
MBSE Modeling Guidelines
With
SysML and Rhapsody

V 1.0
December 23, 2020

Prepared by
Dr. Bruce Powel Douglass, Ph.D.
A Priori Systems
www.bruce-douglass.com

Table of Contents
Contents
Overview	4
Tooling and Languages	4
Definitions and Acronyms	4
Syntactic Standards	6
General Modeling Standards	6
Model Organization	7
Federating Rhapsody models	7
Naming Conventions	11
Basic Naming convention	11
General Diagramming Conventions	14
Every diagram shall have a singular mission	14
Other diagramming conventions	16
Block Definition Diagrams (BDDs)	17
Content	17
Block and Parts	18
Interfaces	18
Interface Blocks and Ports	18
Relations	19
Internal Block Diagrams (IBDs)	21
Use Case Diagrams	21
Use Cases	21
Actors	23
Relations	23
Requirements Diagrams	23
Relations	24
Requirements Tables	24
Matrices	24
Sequence Diagrams	24
Activity Diagrams	27
State Diagrams	28
States	28
Actions	32
Guards	33
Submachines	33
Parametric Diagrams	33
Parametrics for architectural analysis	34
Semantic Standards: Using SysML	35
Model Overview Diagram	35
Modeling Systems Architecture Context	36
Modeling Systems Architecture Behavior	39
Modeling Data Schema	39
Defining a Named Constant	40
Modeling Trade Studies	41
Relating to ASPICE and ISO 26262	42
Safety Profile	42
Generating Reports	42
References	44

[bookmark: _Toc59654233]Overview
This document is to provide a set of principles and specific guidance for the development of Model-Based Systems Engineering (MBSE) in SysML with the Rhapsody tool.

[bookmark: _Toc59654234]Tooling and Languages
The Rhapsody tool shall be used to model the requirements, architecture, interfaces and other system information. Other tools, such as Simulink, may be used as well, but their use falls outside the guidance provided by this Guideline. The version of Rhapsody, at the time of this writing, is 8.4, although it is anticipated that the tool will be upgraded to later versions over time.
The systems model will be specified in the SysML Language. The actual language addressed in this Guidelines includes both the C and C++ programming languages.

[bookmark: _Definitions_and_Acronyms][bookmark: _Toc59654235]Definitions and Acronyms
[bookmark: _Hlk59611737]BDD – Block Definition Diagram; a structural diagram type defined in the SysML, representing blocks and types, their structural properties, and their relations.
Class Diagram –a structural diagram type defined in the UML, representing classes and types, their structural properties, and their relations.
Composition Architecture – a model of the internal structure of a System in terms of its large-scale classes or blocks, their properties, and their relations.
Connected Architecture – a model of the internal structure of a System in terms of instances or parts instantiated from elements of its Composition Architecture
Connected Context – a model of the system environment in terms of instances or parts instantiated from the System and its related Actors.
Context Architecture – a model of how the system fits into its environment, in terms of the actors to which it connects and the relations among those elements.
Data Schema – a model representing information, its important properties and its relations. Data schemas are represented using BDDs in SysML and Class Diagrams or OMDs in UML.
Forced Closure Rule – The set of actions executing when a transition is taken completes when the state is entered; this includes exit, transition, and entry actions.

IBD – Internal Block Diagram; a structural diagram type defined in the SysML, representing instances (aka Parts) and their relations.
Instance – a run-time occurrence of a block or class. Also known as a part or object.
[bookmark: _Hlk56452127]Magic number – a literal numeric value that appears in a design without documentation, justification, or rationale.
MBSE – Model Based Systems Engineering; the use of models as the primary work products to capture, represent, and analyze systems engineering data. The primary language used for MBSE is SysML.

MDD – Model-Driven Development; the use of models to capture and represent software architecture and design.
Model Overview Diagram – a diagram used to explain the purpose, scope, and organization of a model
OMD – Object Model Diagram; a Rhapsody-specific structural diagram which is basically a UML class diagram
Package Diagram – a diagram whose primary purpose is to show model organization via packages, their relations, and their content.
Parametric diagram – a SysML diagram that specializes an Internal Block Diagram. This diagram is used to show the relation between values and constraint properties.
Part – see Instance.
Rhapsody – a powerful UML and SysML modeling tool.
Scenario – a particular sequence of interactions between a set of elements, often used to model interactions during use case analysis
Sequence diagram – an interaction diagram in UML and SysML used to model scenarios and test cases.
Structure Diagram – a kind of structural diagram that shows instances, their properties, and their relations in a UML model
SysML – the Systems Modeling Language, a profile of the UML standard used to model systems concepts
Type Architecture – a model of the structural elements of a set of elements, typically capture in a UML Class or OMD diagram or a SysML Block diagram
UML – the Unified Modeling Language, the pre-eminent standard for software modeling, and the basis of the SysML modeling language.
Use Case – a collection of system actions that represents a coherent usage of a system.

[bookmark: _Toc59654236]Syntactic Standards
[bookmark: _Toc59654237]General Modeling Standards
· All important model elements shall have a comment that describes why the element exists, how it contributes to the model, general usage of the element, and constraints on that element. This applies to (description includes standard fields expected for the kind of element). Note: Safety metadata is missing from the description because, where appropriate, it will be specified by applying stereotypes from the Safety Profile.
· [bookmark: _Hlk59611872]Projects
· Purpose
· Description
· Diagrams
· Mission
· Blocks
· Purpose:
· Represents:
· Roles:
· Description:
· Security Constraints:
· Pre-conditions:
· Post-conditions:
· Invariants:
· [bookmark: _Hlk56452815]Value properties
Note: the value property metadata valid range, units, accuracy, precision, and fidelity, disallowed values, etc. may be supplied via the application of stereotypes from the Safety Profile.
· Purpose:
· Represents:
· Roles:
· Description:
· Security Constraints:
· Pre-conditions:
· Post-conditions:
· Invariants
· Value types and units
Note: the value property metadata valid range, units, accuracy, precision, and fidelity, disallowed values, etc. may be supplied via the application of stereotypes from the Safety Profile.
· Purpose:
· Represents:
· Description:
· Security Constraints:
· Pre-conditions:
· Post-conditions:
· Invariants
· Operations
· Purpose:
· Processing performed:
· Algorithm/pattern:
· Return value constraints:
· Security constraints:
· Pre-conditions:
· Post-condition:
· Timing constraints:
· Actors
· Purpose:
· Represents:
· Roles:
· Description:
· Security Constraints:
· Pre-conditions:
· Post-conditions:
· Invariants:
· Use cases
· Purpose:
· Processing performed:
· Algorithm/pattern:
· Return value constraints:
· Security constraints:
· Pre-conditions:
· Post-condition:
· Timing constraints:
· Some of these properties may be omitted if inapplicable OR if captured as metadata in stereotype tags

[bookmark: _Toc59654238]Model Organization
[bookmark: _Toc59654239]Federating Rhapsody models
Basic federation organization shall be:
· One systems requirements & architecture model as shown in Figure 1.
· Note: If the Systems model is large, it can be split into multiple models
· As can be seen, this would contain the use cases, requirements and architecture of the overall system.
· The recommended SE Model organization is shown in Figure 2.
· One model per subsystem (Figure 3). This would contain the model components for an individual subsystem.
· One package shall contain the requirements, use cases, and other specification elements for the model, imported from the SE model.
· One package shall represent the deployment architecture (electronics, mechanical, software allocations) of the subsystem under development
· One package shall represent the software aspects and is further decomposed.
· Referenced packages from the Shared Model permit access to shared data and interface specifications
· Note: Large subsystem models may be broken up into multiple models.
· One (occasionally more) shared model containing common classes, interfaces, and types (Figure 4)

When transitioning from systems engineering model to the subsystem (including the software) models, the SE model organization shall provide a package for the specification of each subsystem, as shown in Figure 1
· The subsystem specifications in the SE model is organized as one package per subsystem contained by the Architectural Design package
· The subsystem model begins by importing the relevant subsystem specification package from the system SE model
· The subsystem spec package is added by value (“as unit” in Rhapsody)
· The shared packages are added into the subsystem models (aka “client models”) by reference so that changes to those packages are reflected in the client models when they are loaded

