
UML for Executable Specification

Bruce Powel Douglass
Chief Evangelist

I-Logix

Abstract
The Unified Modeling Language, or UML for short, is by
far the most common modeling language in use today in
software development. It is routinely used in firmware
and real-time and embedded systems development, and
more and more, being used by systems engineers to
specify the architectural structure of the overall system.
The primary benefits of the use of UML for system
specification are two-fold. First, for systems that are
software-centric, the use of UML allows easy transition
from the system engineers to the software development
teams. This means less work and fewer translation

defects, because software engineers are used to dealing with the UML and have tools that
allow them to do so. The second primary benefit comes from the fact that the behavioral
model of the UML is based on Harel Statecharts, a well-defined executable language.
This means that a specification of a system in UML can be executed and evaluated for
consistency, accuracy, and fidelity before it is even decomposed into mechanical,
electronic, and software technologies. This power aids the system engineer in ensure that
they have a consistent and buildable specification long before personnel or hardware is
design, lessening the risk of new development.

Why Executable Specifications?
Why specifications at all? Why don’t we just wire together parts (whether with a
soldering iron or by writing code) until we have want we want? The problem is that with
today’s highly complex systems, it isn’t clear what we want, nor that what we want is
consistent, reliable, or buildable. Producing specifications allows us to be unambiguous
about what the system is, the features it supports, consistency among those features. It
allows us a forum to capture, analyze, and understand what system provides to the user
prior to actually building it. So what are the things we want from a specification. A good
specification should be

• Unambiguous; that is, it should clearly state the requirements so that it is
obvious what the system has to do

• Clear and understandable to all the various stakeholders (engineers, marketers,
customers, managers, documentation specialists, etc)

• Correct; the requirements should accurately reflect what the system should do

• Consistent; different parts of the specification must not contradict each other
in ways great or small

• Testable; that is, we should be able to, in a straightforward way, validate that
the delivered system meets the requirements

• Implementation-free; design decisions should be left to design – the
specification should identify how it behaves from a black-box perspective

• Translatable into design; the transition from requirements specification into
hardware and software design should be as easy and straightforward as
possible

For complex systems, specifications can reach hundreds or thousands of pages, so
meeting these goals can be a daunting task. Typically, specifications are reviewed in
detail by a large number of experts to ensure that it meets these goals, but this is an
expensive, highly labor-intensive, and error-prone task. Another approach in common use
in certain industries where the cost of project failure is particularly high (e.g. automotive
and aerospace) is to write specifications in a more formal language so that some of these
properties can be checked either through the application of formal methods (e.g. proofs or
“model checking” rules automatically applied) or via testing of some kind. The success of
this approach is obvious from the widespread use of tool such as Statemate1 from I-
Logix.

Clarity, correctness, consistency and testability are all closely related aspects of a
specification. The most common way of specifying systems – the so-called “Victorian
Novel Approach” – uses imprecise natural language to specify precise things. The
problem with this was identified (admittedly in a different context) by Immanuel Kant in
The Critique of Pure Reason – it is called the “analytic-synthetic dichotomy.” Simply
put, the analytic-synthetic dichotomy states “that which is known (the spec) cannot be
real; that which is real (the envisioned system) cannot be known.” This is a serious
problem for teams developing systems. How do we know that the specifications reflect
what we really want and what we actually deliver?

I will argue that the only way to demonstrably achieve these varied goals for specification
is to write the specification is such way that it is testable; and, in order to be testable, a
specification must be executable. If a specification is not directly executable, then you are
“hand-waving” because you can’t test something you can run. And it becomes all too
easy to miss expensive defects in the specifications that will come back to haunt the
engineers later.

Even though the specification ought to be, in principle, executable, it should also be
implementation-free. That is, the ones who REALLY know how to do the mechanical
engineering are the mechanical engineers, the ones who REALLY know how to do the
electrical engineering the electrical engineers and the ones who REALLY know how to
do the software are…. the managers. Oops, I mean the software engineers. And these
engineers should not be handicapped at the outset from making sounding engineering

1 Statemate is a state machine-based specification tool that has been widely adopted in automotive and
aerospace industries. See www.ilogix.com for information and white papers.

decisions as more design information is discovered. That is, the specifications should
clearly identify only the things which are actually required and not how these things
ought to be designed and implemented. This is a very common failing of engineers who
end up writing specifications – they are so used to doing design that their requirements
specifications are really nothing more than disguised design specs.

