE INFORMATION IN THIS DOCUMENT IS PROVIDED
“AS IS” WITHOUT ANY WARRANTY, EXPRESS OR
IMPLIED, INCLUDING WITHOUT ANY WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE AND ANY WARRANTY OR CONDITION OF
NON-INFRINGEMENT . IBM products are warranted according to the
terms and conditions of the agreements under which they are provided.

1 Ambler, Scott and Lines, Mark Disciplined Agile Delivery, IBM Press, 2012
2 Scaled Agile Framework http://www.scaledagileframework.com/

3 Douglass, Bruce Powel Real-Time Agility Addison-W esley, 2009
4 Scaled Agile Framework for Lean Systems Engineering

http://www.scaledagileframework.com/safe-for-lean-systems-engineering-
safe-lse-news-update/

5 Douglass, Bruce Powel Agile Systems Engineering Elsevier Press,
2015 (in press)

6 http://en.wikipedia.org/wiki/Embedded_system

7 This can be done manually with a code editor but, if the modeling is
done in a highly capable tool such as IBM Rhapsody, it will be more
convenient to automatically generate the code from the design.

8 http://www.omg.org/hot-topics/threat-modeling.htm

9 Functional Mockup Interface ps: www.fmi-standard.org

WWW12345-USEN-00

http://www.ibm.com/legal/copytrade.shtml
http://www.scaledagileframework.com/
http://www.scaledagileframework.com/safe-for-lean-systems-engineering-safe-lse-news-update/
http://www.scaledagileframework.com/safe-for-lean-systems-engineering-safe-lse-news-update/
http://en.wikipedia.org/wiki/Embedded_system
http://www.omg.org/hot-topics/threat-modeling.htm
http://www.fmi-standard.org
http://www.ibm.com/continuousengineering
http://tech.groups.yahoo.com/group/RT-UML
http://www.ibm.com/software/rational/leadership/thought/brucedouglass.html
http://www.ibm.com/software/rational/leadership/thought/brucedouglass.html
http://www.ibm.com/software/rational/leadership/thought/brucedouglass.html

	Untitled
	Faster, more reliable, lower cost: agile
	Executive summary
	Product Development in the IoT
	Why Agile Product Development for the I
	Continuous Engineering and the IoT
	Agile Product Line Engineering
	Approach 1: “Clone and Own”
	Approach 2: Streams
	Approach 3: Parametric Configuration
	Agile Systems Engineering
	Agile Embedded Software Development
	Agile for Highly Dependable Systems
	Agile Product Development
	Summary and Conclusion
	For more information
	About the authors