[bookmark: _Ref130351880]
[image:]
[bookmark: _Ref132510303][bookmark: _Toc54705967]Figure 1: Recommended Model Organization Set

[image:]
[bookmark: _Ref410373627][bookmark: _Toc54705968]Figure 2: SE Model Organization

[image:]
[bookmark: _Ref130352012][bookmark: _Toc54705969]Figure 3: Software Model Organization

[image:]
[bookmark: _Ref130351991][bookmark: _Toc54705970]Figure 4: Shared Model Organization

[bookmark: _Toc59654240]Naming Conventions
[bookmark: _Toc59654241]Basic Naming convention
Figure 5 through Figure 8 show examples of the following naming conventions:
· Model element names shall be taken from the appropriate domain vocabulary, whether it is a problem-domain (e.g. Tracking or Navigation) or technical design (e.g. middleware or hardware) domain
· In general, no “default names” assigned by the tool are acceptable in a model under formal review or considered to be final
· [bookmark: _Hlk59612179]Exceptions: There are some exceptions where the name is almost never used, such as the name of the state machine for a block; it is almost always referenced as being owned by the block and so the default name is acceptable.
· Model element names shall not contain white space or “special characters” except for the underscore (“_”).
· In general, names must be “compilable”. This is necessary to support executable models.
· Blocks, interface blocks, and data types begin with an uppercase letter
· Event names begin with a lowercase letter, as in “evKnobTurn”
· Block property names will begin with a lowercase letter. Block features include
· Block value properties
· Block functions (operations)
· Block event receptions
· Block ports
· Block association roles
· Block parts
· Block instance (part) name will begin with a lowercase letter.
· “Things” (e.g. objects, blocks, value properties) shall be named with strong nouns or noun phrases
· Packages names will begin with an uppercase letter, have a name that is consistent with its purpose, and end with “Pkg” as a suffix. For example, “DesignPkg” or “UseCasePkg”.
· “Actions” (e.g. operations, use cases, functions) shall be named with strong verb or verb phrases
· Association role names shall refer to the usage or role an instance of the block plays with respect to the block at the other end of the association, e.g.
· myDataSource
· itsDataQueue
· theCommController
· In multiple word names, make the first letter of every word (after the first) upper case. This is known as camel case as in ThisIsABlock (for a block) or thisIsAProperty (for a property).
· Underscores may be inserted between words, if desired as in This_Is_A_Block (for a block) or this_Is_A_Property (for a property).
· Port names shall begin with a lower case “p” and be named either by
· Their semantic content (e.g. pConfigData)
· The element to which they connect (e.g. pTracker) (preferred)
· Interface blocks shall be named either
· in terms of their semantic concept (e.g. iNavData or iFLIRCommands) and their names shall be prefixed with a lower case ‘i’ OR
· by the name of the contributing elements (e.g. iSource_Target, where “Source” refers to the unconjugated side of the interface and “Target” refers to the conjugated side) – see the iTrackFuser_TargetManger interface block in Figure 5. (preferred)
· Named constants shall be named with ALL CAPS, as in MAX_FLOW_RATE.

[image:]
[bookmark: _Ref130351932][bookmark: _Toc54705962]Figure 5: Naming Blocks and Features on a BDD

[image:]
[bookmark: _Toc54705963]Figure 6: Naming on an Internal Block Diagram

[image:]
[bookmark: _Toc54705964]Figure 7: Naming States and Transitions

[image:]
[bookmark: _Ref130351946][bookmark: _Toc54705965]Figure 8: Naming Use Cases

[bookmark: _Toc59654242]General Diagramming Conventions
[bookmark: _Toc59654243]Every diagram shall have a singular mission
Every diagram shall have a single important concept that it is trying to show as shown in Figure 9. This is called its mission. This is especially important for block, activity, parametric, and sequence diagrams (less important for state diagrams due to their “built-in” mission).
A diagram shall show elements related to a single purpose – a singular concept, a question (or answer), or to support a line of reasoning. This is the mission of the diagram.

The mission shall be stated on the diagram. Some common block diagram missions include
· Show a use case execution context
· Show a design-level collaboration
· Show a single generalization taxonomy
· Show a logical or physical data schema
· Show the contents of a package
· Show an aspect of system architecture
· Show the subsystem architecture
· Show the concurrency architecture
· Show the distribution architecture
· Show the deployment architecture
· Show the safety architecture
· Show the reliability architecture
· Show the security architecture
· Show a design pattern

[image:]
[bookmark: _Ref130353773][bookmark: _Toc54705973]Figure 9: Example Block Diagram with Mission

· Very complex diagrams usually have too many missions or only a vague purpose

[bookmark: _Toc59654244]Other diagramming conventions
· Every structural (BDD or IBD), requirement, package, sequence, use case, activity diagram, and parametric diagram shall have a comment explicitly describing the mission or purpose of that diagram
· Structural diagrams include
· Block Definition Diagram (BDD)
· Internal Block Diagram (IBD)
· Every interaction diagram shall have a shall have a comment explicitly describing
· The corresponding use case (if applicable)
· The mission or purpose of that diagram
· The pre- and post-conditions of the diagram
· Interaction diagrams include
· Sequence diagram
· Timing diagram (UML)
· Functional diagrams include:
· Use case diagrams
· Requirements diagrams
· Minimize line crossing. To avoid line crossing:
· Use diagram connectors. These are elements for showing line connections when it is inconvenient to draw the line between the two elements
· Replicate a block or diagram element. It is perfectly permissible to show a block or type multiple times on a diagram. Do this when it minimizes diagrammatic complexity.
· Use multiple diagrams
· As much as possible, inputs shall come from the left or top and output shall leave at the right or bottom
· Use similar line styles (straight, rectilinear or curved) for semantically similar lines (e.g. rounded rectilinear for associations control and object flows, and state transitions, straight for generalization and dependencies).
· Avoiding using color to show semantics
· Color may be used for emphasis or to improve readability
· Add constraints to show special or custom semantics or user-defined semantic rules
· [bookmark: _Hlk59612659]Create a Model Overview Diagram (usage of Package Diagram or BDD and stereotyped with «Model Overview Diagram» from the Safety Profile) as a project-level diagram (i.e. not nested within a package) that contains
· Model organization description
· Package structure shown as packages
· Provide hyperlinks on the model overview diagram to important model views such as
· High-level use cases
· Type Context
· Connected Context
· Composition Architecture
· Connected Architecture
· Trade study and other parametrics of interest

[image:]
[bookmark: _Toc54705974]Figure 10: Example Project Overview diagram

[bookmark: _Toc59654245]Block Definition Diagrams (BDDs)
[bookmark: _Toc59654246]Content
BDDs are generally limited to
· Blocks
· Types, Dimensions, and Units
· Block properties
· Value Properties
· Operations
· Event Receptions
· Ports
· Nested parts (instances)
· Constraint blocks
· Interface blocks
· Block relations:
· Association, Aggregation, Composition
· Generalization
· Dependency (including stereotypes of dependency)
· Comments
· Constraints
· Requirements
In Rhapsody, BDDs may also contain parts and connectors and may be used instead of IBDs, if desired.
[bookmark: _Toc59654247]Block and Parts
· Blocks, parts, and attributes shall have names that are noun or noun phrases.
· Blocks, parts, and attributes shall have singular nouns for names
· Plurality is handled with multiplicity of the element or role end of the relation
· Operations shall be named with a strong verbs or verb phrases
· Only show block features if they contribute to the diagram mission.
· Value properties and operations shall have protected visibility unless their access is directly required by client blocks

[bookmark: _Toc59654248]Interfaces
Interfaces shall only be used when ports are not used and it is desirable to show interface; otherwise proxy ports and interface blocks shall be used.
· Note: Interfaces may be used freely in UML software models, as needed.

[bookmark: _Toc59654249]Interface Blocks and Ports
· If ports are used, only proxy and flow ports are allowed; avoid full and standard (UML) ports in system models.
· Note: standard UML ports may be used in UML software models, as needed.
· Note: standard UML ports may be used if they are expected to be used directly in UML software models derived from this model
· Flow ports shall only be used with the Simulink Profile to interface Rhapsody and Simulink models.
· Proxy ports are typed by Interface Blocks.
· Ports shall be named in terms of the client role that connects to it or the semantic content of the data or services that traverse it, as shown in Figure 11.