In order to facilitate the last goal of good specifications, translatability, the use of a
common or similar language for specifying requirements is a great aid to that. It is
common for system engineers to use one set of concepts and one language and this is
“thrown over the wall” to the development engineers who must manually interpret and
translate the specification into their own language. One way to minimize this translation
effort is to use a common language for specification and design. Particularly when the
system is software-intensive, using a software specification/design language makes a lot
of sense, provided that the language is sufficiently rich to represent all the things needed.

The Unified Modeling Language (UML) meets all these needs. It is a common language
with broad tool support, it is in use by an increasing number of system engineers,
supports both requirements and design capture, and it is, at its core, an executable
language.

What UML Offers For Specification
System requirements can be divided into two broad categories: functional and quality of
service requirements. Functional requirements define what the system does, such as “The
system shall compute a flight path and smoothly adjust the flight surfaces to achieve that
flight path.” The other kind of requirements is constraints that affect the functional
requirements. These might be performance (e.g. worst case performance, average case
performance, deadlines, periods, jitter, and so on), schedulability, time boundaries,
weight, size, reliability, safety, maintainability, development cost, time to market, etc.

Organizing Requirements
Use cases are the primary means provided by the UML to organize captured
requirements. A use case is a named capability of a system that does not reveal or imply
implementation. A use case associates (i.e. exchanges messages with) actors, entities in
the system’s environment with which the system must interact. A use case, by itself, is
inadequate to capture the semantic details of the capability, but it does provide a
placeholder. A common rule of thumb is that a use case represents 3 – 10 pages of a
written specification.

The UML represents use cases on diagrams as a named oval. Actors are shown as stick
figures. Lines connecting the two are associations indicating the messages come from or
go to the associated actors during the execution of the use case. Figure 1 shows an
example Use Case diagram from a secure 2-way radio with a satellite tracking capability.

Figure 1: Secure 2-Way Radio Use Cases

Each of the use cases obviously needs to have more substance – what does it mean to
have an encrypted conversation anyway? Clearly, we must add and manage the detailed
requirements; in fact, this is commonly called detailing the use cases. We will discuss
that in a moment.

There is another means that the UML provides to manage things as well – packages. A
package is a “bag” which holds model elements. For large systems with dozens of use
cases, it is more effective to package the use cases into related capabilities, or perhaps
capabilities of architectural aspects of the system (e.g. guidance and navigation, power,
attitude control, communications, etc).

Detailing the Use Cases
There are two approaches to capturing the detailed requirements of a use case: by
example and by specification. Both have pros and cons, but they can be used together as

an effective means to capture requirements and ensure that, during design, the system
meets those requirements.

Scenarios
The most common way to detail a use case is to provide example scenarios – system-
actor interactions – that illustrate what we mean. Scenarios capture functional
requirements in terms of the

• Operations or behaviors provided to the actors by the system,
• Protocols of interaction (sets of operations) between the system and the actors
• Quality of service constraints on operations and sets of operations

The scenario shown in Figure 2 shows such as scenario. The vertical lines are called
instance lines; they represent the “players” in the scenario. The actors are shown using
hatched lines and the use case is shown with a normal line. As an alternative to a use case
instance line, you can use the System as a line here, since the system is executing the use
case during the scenario. What we don’t want to have is the internal structural pieces (e.g
objects, subsystems, or components) shown on this diagram, because the purpose of this
diagram is to show the requirements of the system as a whole, with respect to a specific
use case, not the system’s internal design. Later, as we add design elements, we can
elaborate this diagram by adding those internal design elements but we don’t want to
pollute our requirements at this early stage with design, as we’ve discussed before.

The horizontal lines are messages or events sent between the actors and the system. A set
of messages exchanged in a particular order is called a protocol. It is not enough to
merely specify the individual operations that may be invoked during a scenario, but to
understand any order dependencies among them as well.

There are also constraints in the scenario as well. In the UML, a constraint is a user-
defined well-formedness, or rule of correctness, that applies to one or more model
element. Constraints are normally expressions, in formal or informal languages, that add
special rules about some aspect of the model elements involved. Two of the constraints
specify maximal periods of time between message pairs, while a third indicates that a
particular sequence of messages is required.

