
© 2018 IBM Corporation

Computational SysML Models

Bruce Powel Douglass, Ph.D.
Chief Evangelist, IBM IoT
Bruce.Douglass@us.ibm.com
www.bruce-douglass.com
Twitter: @IronmanBruce

mailto:Bruce.Douglass@us.ibm.com
http://www.bruce-douglass.com/

© 2018 IBM Corporation
2

Where in the Lifecycle is SysML Computational?

Engineering

Analysis

Trade-off

Analysis

Model

Verification

System

Simulation

System

Execution
Digital Twin

“Analysis Time”

“Run Time”

© 2018 IBM Corporation
3

A note on terms

▪ A computational model is ultimately one that can be expressed mathematically in an

evaluable fashion

 An executable model is a computational model that is evaluated in a generated running

system, whether as a simulation or an actual delivered system

 An executable model is a “computational model with a direction of computation”

 For example, f = m a

• Computationally, if any two values are known, the third value can be computed.

Such a model is evaluable by equation solvers.

• However, if declare f to be the dependent variable, then it becomes executable.

▪ Computational models come in roughly two flavors, depending upon when the computation

occurs.

 Computational analysis models are evaluated at “analysis time” or “design time”

• In SysML, this is normally specified with constraint properties on parametric

diagrams. These can be evaluated by linking to computational engines such as

MATLAB or Maxima

 Computational design models are evaluated at “run time” either as simulations or actual

delivered systems

• In SysML, this is normally specified as state or activity diagrams, but may be

augmented with methods outside of SysML, such as with FMI/FMU, Modelica,

SimulationX, or Simulink

© 2018 IBM Corporation
4

Computational Analysis Models

▪ Purpose: analyze proposed system properties to guide engineering decision making

▪ Examples

 Determine system safety from analysis of fault probabilities

 Determine optimal technology selection from alternatives (trade studies)

 Analyze important system properties under conditions of interest

© 2018 IBM Corporation
5

Analysis Time Computation: Parametric Diagram

▪ Imposes mathematical constraints on properties of Blocks (in system’s context):

 Constraint Block: groups non causal mathematical expressions

(equations/inequalities)

 Constraint Parameter: a variable of the math expressions that can be

bounded to a design property

 Constraint Property: a usage of a constraint block in a specific context

 Binding Connector: declared that the value of the design property must be

equal to the value of the constraint parameter

© 2018 IBM Corporation
6

Using Parametric Constraint Evaluator Profile

▪ UML/SysML tools are not generally capable of

computational analysis. However, they can capture

constraints in such a way that they can invoke such tools to

perform such analysis.

 Example: SPT and MARTE profiles provide a standard

means for specifying performance properties for

schedulability analysis so that other tools – such as

TriPacific’s RapidRMA tool – can extract the information

and “do the math.”

 Example: Rhapsody’s Dependability Profile (available at

www.bruce-douglass.com) allows you to specify the

probability of fault occurrence but does not directly

compute the probability of the resulting hazard.

▪ These problems can be expressed on SysML Parametric

Diagrams but cannot be evaluated directly in SysML.

▪ Rhapsody provides a Parametric Constraint Evaluation

(PCE) profile that allows you to link parametric diagrams

(and contained constraint models) to either Matlab or

Maxima for mathematical evaluation.

http://www.bruce-douglass.com/

© 2018 IBM Corporation
7

Example Fault Tree Analysis

▪ Each of the Fault and

events have a likelihood

(probability) or

occurrence.

▪ Therefore, it is possible

to compute the

likelihood of the hazard

using the connective

logical operators AND,

OR, NOT, NOR, and so

on.

© 2018 IBM Corporation
8

Calculating the likelihood of hazards

▪ You can calculate the hazard probability via “propagation of probabilities” by performing

computations up the causal chain.

▪ Probability Computation

 Step 1: Create FTA

 Step 2: Document primitive fault probabilities (0.0 to 1.0)

• Assume Required Conditions and Required Events have probability 1.0

 Step 3: Write the FTA as a succession of equations

• AND: PAND = P1 * P2 where P1 is the probability of input 1 & P2 is the probability of

input 2

• OR: POR = P1 + P2 – P1 * P2

• NOT: PNOT = 1.0 - P1

• NAND: PNAND = 1.0 - P1 * P2

• NOR: PNOR = 1.0 - P1 + P2 – P1 * P2

• XOR: Remember: PXOR = (P1 AND (NOT P2)) OR ((NOT P1) AND P2)

so PXOR = (P1 * (1.0-P2)) + ((1.0-P1) * P2) - (P1 * (1.0-P2)) * ((1.0-P1) * P2)

 Step 4: Do the math

 Step 5: Repeat in the next step of the causal chain

© 2018 IBM Corporation
9

Evaluating with a Parametric Diagram

▪ Build a library of constraint blocks for the various gates:

Constraint Blocks for the logic gates

© 2018 IBM Corporation
10

Calculating the likelihood of hazards: Doing the math

NormalEvent 1

«NormalEvent»

NormalEvent 1

«NormalEvent»

NormalEvent 1

«NormalEvent»

BasicFault 1

«BasicFault»