[image:]

[bookmark: _Ref130354161][bookmark: _Toc54705982]Figure 11: Interfaces and Ports Example

· Interface blocks shall not define or reveal design or implementation of the block realizing the interface.
· Interface blocks shall not contain value properties
· Interface blocks may contain flow properties
· Services within blocks (operations or event receptions) shall be stereotyped as «directed features» and their direction – required or provided – must be specified
· Service flow direction providedrequired shall be avoided.

[bookmark: _Toc59654250]Relations
· The use of ports is an alternative to the use of associations:
· Ports can only be connected between instance or instance roles but they are specified on blocks.
· Associations are relations between blocks; links (connectors) are instances of associations
· Always show multiplicity on associations
· Exception: you need not show the multiplicity on the “whole” end of a composition, as this is always “1”
· Exception: you need not show the multiplicity on the owner end of a directed association
· Use role ends names on associations
· Show responsibilities via good role end naming
· Role end names shall specify a usage that one or more instances at that role end fulfill at run-time
· Role end names are always more important that association names
· Always show role names on associations
· When there are multiple associations between a pair of classes
· Exception: only show role end names for navigable ends of the association; that is, for a directed association, only show the role end of the navigable end (the end with the arrow).
· Use a single association with non-unary multiplicity when all the objects play the same role; use multiple associations to the same class when the objects play different roles
· Figure 12 shows two different compositions to MessageQueue because the roles of the two are distinct (one is for input, the other for output)
· The figure shows a * multiplicity for Message, because each message fulfills the same role with respect to the MessageQueue

[image:]
[bookmark: _Ref132512997][bookmark: _Toc54705985]Figure 12: Relations Example

· Role end names (see Figure 12) shall indicate the role that an instance of one block plays for the other, e.g.
· Most associations should be unidirectional
· Most associations model a client-server relation with the client being able to navigate to the server, but not vice versa.
· Early models may use bidirectional associations when the direction of message flow isn’t clear but later models should resolve most of these into unidirectional associations
· Use rectilinear lines for association (including aggregation and composition) and straight lines for generalization and dependency
· Minimize use of dependency relation
· For requirements traceability, use the «trace» dependency (if done in the model rather than in a separate requirements traceability tool)

[bookmark: _Toc59654251]Internal Block Diagrams (IBDs)
IBDs are used to show how instances (parts) connect via connectors, with or without ports.
[image:]
Figure 13: Example IBD
· IBDs are generally owned by a composite block but may be owned by a package
· Ports are linked via connectors
· Connected ports must be interface block-compatible (conjugated and unconjugated applications of the same interface block)

[bookmark: _Toc59654252]Use Case Diagrams
[bookmark: _Toc59654253]Use Cases
· Adhere to general diagram guidelines, above
· Model an operational capability as a use case
· For each use case, specify in the description (see Figure 14)
· Use case name
· Purpose or goal
· Description
· Preconditions – invariants that must be true before the use case is started
· Post-conditions – invariants the system guarantees when the use case completes
· Invariants – assumptions or expectations that must be true throughout the execution of the use case behavior

[image:]
[bookmark: _Ref410392891][bookmark: _Toc54705975]Figure 14: Use Case Description
· Use cases shall be named with a strong verb or verb phrase
· Use cases shall be independent in terms of the requirements as much as reasonable (but needn’t be in terms of their design realization)
· Example: “Configure Sensor” and “Acquire Data” are independent in terms of their requirements, but in the implementation, the configuration settings are used in the acquisition of the data
· If use cases are tightly coupled in terms of operational requirements, join them into a single use case
· E.g., “Manage Pedestrian Traffic” and “Manage Vehicular Traffic” are tightly coupled; join these into a “Manage Traffic” use case
· Constrain a use case only when that constraint applies to all scenarios of the use case
· All use cases shall interact at least one actor
· Define a use case with both scenarios (sequence diagrams) and specifications (activity and/or state diagrams)
· Use packages and/or use case diagrams to manage many use cases, organized by some criterion, such as
· Common actors
· Common purpose
· Common area of concern
· Common specification team

[bookmark: _Toc59654254]Actors
· Actors are objects outside the scope of the system that interact with the system when it executes the use case
· Actors shall be given singular noun names from the problem domain
· If it’s “in the box” released from manufacturing, then it’s not an actor
· If it connects to or interacts with your system at the customer site, then it is an actor
· Avoid identifying technology as actors; the actors should be the problem domain element of interest, not the means by which the actor connects to your system
· The actor might be “Hospital Information System” not the “Network Interface Card” that connects the HIS to your system
· Don’t model interaction among actors
· Since you’re not building the actor, their interaction is unimportant in your system design – focus on what you’re trying to build
· NEVER model “Time” as an actor; a use case can initiate behavior on its own with internal timeout events

[bookmark: _Toc59654255]Relations
· Use directed associations when message flow is unidirectional
· Subclass actors when the specialized actor participates in special relations or additional use cases over the base actor
· Use generalization to indicate specialized forms when technology realizations add distinct requirements
· E.g. “Identify User” use case holds requirements common to all its specialized forms, but “Identify via Fingerprint Scan” adds some unique requirements over “Identify via Password”
· Use «include» to map system-level use cases to subsystem-level use cases
· Use «include» to encapsulate capabilities that are used in multiple (larger) use cases
· «include» arrowhead shall point to the “part” use case, not the “whole”
· Use «extend» infrequently
· Use «extend» for optional functionality that can be inserted at a specific extension point
· «extend» arrowhead points toward the “whole” use case, not the “part”
· Use «trace» to show the relation between a use case and a requirement allocated to it

[bookmark: _Toc59654256]Requirements Diagrams
[bookmark: _Hlk59614587]Requirements will be managed primarily in DOORS. The use of requirements diagrams and relations are limited to adding relations from model element to requirements. Requirements diagrams and tables may be used to visualize requirements in the model, if desired.

[bookmark: _Toc59654257]Relations
· Dependency relations «trace», «satisfy», «allocate») go FROM the source element (use case, block, or other design element) TO the requirement
· Use «trace» for use case – requirement relation
· Use «satisfy» or «allocate» for design element – requirement relation

[bookmark: _Toc59654258]Requirements Tables
Requirements tables may be used to visualize sets of requirements in Rhapsody.
The SysML profile provides a predefined requirements table. An example of its use is shown in Figure 15.

[image:]
[bookmark: _Ref54787724]Figure 15: Requirements Table
[bookmark: _Toc59654259]Matrices
Matrices show the relations between sets of elements. Common uses for matrices include:
· Stakeholder – System Requirements
· Requirements – Use Cases
· Requirements – Design Elements
[bookmark: _Hlk59614696]Some matrix layouts are provided in the Harmony SE Profile that ships with Rhapsody, and others by the Safety Profile. Other matrix can be easily developed as needed.

[bookmark: _Toc59654260]Sequence Diagrams
· [bookmark: _Hlk59614725]For a set of sequence diagrams around a common context – such as a use case or design collaboration – it is preferrable to have the lifelines appear in the same order, even if a lifeline is not used in a particular sequence diagram. This is to facilitate comparison among the sequences.
· As much as possible, arrange the lifelines to make messages go from left to right.
· Use horizontal lines for synchronous messages
· Use either horizontal or slanted lines for asynchronous messages
· Execution occurrences (“activation bars”) on lifelines shall be avoided.
· Add comments to the sequence to describe why steps are being taken and to describe parallel activities not shown in the messages
· To shorten long scenario, wrap up sets of related messages into a referenced interaction fragment, as shown in Figure 16.

[image:]
[bookmark: _Ref130359791][bookmark: _Toc54705991]Figure 16: Interaction Fragment

· To reuse sets of messages, use a referenced interaction fragment
· Name messages the same as the operations or events they represent or invoke
· For special semantics use relevant interaction fragment operators, e.g.
· Loop
· Parallel
· Opt (optional) for “if”
· Alt (alternative) for “select case”

[image:]
[bookmark: _Toc54705992]Figure 17: Loop Operator

[image:]
[bookmark: _Toc54705993]Figure 18: Opt and Alt Operators
· Avoid nesting interaction operations more than three levels deep.