Figure 2: A Scenario for Tune Radio Use Case

Scenarios are popular, largely because they are examples of system execution. It is very
easy for non-technical stakeholders to follow the interaction of the system with the actors.
This allows the exploration of this interaction without requiring the readers to understand
formal specification languages or arcane mathematics.

Scenarios are not without their cons as well. First, they are examples, and as such, are
inherently incomplete. There is, in fact, an infinite set of such scenarios. One difficulty of
the requirement analyst is to find a useful set of scenarios that capture all the relevant
detailed requirements. To identify the requirements, you must look at the entire set of
scenarios and understand them in toto.

Another difficulty is that there is no way to specify negative requirements, such as “The
system shall not …”.

Specifications
The other approach to detailing use cases is to define or specify them, rather than give
examples of them. In this approach a language is used to capture the definition of what
the feature is and how it works (from an external viewpoint). The language used to

express the specification may be a natural language, such as English, or a formal
language, such as statecharts, or a combination of the two. The UML provides a formal
language (Statecharts) that may be used for the specification of requirements. Closely
aligned with statecharts, the UML also provides activity diagrams for specifying
behavior.

Natural languages have an obvious advantage – they are natural – easy to understand,
easy to use. They are, however, imprecise, and this can lead to serious problems during
design and implementation. The system will always ultimately do something very
precise, but if the specification is imprecise, the system may not provide the desired
behavior. Further, because the specification is not precise, it is not executable, and this
has problems all its own, as we shall see later.

When you detail a use case with natural language, it is common to use a template in
which textual descriptions of words are entered. Different authors suggest different
templates, but a common one is

Name:
Use case name

Preconditions:
Statements about the condition of the system and its environment prior to the execution
of the use case

Postconditions:
Statements about the condition of the system and its environment after to the execution of
the use case

Description:
Description of the use case (the specification itself)

Constraints:
Limitations on the behavior or the system related to the use case, including various
qualities of service (worst case performance, reliability, safety, etc)

Some authors add other fields such as “Actors” and “Related Use Cases” but I prefer to
use diagrammatic representations for these things.

As mentioned above, this is a common approach, very similar to DeMarco’s “minispecs”
of Context and Data Flow Diagrams popular in the 1970s. The approach is not as precise
as a more formal engineering specification, but it can be effectively used.

Formal specifications, to my mind, are simply specifications written using a precise and
formal language. Statecharts and activity diagrams are both formal languages in this
sense, and have the advantages not only of precision, but also of executability.

A statechart is a kind of extended finite state machine; the extension are designed with
the intent of circumventing the limitations and problems with traditional Mealy-Moore
(M&Ms) state machines (a subset of statecharts). The primary problem with M&Ms has
to do with scalability. There is a well-known problem called state explosion that occurs
with state machines – they simply get too complicated to handle. In order to address the
state explosion problem, statecharts introduce a number of extensions, such as

• Hierarchical nesting of states
• Concurrency regions of state machines
• History (persistence of state)
• Conditional event processing (guards)
• Conditional branching (conditional pseudostates)

as well as many others. It is beyond the scope of this article to describe in great detail
these extensions2, but a few words about the primary extensions are in order.

2 For details see the author’s Doing Hard Time: Developing Real-Time Systems with UML, Objects,
Patterns and Frameworks (Addison-Wesley), 1999 or Real-Time UML 3rd Edition: Advances in the UML
for Real-Time Systems (Addison-Wesley, 2004); downloadable whitepapers on statecharts are available at
www.ilogix.com.

Figure 3: Statechart Extensions

The most noticeable thing about the statechart in Figure 3 is the fact that states (shown as
rounded rectangles) are nested inside other states. State B, for example, as two substates
B_1 and B_2. The semantics of this nesting is that white the system is in state B, it may
be in either state B_1 or B_2; it must be in one of those states while it is in state B, but
cannot be in more than one. This is equivalent to saying, for example, “When the system
is ON, the light shall be either GREEN (OK) or RED (FAILURE).