BasicFault 1

«BasicFault»

BasicFault 1

«BasicFault»

or operator_10007or operator_10007

ResultingCondition 1

«ResultingCondition»

ResultingCondition 1

«ResultingCondition»

ResultingCondition 1

«ResultingCondition»

HazardousEvent 1

«Hazardous Event»

HazardousEvent 1

«Hazardous Event»

HazardousEvent 1

«Hazardous Event»

or operator_20014or operator_20014

ResultingCondition 2

«ResultingCondition»

ResultingCondition 2

«ResultingCondition»

ResultingCondition 2

«ResultingCondition»

Hazard 1

«Hazard»

Hazard 1

«Hazard»

Hazard 1

«Hazard»

and operator_30019and operator_30019

BasicFault 2

«BasicFault»

BasicFault 2

«BasicFault»

BasicFault 2

«BasicFault»

Pne1 = 0.2
Pbf1 = 0.3

Phe1 = 0.4

Prc1 = ???

Prc2 = ???

Pbf2 = 0.5

Ph1 = ???

What is the

likelihood of

this hazard?

© 2018 IBM Corporation
11

Calculating the likelihood of hazards: Doing the math

NormalEvent 1

«NormalEvent»

NormalEvent 1

«NormalEvent»

NormalEvent 1

«NormalEvent»

BasicFault 1

«BasicFault»

BasicFault 1

«BasicFault»

BasicFault 1

«BasicFault»

or operator_10007or operator_10007

ResultingCondition 1

«ResultingCondition»

ResultingCondition 1

«ResultingCondition»

ResultingCondition 1

«ResultingCondition»

HazardousEvent 1

«Hazardous Event»

HazardousEvent 1

«Hazardous Event»

HazardousEvent 1

«Hazardous Event»

or operator_20014or operator_20014

ResultingCondition 2

«ResultingCondition»

ResultingCondition 2

«ResultingCondition»

ResultingCondition 2

«ResultingCondition»

Hazard 1

«Hazard»

Hazard 1

«Hazard»

Hazard 1

«Hazard»

and operator_30019and operator_30019

BasicFault 2

«BasicFault»

BasicFault 2

«BasicFault»

BasicFault 2

«BasicFault»

Pne1 = 0.2
Pbf1 = 0.3

Phe1 = 0.4

Prc1 = ???

Prc2 = ???

Pbf2 = 0.5

Ph1 = ???

What is the

likelihood of

this hazard?

© 2018 IBM Corporation
12

Architectural Trade Study Analysis

We will examine the trade offs for movement of the trim tabs and extension of

some of the control surfaces, looking at three technical solutions:

Hydraulic actuator

Electro-hydraulic actuator

Electric motor

From the Harmony aMBSE Deskbook available at

https://www.bruce-douglass.com/papers

https://www.bruce-douglass.com/papers

© 2018 IBM Corporation
13

Architectural Analysis: Define Assessment Criteria

Identify the assessment criteria:

• Accuracy of movement

• Weight

• Reliability

• Parts cost

• Maintenance cost

• Assign them normalize weight (importance) values

• Accuracy of movement 0.30

• Weight 0.20

• Reliability 0.25

• Parts cost 0.10

• Maintenance cost 0.15

© 2018 IBM Corporation
14

Architectural Analysis: Define the Utility Curves

Obtain the values of the MOEs for all the technical solutions

Define the (linear) utility curves so that the worst solution returns a value of 0 and the best

solution returns a value of 10

Solution/

moe

Accuracy

(mm)

Weight

(kg)

Reliability

(mtbf hrs)

Parts

cost ($)

Main.

Cost ($)

Hydraulic 5 72 4000 800 2000

Electric 1 24 3200 550 2700

Electrohydr

aulic

2 69 3500 760 2100

© 2018 IBM Corporation
15

Architectural Analysis: Define Assessment Criteria

Capture the utility functions on a parametric diagram

Note: the Objective

Function sums up

the “goodness” of

each criterion

weighted by its

importance

Note: To evaluate,

the “initial value” of

each of the value

properties must be

set, and then the

constraint blocks

are evaluated for

the specific set of

values.

© 2018 IBM Corporation
16

Architectural Analysis: Evaluate

Option 1

Solution/ moe Accuracy

(mm)

Weight

(kg)

Reliability

(mtbf hrs)

Parts cost

($)

Main. Cost

($)

Hydraulic 5 72 4000 800 2000

Electric 1 24 3200 550 2700

Electrohydraulic 2 69 3500 760 2100

© 2018 IBM Corporation
17

Architectural Analysis: Evaluate

Option 2

Solution/ moe Accuracy

(mm)

Weight

(kg)

Reliability

(mtbf hrs)

Parts cost

($)

Main. Cost

($)

Hydraulic 5 72 4000 800 2000

Electric 1 24 3200 550 2700

Electrohydraulic 2 69 3500 760 2100

© 2018 IBM Corporation
18

Architectural Analysis: Evaluate

Option 3

Solution/ moe Accuracy

(mm)

Weight

(kg)

Reliability

(mtbf hrs)

Parts cost

($)

Main. Cost

($)

Hydraulic 5 72 4000 800 2000

Electric 1 24 3200 550 2700

Electrohydraulic 2 69 3500 760 2100

© 2018 IBM Corporation
19

Run-Time Computational Behavior: Executable Models

▪ Executable Models do computation in a specific direction at run-time. UML/SysML provides

behavioral models that can perform computation that takes place a run-time.