[bookmark: _Toc59654261]Activity Diagrams
· Use activity diagrams to model behavior that is primarily flow (rather than event-) based such as algorithms or when modeling behavior that is continuous in time or value such as continuous pressure on a pedal
· Model algorithmic behavior (flow of control) with activity diagrams
· Flow of control in operations can be specified with activity diagrams
· Always indicate starting action in an activity diagram
· [bookmark: _Hlk59614782]Primitive actions shall be specified in the target action language (C or C++)
· You may optionally use forks and joins to model “logical concurrency” in activity diagrams but note that this will not create task threads (use active classes for that, although that is not normally a systems concern).
· Optionally, swim lanes may be used to allocate activities to classifiers (such as blocks)
· Use guards only on control flows exiting a condition or branch point
· Complexity in activity diagrams is managed by decomposition
· Use Call Behavior actions to invoke behavior on a separate activity diagram
· Use Call Operation actions to invoke behavior defined by a function or operation
· Activity diagrams and state machine should generally be mixed with the statechart “on top” and the activity diagrams specifying behaviors of actions on that state machine

[bookmark: _Toc59654262]State Diagrams
· State diagrams should be used preferentially to specify reactive (i.e. “reacts to events”) behavior for actors, blocks and use cases, including blocks at different levels of abstraction (e.g. systems and subsystems)
· Use a statechart to model behavior of classifiers when that behavior
· is event driven or
· is modal, i.e. the behavior differs depending on state
· Always, at every level of nesting, indicate the default state unless there is only one state at that level of abstraction
· State diagrams may be either asynchronous (asynchronous event-driven) or synchronous (call-driven)
· Do not mix synchronous and asynchronous event triggers in the same state machine
· Great care must be taken with state machines with both synchronous and asynchronous triggers to avoid race conditions

[bookmark: _States][bookmark: _Toc59654263]States
· Use names for states that come from the problem vocabulary (domain)
· [bookmark: _Hlk59615329]Exception: In some cases, a state may be added to explicit force the completion of a run-to-completion step using the Forced Closure Rule. Such states will have names outside of the problem domain because they exist solely to resolve a design technical issue.
· Use composite states when one transition exiting the composite applies to all nested states or when the composite state logically contains the nested states (e.g. note the evEOS event from ParsingNumber state in Figure 19).

[image:]
[bookmark: _Ref132443799][bookmark: _Toc54705994]Figure 19: Nested States
· Use submachines to simplify complex state machines such as shown in the following sets of figures. Figure 20 shows a complex statechart with 3 levels of abstraction before it is decomposed into nested submachines. Figure 21 through Figure 23 show exactly the same statechart decomposed into a set of layered submachines.

[image:]
[bookmark: _Ref132445134][bookmark: _Toc54705995]Figure 20: Complex statechart before decomposition into submachines
This complex state machine contains a composite state Parsing Expression, which in turn contains a composite state Parsing Term. This can be decomposed into three layers:
[image:]
[bookmark: _Ref132445177][bookmark: _Toc54705996]Figure 21: Statechart decomposed into submachines – level 0

[image:]
[bookmark: _Toc54705997]Figure 22: Statechart decomposed into submachines – level 1

[image:]
[bookmark: _Ref132445186][bookmark: _Toc54705998]Figure 23: Statechart decomposed into submachines – level 2

· Pay attention to action placement
· Add actions to state entry only when the actions should be executed whenever the state is entered regardless of which transition is taken
· Add actions to state exit only when the actions should be executed whenever the state is exited regardless of which transition is taken
· Add actions to transitions when the above conditions are not met
· In the presence of and-states, avoid race conditions
· Race conditions are defined to be when a computational result depends on a specific order of execution, but that order is not knowable
· Race conditions occur when the same event is processed in simultaneously active and-states and
· Incompatible target states are specified, or
· Actions on the transitions manipulate the same attributes, or
· Incompatible actions are executed
· See Figure 24 for an example of an avoidable race condition

[image:]
[bookmark: _Ref132506788][bookmark: _Toc54706002]Figure 24: Race Condition in And-States
[bookmark: _Toc59654264]Actions
· Actions are run-to-completion, therefore actions should generally have a short execution time
· Actions may be direct attribute manipulations, operations defined on the class, or operations defined on classes to which the current class has an association
· Primitive actions shall be specified in the model’s action language (C or C++)
· Complex actions shall be modeled as operations; those operations can then be specified using activity diagrams
· E.g rather than “/x = foo(z); y = sin(x)^2 – tan(x); z = sin(x + y);”, wrap the set of actions in to an operation and invoke it “/computeZ();”
· Simple actions may be direct action language statements to manipulate attributes of the object
· E.g. ev1/ x = sin(y) + cos(z);

[bookmark: _Toc59654265]Guards
· Guards shall not have side-effects
· In C, C++, or Java, “x = 0” shall not be used as a guard as it performs an assignment; “x == 0” is preferred
· Guards on transition segments exiting conditional connectors shall have non-overlapping conditions
· For example, “[x>0]” and “[x>10]” would not be good guards from the same conditional connector; if x==20, then both guards would evaluate to TRUE
· Don’t use the result of actions in guards on the same transition
· Guards are evaluated prior to the execution of actions
· See Forced Closure Rule above
· Use an [else] guard when the event triggering the transition must always be handled

[bookmark: _Toc59654266]Submachines
A submachine is a set of nested states that are placed in a separate diagram to decrease the visual complexity of a state machine.
· Remember that submachines are “syntactic sugar” only – the submachine is still logically a part of the containing state machine; submachine merely aid in visualization of complex state machines
· Use submachines to manage complexity
· when a composite state is part of a complex state machine, that composite state can be decomposed on a separate state diagram (submachine)
· recommended when there are few, if any, non-default transitions
· Use exit and entry points only when non-default transitions are used
· If there are more than a very small number of non-default transitions, it is recommended not to decompose the nested state into a submachine
· See State Guidelines and Figure 21 through Figure 23, above.

[bookmark: _Toc59654267]Parametric Diagrams
Parametric diagrams are used to model the relation of parametric constraints and can be used to develop computation models.
· In Rhapsody, parametric diagrams may show Constraint Blocks as well as Constraint Properties.
· Constraint Parameters on Constraint Blocks shall be typed with an appropriate type.
· The directionality of Constraint Parameters on Constraint Blocks shall be specified.
· Constraints within Constraint blocks shall be well formed, according the syntax and semantics of the SysML.
· Parametric diagrams may be evaluated with the Rhapsody PCE Profile.

[bookmark: _Toc59654268]Parametrics for architectural analysis
· The ArchitecturePkg::ArchitecturalAnalysisPkg is intended to hold analyses, including parametric analysis.
· It is expected that each different analysis will be in a separate subpackage nested within the ArchitecturePkg::ArchitecturalAnalysisPkg
· Trade studies are a kind of architectural analysis and are expected to be treated in this fashion.

[bookmark: _Toc59654269]Semantic Standards: Using SysML
[bookmark: _Toc59654270]Model Overview Diagram
· Each model shall have a Model Overview diagram located “above” the packages.
· [bookmark: _Hlk59615514]This shall be either a Package or BDD diagram and the stereotype «Model Overview Diagram» from the Safety Profile shall be applied to the diagram
· This diagram shall contain information about the content and use of the model.
[image:]
[bookmark: _Ref54791321]Figure 25: Model Overview Diagram
Note the location of the diagram in the browser on the left of Figure 25.

[image:]
Figure 26: Another Model Overview Diagram

[bookmark: _Toc59654271]Modeling Systems Architecture Context
· The system context shows the system as a block, the actors with which it communicates, and the interface blocks.
· Use BDD for the type context
· Use IBD for the connected context
[image:]
Figure 27: Type Context

[image:]
Figure 28: Connected Context

Modeling Systems Architecture Structure
· Use BDD to show the system composition architecture
· The term “composition architecture” identifies the system and subsystems and show their relations.
· Use IBD to show the connected architecture
· The connected architecture shows how the subsystems and related elements connect.