The second most notable thing about the figure is the dashed line in state C. This dashed
line separates the state into two concurrent regions, C1 and C2. C1 and C2 are called and-
states, because while the system is in state C, it must be exactly one substate of C1 AND
exactly on substate of C2 at the same time.

The figure uses two so-called “pseudostates.” The first is a transition with a ball on one
end. This indicates the starting state when the system is created or when a state with
nested states is entered. The second is the conditional pseudostate, the © mark. When the
event triggering the transition occurs (such as e1 in Figure 3), the guards for each

transition segment exiting the pseudostate are checked. The guards are the Boolean
condition inside the square brackets. If one of them evaluates to TRUE, then that branch
is take; if none of them evaluate to TRUE, then the event is discarded and the transition
to a new state is not made. If more than one guard is true, then one of the true branches
will be taken, but you can’t, in principle, know which one.

Actions are defined to be “run-to-completion behaviors” that may be executed when a
state is entered or exited, or when a transition is taken. On transitions, actions are listed
following a ‘/’ character, such as the list of actions following event e5 on Figure 3. They
may also be put as entry or exit actions on the state, as in state B in the figure.

Statecharts excel in specifying reactive behavior – that is, behavior where the system
waits for an event and then reacts to it. For systems where transitions proceed primarily
because actions complete, activity charts are preferred. Activity charts are a kind of state
machine where the progression from state to state is done after the work done in a state
completes. They may be thought of as a kind of concurrent flowchart and is useful for
specifying sequential and iterative algorithms and work flows of various kinds.

Figure 4: Activity Chart

The rounded rectangles in Figure 4 are action states and they contain action lists that they
execute when entered. The transitions fire as soon as the actions in the predecessor action
state completes. The conditional pseudostate works identically to how it works in
statecharts. The fork and join specify concurrent action state flows (i.e. E1 and E2
execute concurrently with F1 in the figure). The terminal pseudostate marks the end of
the behavior.

Statecharts and activity diagrams are useful because they specify exactly how a behavior
takes place, in all possible scenarios. This formal definition is in one place allowing the

design full access to the details of the specification whereas scenarios scatter
requirements among multiple diagrams.

In the UML, statecharts or activity diagrams can specify the behavior of a Classifier. Two
important Classifiers for our discussion here are Use Cases and Objects. You can define
the behavior of a use case with a statechart or activity diagram or you can specify the
behavior of a system or subsystem (which are, after all, big objects no matter how you cut
it).

When you use statecharts to specify behavior for use cases, you use the messages from
the actors as events to the statechart and messages from the system or use case as actions
on the statechart. The statechart thus specifies what the system does when in various
conditions (states) when different messages are received. When using activity diagrams,
since these are primarily driven by completion of actions, you may either use normal
states with incoming events (just as on statecharts) or use can use actions to send
messages from the system to the actors, such as to acquiring data for processing.

Figure 5 shows a statechart specification for the Tune Radio use case for our secure radio
system.

Figure 5: Statechart for Tune Use Case

You can trace the scenario in Figure 2 easily through the statechart in Figure 5. However,
you can also see additional requirements, such as error handling when waiting for various
messages. If you wait too long, then the timeout event occurs (see tm() on the statechart)
and the use case transitions to the Failure state. One can also see all of the allowable
sequences of messages received. If, for example, an ID event is received out of order, it is
discarded, since it isn’t explicitly handled. If desired, the out-of-order message could
have triggered a failure or an elaborate error recovery, depending on the exact
requirements being modeled.

Executability of Specifications
Because statecharts are a precise specification of behavior, they can be executed without
having to actually design and construct the actual system. This is very useful for complex
specifications into which conflicting or erroneous requirements can occur without being
obvious. Executing the statechart is useful for both show the specification is correct as

well as constructing a set of test vectors that can be applied to the design system to ensure
that it meets those requirements.

Statecharts are executable, which means that specifications done using statecharts may be
executed. You can easily answer questions such as

• “What happens if the user attempts to reinitialize the system when the system
is waiting for a Confirmation?”