▪ Run-time can be either in a simulation or in an actual developed system

▪ In addition, Rhapsody can connect to other tools that provide run-time computation,

including

 Simulink

 Functional Mockup Interface (FMI) tools such as SimulationX or Modelica

▪ These can be used in a number of different ways, such as

 Model verification, such as with executable requirements models

 System simulation with tools providing environmental or physics models

 Systems with control models done in Simulink

 Digital Twins combining actual operational data with system simulation (such as for

preventative maintenance)

© 2018 IBM Corporation
20

Run-Time Computational Behavior: State Machine

© 2018 IBM Corporation
21

Run-Time Computational Behavior: Activity Diagrams

© 2018 IBM Corporation
22

Run-Time Computational Behavior: Sequence Diagrams

© 2018 IBM Corporation
23

Run-Time Computational Behavior: Panel Diagrams

© 2018 IBM Corporation
24

Executable UML/SysML

▪ SysML behavioral models organize and orchestrate the execution of actions

 Actions appear as usages of action specifications in state diagrams as entry, exit,

transition, or internal actions

© 2018 IBM Corporation
25

Executable UML/SysML

▪ SysML behavioral models organize and orchestrate the execution of actions

 Actions appear in activity diagrams as usages of action specifications

© 2018 IBM Corporation
26

Executable UML/SysML

▪ SysML behavioral models organize and orchestrate the execution of actions

 Actions may be specified

• By activity diagrams

specification

This action invokes a behavior

This activity defines a behavior

© 2018 IBM Corporation
27

Executable UML/SysML

▪ SysML behavioral models organize and orchestrate the execution of actions

 Actions may be specified

• By an “action language” such as C, C++, Ada, or Java

“primitive” action

statement

© 2018 IBM Corporation
28

Verification of an Executable Requirements Model

Use Case state machine Actor state machine with

panel diagram elements

Sequence Diagram

(generated)

© 2018 IBM Corporation
29

Cosimulation with SysML: «SimulinkBlock»
▪ The stereotype «SimulinkBlock» means the block’s behavior is specified in a Simulink model

▪ Every input/output port in the Simulink model is represented as a SysML atomic flow port

▪ Type matching rules need to be applied

© 2018 IBM Corporation
30

Cosimulation with SysML: «StructuredSimulinkBlock»
▪ The stereotype «StructuredSimulinkBlock» means the block has parts typed by Simulink blocks

 A block that owns a part typed by a «StructuredSimulinkBlock» is also a

«StructuredSimulinkBlock»

▪ A «StructuredSimulinkBlock» can be exported to Simulink for simulation

 All non Simulink blocks are transformed to a single S-Function in Simulink

© 2018 IBM Corporation
31

Exchanging behavior via generated code
▪ Our approach uses generated C/C++ code to generate behavior of blocks brought to the

simulator

▪ «SimulinkBlock» may reference C/C++ code generated by MATLAB Embedded Coder

 This code is compiled with the rest of the code into an executable used by Rhapsody

simulation

▪ «StructuredSimulinkBlock» is transformed to a Simulink model with an auto-generated S-

Function Block that encapsulates the behavior of the native SysML blocks

▪ Modelica has adopted the Functional Mockup Interface (FMI) standard (see

https://www.fmi-standard.org/) to exchange behavior using generated C code

Unlike S-Function, FMI is non-proprietary

http://www.fmi-

© 2018 IBM Corporation
32

Flow ports are used to connect to Simulink for co-simulation

© 2018 IBM Corporation
33

FMI Standard

▪ FMI development initiated, organized and headed by Daimler AG

▪ Improved Software/Model/Hardware-in-the-Loop Simulation,

of physical models from different vendors.

▪ Open Standard

▪ FMI Standard Releases

 FMI 1.0 in 2010

 FMI 2.0 in 2014

▪ Over 35 FMI compliant tools (Modelica tools, Simulink add-ons, Rhapsody, etc)

 https://www.fmi-standard.org/tools

The FMI development was part of the ITEA2 MODELISAR project (2008 - 2011; 29

partners, Budget: 30 Mill. €). From 2012 FMI is developed as Modelica Association

project

Engine
with ECU

Gearbox
with ECU

Thermal
systems

Automated
cargo door

Chassis components,
roadway, ECU (e.g. ESP)

etc.

functional mockup interface for model exchange and tool coupling

© 2018 IBM Corporation
34

XML schema (.xsd)

defined by the

FMI specification

Function Mockup Unit (FMU)

© 2018 IBM Corporation
35

FMU SimulationX / IBM Rhapsody Integration

© 2018 IBM Corporation
36

© 2018 IBM Corporation
37

Download Papers, Presentations, Models, & Profiles for Free

www.bruce-douglass.com

http://www.bruce-douglass.com/