[image:]
Figure 29: Composition Architecture

[image:]
Figure 30: Connected Architecture

[bookmark: _Toc59654272]Modeling Systems Architecture Behavior
Prefer state machines for behavioral specification of architectural elements. Interactions may be shown with sequence and/or activity diagrams, as desired.

[bookmark: _Toc59654273]Modeling Data Schema
· Use BDDs to show the relations of blocks, types, dimensions, and units.
· Define and apply units preferentially over the use of primitive types
· For example, define a unit KiloPascal and use it instead of just a double or Real.
· Use named constants rather than magic numbers
· Define named constants as types in Rhapsody, with kind Language, and a definition using “#define”.

[image:]
Figure 31: Type, Dimensions, and Units

[image:]
Figure 32: Data Schema

[bookmark: _Toc59654274]Defining a Named Constant

[image:]
Figure 33: Defining a named Constant

[bookmark: _Toc59654275]Modeling Trade Studies
Trade studies are a kind of architectural analysis and, if represented in the model, are expected to exist within subpackages of the ArchitecturePkg::ArchitecturalAnalysisPkg.
· Use parametric diagrams to perform trade studies or to represent computational constraint models
· Create a block that contains the raw measures of effectiveness (moe) as value properties
· Create constraint blocks to model the utility curve for the moes
· Create constraint blocks to model the weighted objective function
[image:]
Figure 34: MOEs, Constraints, and Objective Functions

[bookmark: _Toc59654276]Relating to ASPICE and ISO 26262
To support ASPICE, the following content and views – at minimum – will be contained within a systems model or model federation:
· Model Overview Diagram
· System Context Type
· System Connected Context
· System Composition Architecture
· System Connected Architecture
· Requirements-Architectural design elements trace matrix
· System Block state behavior identifying modes/primary system states and their transition
· State machines for the subsystems and indications of how they map to system states
· Activity and/or state diagrams depicting dynamic system behavior
· Sequence diagrams showing specific interactions (scenarios) of the architectural elements that is consistent with the state and activity models
· Interface diagram and/or tables showing the interface blocks and their properties (flow properties, event receptions, and functions invoked over the connections)
· Data schema
· Deployment architecture (BDD and IBD) with interdisciplinary interfaces)
The appropriate stereotypes from the Safety Profile will be applied to hold ASPICE and ISO 26262 model relevant metadata such as
· Capacity/memory needs
· ASIL Level
· Internally vs externally developed software
· Likelihood (such as for a fault)
· Severity (such as for a fault)
· Risk (such as for a fault)
· Fault Tolerance Time (such as for a fault)
· Worst case execution time (such as for a behavior)

Safety Profile
This profile will contain elements to support both ASPICE and ISO26262 as well as providing some common table and matrix layouts.
[bookmark: _Hlk59617705]All systems models will contain via reference, the Safety Profile. See Safety Profile Reference Guide for information on its use.
[bookmark: _Toc59654279]References
[bookmark: _Hlk56452498]Automotive SPICE: Process Reference Model Version 3.1 (November 2017)
ISO 26262-6:2018: Road Vehicles – Functional Safety – Part 6: Product development at the software level (2018)
[bookmark: _Hlk59617752]Safety Profile Reference Guide by Dr. Bruce Powel Douglass (2020)
Agile Model-Based Systems Engineering Cookbook by Dr. Bruce Powel Douglass, (2021)
Agile Systems Engineering by Dr. Bruce Powel Douglass, (2016)
Real-Time Agility by Dr. Bruce Powel Douglass, (2009)
Real-Time Agile Systems and Software Development website www.bruce-douglass.com
MBSE Guidelines		Page 1
image2.png
BE File Edit View Code Layout Tools Window Help
ssEtDaleil¢vsamEx|||laaEon

|Gl rapEen 2398

|2 m v 1 8 [oeatComponent

| DefautConfig

Bl-EEELE

[«]

4 & [package diagram_2

23 Profiles

For Help, press F1

Holds blocks representing the engineering
facets, and shows their relations, and the
use of interdisciplinary interfaces

W‘

the architecture

Holds the internal data schema for

EEIEE R] [ME][owe 5 Jacmzunr 4 £ & ¢ | JleGodCotoraion e
a T —— =X B Modeloverview Diagram x | | system Use Cases in Functi..| & Weicome to Rnapsody |
BN ‘ FARY [i ;:":M . pka [Project] SEModelorg (Model Overview Diagrami] B -
e ModelView o Mode | Funcuonaanayssl |
=0 oo D
-0 Components “' -
-0 Package Disgrams ackage . .
v .+ Dependency Systems Engineering uctraPkg tratsschenaps |
=0 Pack location i i
5 R Aecte Model Overview Diagram
5 FunctonalnalysiPk
=03 Pack Rationale us2FAPkg
v %, sawtacion
£ us2FAPkg. %, Conform
23 Use Case Diagrams -
 Use Cases. Requirementspkg Holds Interface blocks, events, and data schema
Sl ol ertacebocks,eer
55 Packages e
& ArchAnalysisPkg L Poyline Holds requirements ‘remote resources”
=0 Packages . Poygon to be referenced from the model. Holds Functional (Use case) is,
£t Lo e ety
B ArchDesignPkg O rame Aso rewquirements tables Als0 Use case-requirements trace matrix.
503 Packages
&> Closed Curve
£ peslormentria O eipse
15 SubspstemSpecitey T et
=03 Packages E image _
£ S1spechhg 1 9 ArchitecturePkg |
15 ss2spechi -
£167 InterfacesPkg ArchDesignPkg |
503 Packages
5 ntertaceDataSchemaPk
7 PredefinedTypes (REF)
£ PredefinedTypesCpp (REF) DeploymentPkg

SS1SpecPkg

Holds the specifcation of the software models,
1 packafe per design model.

$S2SpecPkg

TradeoffiPkg |

Tradeoff2Pkg.

Holds various analyses, such as trade studies,
one package per analysis

>

Labels Off Mon, 9, Nov 2020 11:08 AM

image3.png
I

P File Edit View Code Layout Tools Window Help
tEalai|l¢vsaEx|[raEon

Jj2 m v 1 8 [oefautComponent

=R

7R3 U:Tﬂmma

For Help, press F1

Contains widely used
elements such as

stereotypes, table .
and matrix layouts

[Systeminterfocestha |

Contains use case diagiams,

and use cases and their
properties

Referenced from the SHARED.
MODEL.

Contains physical interfaces
and data schema used by
those interfaces.

RequirementsPkg

Contains "remote resources”
(referenced requirements from
DOORS NG)

[Hodelibrariespky |

Referenced from appropriate
models

Contains reusable units,
quantity kinds, and
‘domain-specific types

(=0 l
ArchitecturePkg | CollaborationPkg |
Contains the software design
Contains the software.
architectrure elements

[
Contains analyses of use

cases - one package per use
case analysis (vith
subpackages as necessary)

>
Labels Off Mon, 9, Nov2020 11:13 AM

image4.png
8 Fie Edt View Code Layout Tools Window Help

|

Icsai«paeil¢vsamx||aaEors
|2 m o 19 e oeaComporan 1 o [spoed i overien
e g else + P @ T8 i £ 8] M T [A Z & « || NecHE de « |
@8 O Welometomnapiony B, Shared Model Overvew x |
[y select
EntireModel View | ¥ T & stamp Mode
0 ShareaMiodeiors
8 S g g o Shared Model Organization
[y g o g
©-03 Packages Composite Class
{3 InterfacesPkg B3 Package
-0 Packages
£ PhysicalDataSchemaPkg @ port
£ CommonTypesPkg 4 Generalization TnterfacesPig
£ PredefinedTypes (REF) L Association
£ PredefinedTypesCpp (REF) 1, Directed Association
© settings Q. Aggregation Holds the physical interface specifications amongst the subsystems and between
& Composition the subsystems and the actors
unk
. Dependency
N Flow
4 Realization PhysicalDataSchemaPkg
Q interface
& Ador
Holds the data schema for the physical interfaces
‘CommonTypesPkg
Holds common elements - such as types, blocks, table layouts and matrix layouts,
you want to make available to client models.
For Help, press F1