• “What happens if there is no ID Confirmation sent?
• “Under what conditions can I shut the system down”

and so on. To be fully executable, not only must the statechart be well-formed (i.e. not
violate any syntactic or semantic rules for correctness), the actions specified must also be
written in an formal action language. The action language is the language in which
actions are written; it may be informal, such as English, or formal, such as C, C++, Java,
or Z. The formal action languages are, of course, executable as well. It is common, when
writing statecharts for an object design, to use the same language that the UML model
will be implemented in as the action language. So if the system is to be implemented in
Java, actions on the statecharts are also written in Java. This is a highly effective
approach, but it does make the migration of the system to another target language, such
as C++, more difficult. For this reason, a small set of developers use an abstract action
language that can easily be translated into any target language. However, the vast
majority of developers use the same action language as source language because it
simplifies their life overall.

For systems engineers who are not software experts, learning an action language can take
time and effort. If the language of implementation is known and unlikely to change, it
might be advantageous for the systems engineers to learn enough of that language to use
in the action statements. In any event, however, if executability of specifications is a
desired goal, the systems engineer writing the specifications must use some formal action
language. Tools such as Rhapsody™ from I-Logix generate C, C++, or Java code from
UML models that execute after being compiled, and are an effective way to create and
evaluate specifications as well as pass them on to the software development staff.

It should be emphasized that executable specifications are just that – specifications. The
system must still be designed and implemented. However, they do provide the standard
for correctness and accuracy.

Aside from the obvious benefit that executability of specifications brings to the table, it is
also useful to expedite the passing of the specifications to the engineering development
staff in such a way as to facilitate the development of the system, and to the testing staff
to facilitate the testing of the completed system.

There is an old saw in the software development industry that the best way not to have
defects in a system is not to put defects in the system in the first place. In practice, the
best way to achieve this is to continuously test that the parts you are working meet their
specifications and continue to meet their specifications as you add more to the system and

elaborate its functionality. This is easy to achieve using a combination of scenarios and
formal specifications.

It works like this: Once a formal specification of a use case is developed, a set of
scenarios are derived from it. In the case of a statechart, you write one scenario for every
non-looping path through the statechart, and every looping path exactly once. This covers
all paths in the statechart, although not every combination of paths. This is enough to
generate a basis set of test vectors with the actors and the use case.

The implementation (“realization” in UML-speak) of a use case is a collaboration. A
collaboration is a set of objects working together to realize a use case. How do we show
during development that our collaboration is adequate?

Some of you may be thinking that we already have a statechart specifying the detailed
requirements of the use case, can’t we translate this directly into design object model?
The answer is “No, you can’t.” Creating a good collaboration is a creative effort and
cannot be automated. The collaboration must, as a group, provide the state behavior
defined in the statechart, but it is inobvious how to map this to the behavior of individual
objects. The most obvious way to do this – mapping states directly to objects, results in
massively bad object models. So let’s try a different way.

A collaboration is adequate when it implements all of the scenarios defined for the use
case. If we derive a good basis set of scenarios and use them to test the collaboration as it
develops, and if we do this continuously throughout development, then we are almost
assured of having a good solution at the end. How do we do this?

Remember the vertical lines on the sequence diagram are called instance lines. As we
develop a collaboration, we add the objects on the collaboration to the sequence diagram
and show, by drawing the messages among these internal objects, how they achieve the
scenario. Once the collaboration can meet all of the scenarios derived from the formal
specification, then our collaboration is “adequate.” Of course, this means meeting not
only the functional requirements, but also the quality of service requirements as well.

It turns out, that this elaboration of scenarios by adding design detail and testing the
elaborated collaborations early and often has the effect of identifying defects early, when
they are still easy and cheap to remove. The key to achieving that effectiveness is
creating the specifications properly in the first place. The UML provides the tools – use
cases, sequence diagrams, statecharts, and activity diagrams – that allow you to create
high quality specifications that easily translated into high quality designs.

About the Author
Bruce Powel Douglass has over 20 years experience designing safety-critical real-time
applications in a variety of hard real-time environments. He has designed and taught
courses in object-orientation, real-time, and safety-critical systems development. He is an
advisory board member for the Embedded Systems Conference, UML World Conference,

and Software Development magazine. He is a cochair for the Real-Time Analysis and
Design Working Group in the OMG standards organization. He is the Chief Evangelist at
I-Logix, a leading real-time object-oriented and structured systems design automation
tool vendor. He can be reached at bDouglass@ilogix.com.