Labels Off Mon, 9, Nov2020 11:20 AM

>

image5.png
bdd [Package] Defautt [System Blocks]

anterfaceBoco
=] iPanelController
Mission:
Show the blocks, ports, and vales
interface blocks for the design
Opertins
Efreqd evCoong)
=) Efreqd evown()
oo @ reqd evNotCoong()
Valves leproxy»
ntroler:iPaneiControler
opeeors (1)
EfexCoong))
Epexown()
EpextiotCoong)
Eprexup)
anterfaceBocks
iDisplayController
Vales
= In setPoint(In):Redl
Opertios
“prowy»
pControler:iDisplayController
“Slodk> Lef =]
Display
peratins
Fow Properties
= In durent Temp(In):Rea proxy
5 n setPort(n)-Red [::IJRmm:ﬂ)spayRmm
anterfaceBodo
iDisplayRoom
Vabes

= «fowProperty» currentTemp(in):Real

petons

Controller

«proxy»| EfrevCooing))
pPanek:Panecontrole | {1 vDonr()

[evhiotcooingd)
Epevn)

Fow Properties
pDisplay:~DisplayControlir | = OU coongTerm(Out):Real
B = In durent Temp(In):Rea

= out setPont{out)-Red

{z}

«proxy>
pRoom:~RoomControler
«proxy»
pControler:RoomControler

e
Room

Vabes
= heatingTerm:Real

Operatins.

roxy»|

pDispay:MD'spa;Emm Fow Propertes
-] 5 1n cooingTerm(m):Real

= out currentTemp(Out):Redl
= In outsdeTemp(In):Real

i
prow>
poutside:~iOutsdeRoom
PRoom:utsideRoom
god> %

Fow Prapertes
= out outsdeTemp(Out):Real

“nterfaceBlodos
iRoomController

valees

= In cooingTerm(in):Real
= out currentTemp(Out)-Real

Operatins

“nterfaceBlodos
ioutsideRoom

Vabes
= out outsdeTemp(out):Real

Operatins

image6.png
1 itsPanel:Panel 3

«proxy»

pController:iPanelController

«proxy»

itsController:Controller

pPanel:~iPanelController

Ct {
«proxy]
isplayController|

el

pDisplay::

«proxy»
1 itsDisplay:Display 0%1 pController:iDisplayControllel
el 1

«proxy»
pController:iRoomController

itsRoom: “E’

kproxy»
pRoom:iDisplayRoom

El

«proxy»
pDisplay:~iDisplayRoom|

[w)

Mission:

Show the connected design
parts of the collaboration «proxy»
pRoom:iOutsideRoom

1 itsOutside:Outside

image7.png
=etSetPoint(75);
setCoolingTerm(0);

Controlling

NotCooling

evCooling r

Cooling

Bl

evNotCooling/

Reactions
(% setCoolingTerm((curmentTemp-setPoint)/ 3);

setCoolingTerm(0);

tm(500)

evp/
setSetPoint(setPoint +1);

evDown/
setSetPoint(setPoint -1);

image8.png
]
Mission: Show the

user cases for the
Arctic Room Cooler

Outside_Environment

Perform_Maintenance

Maintenance_Engineer

image9.png
bdd [Package] ArchitecturalDesignPkg [Aviary Structure]

1

FEGPs Satelite

0.4

Ps Satelite

O

[=] =
Mission: Show the Composition Aviary_systemofsystems
Architecture of the Aviary Ve B
System.
1 1
Pt
Operstions
1
Piot
Bl Sy =] Bl ey
paen
Watcher Watcher Watcher Watcher
vates vates
5 famehumber:unsigned long=0 5 authenticateOkRhpBoolean=TRUE e 3
5 authentcateVideoOkint=TRUE
Operations 5 andiFightiancmd= ss=NULL Values.
B evsessoraiedd 5 comectediatchers{a-Rhsodean Eremsuimrspeion
[oo Elﬂnﬁmwkmt:u enerDrgned hort.
e v g ghnOKseSoden TRUE
i tComecttondd g aneunber o0 Operstins
G exotpiscomnect) positonin [evsetiD(dunsigned short)
G exiotofi0 5 moriormative> ponerOkDebugint=TRUE B eviideoComectACK)
Epexcioton) B otatonint £ evideoComectAK)
B herezarauitiog) E steaktuRtpgooean £ exToobanyComnectonsReq)
EfpherezaPositn(p:ArframePositon) videoComnectionsint g=mﬂﬂdﬂﬂd0
[herezatideoframe) extienerConnctGood)
" Operstons exviewerDisconnect)
[updatepositon(p:Aiframeposition):void g " e ortvoid gﬂ o=
IS dscomectviewer (d:unsigned short:void G extenerong
gﬁm&mﬁm) gm:mmaxhhmnm)
herezaVideoFrame(
Efpevpdatevelocty(iarframeVelocity) [updatepositon(p:Aiframeposition):void
[evWideoComectReq(password:unsigned intdiunsigned shart)
gwmmmnﬁmmd shor)
exDoneon)
EexDrone0ff)
5 etvidecFrame0:void
S initwatchersO:void

[isGoodpassword(password:unsigned nt):RhpBoolean
S updateCommandedveloaty(viAiframe elocty):void
] updatepositon0:void

] updatevideoFeedQ:void

[updateviewerspositonQ:void

Voyeur

Voyeur

image10.png
Diagram

By File Edt View Code Layout Tools Window Help _Ex
Icsai«madi|¢wsaGEx||aaEoR |8 | apEnn 23
|l m v 115 8 [DcfoutComponert DefatCorfy fusll=! 13 |
EEE R e] 8| b1 T [[[rveme s AaBZuA Je ¢ |
a) requirements diagram.0 . | 25 Rotanysembly 18 n Des.. | 5 Sample Prametrics n s ey Model Overview Disgra | 35 Rotary Assembly BOD in s, | 3355W Electrnics Compostio..| % stateehar 0 ofshfterContr. | 3MCU Composition structur..|
I seea odalOvervise Dagran [Preject] KA Shiterydam [1oda varvew Degram]
EntireModelView | ¥ ¥ & Stamp Mode “
‘Architecture Modeling Principles:
RR e shierszen] o RefersncebocPly
5 Components 5 oo sion Proide an oieniew and + Systems e astractd at he igh kel avayfrom engineerng facets
503 Model Overview Diagrams surmary and qiding principles + Those architectura assembiies are decomposed on e own intemal bock dagrams
Bty Model Overview Diagram || £ Package {ortris mocel <Controlled Files + nfernal power comedtions shown on 2 separale archiectural 8D
© Packages a port 1001111987_P50_000_07._System design.paf + Nested ports are used to corral many signals
© Profles Generatzt + Indicual signals are modeled as low ports and fow propertes, except for CAN bus signals
© Settings T CamEim « CANbus intefface is modeled s a proxy port with event recepiion for CAN bus messaging
L Assocation Continuous scalarTows (such a5 +5v and VD_KRB_Force are modeled as low properies
“Contrlled File»
B s 1001050775580 S Archtectre + Naming Becauise of SysML/Rhapsody naming limitations, signals fom the original Source that begin wit ilegal
000005 characters are fenamed
2. Aggregation + For example, +5V becomes V5p
£ compostion + Conceptua and naming consistency is mintained back to source documents, where, and to he extert, possidle
5o + Extemal actor that have electroric connections are modeled as blocks wilh <AcloiBiock stereclype
in + The Driveris modeled s an Actor
“. Dependeney + Extemal interfaces are defned in the ExternalinterfacesPig package
N Flow DT DN ElE (IR AT e T G il s (i + ntemal intefaces are defined in Design SynthesisPy::ArchitecturalDe SgnPkg:InteralinterfacesPkg
4 Realiation dick on the exposed hyperlink.
Q interface
g o) e Adordky |
Ador B e e e S
3 i Syst Context ‘ \F Int 1 A: bli ‘
| ystem Contex | ‘ nternal Assemblies | Contains systemactors Contains proectdefned unks,
<Block Defintion Diagrams «lnternal Block Diagrams and actorbiocks sions and vabie
| Blocketion Diagrams nemalBockDiagrams } et D sl BlockDiagram: } amensiorsan e s
‘ I = | e
| | | Rotary Assembly BOD RotanAssembly 18D |
| | | | [ArchitectureDasignPks
| | efintion Diagrarms «interal Block Diagrams |
| - | [Tnternaloterfacespls |
| sow Erectonics Composition SBW Eledtronics IBD |
| Structure |
| =
| cetock Defiiton Diagrams internal Block Diagrams |
| | | 1CU Connected Structure }
| 5 I e S
| CAN Transceiver state machine |
| Power Management states |
MCU Shifter States |
} Other States |
< >
3
T [RTEIT\ oo /" Chedktioasl, 5id J,Confuaton Management\ Aeimaton™]
For Help, press F1 Labels Off Wed, 23, Dec 2020 9:43 AM

image11.png
bdd [Package] ExamplesPkg [Architecture Example BDD]

«interfaceBlock»
iAirTrafficSystem_Aircraft

«interfaceBlock»
iAirTrafficSystem_ATCController

Q Values Values
proxy» Operations Qpeations
pAirTrafficSystem:~iAirTrafficSystem_Aircraft

«interfaceBlock»
iAirTrafficSystem_GPSConstellation
aircraft Values

Q Operations
proxy»
pAirTrafficSystem: ~iAirTrafficSystem_GPSConstellation

«Block»
«proxy:

pAircraft:iAirTrafficSystem_Aircraft

Air_Traffic_System

GPS_Constellation

«proxy:
pGPSConstellation:iAirTrafficSystem_GPSConstellation
O T
«proxy:
proxy» PpATCController:iAirTrafficSystem_ATCController
pAirTrafficSystem:~iAirTrafficSystem_ATCController C

ATC_Controller

image12.emf
CommManager

«Block»

Values

Operations

addReceiver(ref:Receiver*):void

addSender(ref:Sender*):void

dispatch(m:Message):void

removeReceiver(ref:Receiver*):void

removeSender(ref:Sender*):void

send(m:Message):void

System

«Block»

1

itsCommManager

Sender

«Block»

*

itsSender

1

*

itsCommManager

itsSender

Receiver

«Block»

Values

Operations

herezaMsg(m:Message):void

*

itsReceiver

1

*

itsCommManager

itsReceiver

MessageQueue

«Block»

Values

headPtr:unsigned short

maxQueueSize:unsigned short

tailPtr:unsigned short

Operations

insert(m:Sender):void

isEmpty():Boolean

isFull():Boolean

remove():Message

1

sendQueue

1

receiveQueue

Message

«Block»

* itsMessage

image13.png
ibd [Package] ArchitecturaDesignPkg [Aviary Subsystem Architecture]

=]

Mission: Show the connected

1 itsBirdreederBirdreeder

architecture for the Aviary System

1 Watcher2:BirdWatcher 72|

1

pHumming

«proxy> | pHummingbird:~bHummingWatcher

1 pBirdFeeder:bHummingtesder

bird:~bHummingPeeder

+ HummingbiGHummingbird %

<proxy
PWatcher2:bHummingWatcher

Operaters
& reqd evsetD(:unsgned short)

e read evVideoConnectACK)

£ reqd evVideoConnectNAK()

&l prov ewideoConnectReq(password:unsgned ntd:unsgne...
e prov ewideoDiconneciReq(d-unsgned short)

& reqd herezaPostion p:ArframePoston)

Ereqd herezavideoFrame()

Patcher:brumminghiaicher TR —t -
<proxy» <proxy» <proxy»
PHummingbird:~bHummingWatcher pHummingbird:~bHummingWatcher pHummingbird:~bHummingWatcher
& Watcher0:BirdWatcher) 1 Watcher3:BirdWatcher B ExtraWatcher:BirdWatcher

Onestirs
- prov evpiotcontrolConnect{passwordiunsigned i)
£l prov eiotDiscomnect()

P reqd evsessonfaked()

[reqd evsessonstatted()

P evUpdatavebary(v:AifameVelocty)

3 read herezaPostion p:ArframePostion)

[reqd herezaVideorrame()

image14.png
Play Videq

nage Protocols

Monitor Athlete.

rotocol

o o

Manual Operation
o a o

+ Manual Operation in Treadmil -

Powrots | P | Tan | Fopeies

Gened | Descpton | _Abutes | Oporsions | _Fots

Use Case: Manual Operation
Purpose:

[This use case provides the capability to run unplanned workouts
land to change settings dynamically.

Description:
[The Athlete can manually enter demographic information
(height and weight) or obtain the data from the Athlete Data
|Card, set the target time or duration, set the units of measure,
land control the speed and elevation of the treadmill table using
[front panel controls. The system dynamically updates the display
[to include elapsed time, time remaining, covered distance,
|distance remaining, and speed. Note: athlete physiological data
is addressed with the Monitor Athlete use case.

Preconditions:
[The system is running and has passed its power on self test.

Post-conditions
[The protocol operates until either it has completed (and displays
[the output for a period of time following completion) or it has
lshut down due to a detected error.

Invariants:
|Wall power is continuously available within the power needs of
[the system.

e O oy |

— Y

image15.png
Name Text
Subsystem

! L Req:yPkg

12 [Rl 134 Req1 To prevent spoofing, the GPS shall use military encryption for the military version of the system.

13 [Rl 135 Req2 If more than 4 satellites are available, the redundancy shall be used to refine GPS time and position. Required GPS position accuracy shall be +/- 1 m.

14 [Rl 136 Req3 If spoofing is detected, the system shall transmit a message to the remote client of the attempt with the last known position and the pilot shall be alerted.

15 [Rl 137 Req4 To prevent spoofing, the GPS system shall identify a spoofing attempt if the GPS-computed position changes more than 100m within 1 second

16 [Rl 138 Reg5 Reported range, position, and apparent size of an identified object shall be accurate to +/- 2 cm.

17 [Rl 139 Reg6 The system object size limit for identification shall be settable to a apparent surface area (calculated from angular aspect and range) of from 25 cm~2 to 400 cm~2. Default shall be set to 100 cm”~2.

18 [Rl 140 Req7 FAST_MOVING for an identified object shall be defined to be one moving at a computed rate of faster than 50 meters per minute (3 kph). All other objects shall be tagged as SLOW_MOVING.

19 [Rl 141 Req8 A CLUTTERED environment shall be defined to be one in which 15 or more identified objects exist. SPARSE environments shall be defined to be ones with 5-14 identified objects. CLEAR environments shall be defined to be ones in which fewer than 5 objects are identified.

20 [Rl 142 Req9 Alert tones will be sounded when an object is detected within the CRITICAL region.

21 [&l 143 Req10 The system shall have a built in navigation system that uses GPS satellites for determination of position.
The system GPS receiver shall operate in 3D GPS mode, and require at least 4 satellites of minimal signal strength to determine 3D position.

22 [’ 144 Req11

23 [Rl 145 Req12 | The accuracy of the GPS receiver clock shall be accurate within 1.0ns.

24 [’ 146 Req13 The syste, GPS radio frequency shall center around 1575.42 MHz (but be able to receive signals between 1560 and 1610 MHz) (L1 signal) and 1227.60 MHz but shall be able to receive GPS signals between 1150and 1400 Mhz (L2 signal) using military band of 10.23 million CDMA

25 [& 147 Req14 The T-Wre(_:ks"‘I is a heavy loader exoskele_ton system fo_r use in moving heavy payloads gf up to 1500 Kg at walking _speeds_and _Iighter loads at jogging speed_s. The system is intended for in_dustrial, warehouse, ship loading, and military use. It is equiped with instrument panels at
heads up display (HUD) and a small LCD display on the inner arm. It can accommodate pilots from 5 feet to 6 feet 5 inches in height and has an endurance (without load) of over 36 hours without recharge and 12 hours at full load.

26 [&l 148 Req15 The system shall operate in termperature ranges from -40 C to +50 C.

27 [®l 149 Reqi6 The system shall be able to operate in low and high humidity environment including rain and snow.

28 [&l 150 Req17 The system shall be able to operate submerged up to the top of the hip joint for an indefinite period of time.

29 [’ 151 Reqi8 The system shall not provide electrical current (1 mA for AC or 5 mA DC) in direct contact with the pilot body, without engaging current limiting countermeasures

30 [®l 152 Req19 While ON, the system shall attempt to remain in a static balance when not moving, whether with on leg down or two, by adjusting the position of various limbs and weight distribution.

31 [®l 153 Req20 While ON and moving, the system shall attempt to maintain balance by adjusting stride length, direction, foot position and weight distribution to maintain balance and a smooth stride.

e [& 154 Req21 While balan_cing is a_ctive, weight shifts necessary to maintain balance shall result in pressure exerted to the associated pilot's limb, proportional to the degree of automated weight shifting required. This pressure can be overcome by increasing pilot exerted limb pressure as sensed b
added for kinesthetic awareness of the pilot.

33 [’ 155 Req22 The system shall be able to balance with both feet down and with either foot down and the other foot statically positioned anywhere in a 30 degree off normal angle.

34 [’ 156 Req23 The system shall be able to provide adequate dyamic balance to walk forward at 2 mph or backwards at 1 mph and perform a circlular walk with a radius of 20 feet entirely autonomously in maintenance mode.

35 [®l 157 Req24 The system shall be able to maintain static and dynamic (walking forward and backward) balance on uneven and rough terrain with scrub and small boulders (up to 10 cm diameter).

36 [’ 158 Req25 The system shall provide cell phone service when in operational or standby mode.

37 [&l 159 Req26 The system shall be able to provide GPS data to remote tracking station over the cell network, including the date, time, current position, and system serial number.

38 [’ 160 Req27 | GPS tracking can be enabled by default by configuration or enabled/disabled by the user.

39 [&l 161 Req28 The system shall be able to send an emergency voice 911 call with location, device ID, serial number to request assistance if the operator is unable to perform detailed actions. This shall be a two gesture command available at all times.

40 [’ 162 Req29 The system shall provide helmet speaker and microphone for communication.

41 [’ 163 Req30 | The system shall support video communications including a pilot-facing camera and a resizable window on the Heads Up Display for pilot viewing the caller.

42 [®l 164 Req31 The maintenance personnel shall be able to configure the system properties while the system is in standby mode.

43 [®l 165 Req32 | The maintainer shall be able to configure GPS tracking to be active on power up.

44 [Rl 166 Req33 | The maintainer shall be able to set the default sensitivity of the EMG sensors.

image16.png
MobilityManagement

Dataink

Net:Network

Netwencomect

|l

T {every 3seconds) |

}

ConnectionRequest()

Alert()

!

Referenced SD:
NetworkConnect

lentCrfl)

!

ChannelOpen()

hannelOpen()

|

image17.png
‘RemotePil
ot

:GroundDatali ‘AirborneData {UAV
nk Link

[setAirspeed(300,knots) T
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
2

actualAirSpeed(278 'knots')
1

IoopJ | [until Acknowledgement receiyed]

|

I
|
|
|
| sendDatagram(ControlCmd,misgID) |
|
f Ack(msgiD) | |
e

| se(AirSpeed(wO,'kno(s')‘

} ackualAirSpeed(278,‘kno(s') I

loop JJuntil Acknowledgement received]

sendDatagram(montiorMsg.msgiD)

| NAK(msgID) |
[1

| Ack(msgID) |
= ™

image18.png
RemotePi GroundDatalink AirbarmeDataLin UAY FLR VideoCam
ot k era
I | I I I I
scanForTargerargetType)
sendDatagram(Cortrolcd, rfsoiD) I I I
| — Aoqmsanl | | |
| * scanForTarget(targetype) | |
| scanForTarget(targetypt
| I 1 | |
ot | [targetingEnabled()] | |
| | |

| cameraReady()

A
FJURREad()‘

[
crrorMsgMISSING_PAYLOAD) |

- dDatagram(Errorisg, MsgiD)
cK(msgiD)
SgMISSING_PAYLOAD)——
D —

%44

rron

|

|

|

I [cameraPdyoadMounted] enableCamera(]

| | CameraPOsTY
|

|

|

|

|
|
|
|
N
|
|
|
|
I
|
|

image19.emf
Idle

evEOS/

itsEvaluator->GEN(evEOS);

evEOS/

itsEvaluator->GEN(evEOS);

ParsingOperator

evWhiteSpace/

sendOp(op);

evOp/

beginToken(params->currentChar);

evOp/

sendOp(op);

beginToken(params->currentChar);

evEOS/

sendOp(op);

itsEvaluator->GEN(evEOS);

evOp/

sendOp(op);

beginToken(params->currentChar);

ParsingNumber

ParsingFraction

evDot/

sendOp(op);

beginToken('.');

evDigit/

addFractionalDigit(params->currentChar);

evDot/

beginToken('.');

ParsingWhole

evDot/

addDot();

evDigit/

addDigit(params->currentChar);

evOp/

itsEvaluator->GEN(evNumber(value));

beginToken(params->currentChar);

evWhiteSpace/

itsEvaluator->GEN(evNumber(value))

evDigit/

sendOp(op);

beginToken(params->currentChar);

evDigit/

beginToken(params->currentChar);

evEOS/

itsEvaluator->GEN(evNumber(value));

itsEvaluator->GEN(evEOS);

evDigit/

addFractionalDigit(params->currentChar);

evDigit/

addDigit(params->currentChar);

Receives events from CharacterParser

as to the character and its type. This

object constructs tokens from those

events and characters and then passes

them off to the Evaluator

image20.emf
EvaluatorSM

WRONGTOKEN

WRONGTOKEN

EARLY_EOS

ExpressionError

WRONGTOKEN

EARLY_EOS

ParsingExpression

DONE

ParsingTerm

GotNumber

evEOS/

reduce();

displayResult();

itsStimulator->GEN(evCont);

evRightParen/

reduceSubExpr();

GotAddOp

evNumber/

push(params->value);

reduceUnary();

evEOS

evLeftParen/

push(params->op)

evAddOp/

pushUnary(params->op)

evAddOp/

reduce();

push(params->op);

evMultOp

ParsingFactor

evMultOp

evMultOp/

push(params->op)

evAddOp/

pushUnary(params->op)

evLeftParen/

push(params->op);

evEOS

GotNumber

evMultOp/

push(params->op);

evRightParen/

reduceSubExpr();

evNumber/

push(params->value);

reduceUnary();

reduceFactor();

evAddOp/

reduce();

push(params->op);

evNumber

evDivideByZero

evBadParen

Idle

/clear();

itsStimulator->GEN(evCont);

evEOS/

reduce();

displayResult();

itsStimulator->GEN(evCont);

evNumber/

push(params->value);

reduceUnary();

evMultOp

evLeftParen/

push(params->op)

evAddOp/

pushUnary(params->op)

evEOS

DONE

evRightParen/

reduceSubExpr();

evLeftParen/

push(params->op)

evAddOp/

pushUnary(params->op)

evAddOp/

pushUnary(params->op)

evLeftParen/

push(params->op);

evRightParen/

reduceSubExpr();

evLeftParen/

push(params->op)

evAddOp/

pushUnary(params->op)

image21.emf
EvaluatorSM

WRONGTOKEN

WRONGTOKEN

EARLY_EOS

ExpressionError

WRONGTOKEN

EARLY_EOS

ParsingExpression

enterexit_56

enterexit_53

enterexit_50

enterexit_47

enterexit_44

enterexit_41

evDivideByZero

evBadParen

Idle

/clear();

itsStimulator->GEN(evCont);

evNumber/

push(params->value);

reduceUnary();

evMultOp

evLeftParen/

push(params->op)

evAddOp/

pushUnary(params->op)

evEOS

DONE

evLeftParen/

push(params->op)

evAddOp/

pushUnary(params->op)

image22.emf
ParsingExpression

DONE

ParsingTerm

enterexit_7 enterexit_4

enterexit_1

ParsingFactor

evAddOp/

pushUnary(params->op)

evLeftParen/

push(params->op);

GotNumber

evMultOp/

push(params->op);

evRightParen/

reduceSubExpr();

evNumber/

push(params->value);

reduceUnary();

reduceFactor();

evAddOp/

reduce();

push(params->op);

enterexit_56

evEOS

enterexit_53 enterexit_50

evNumber

enterexit_47

evEOS/

reduce();

displayResult();

itsStimulator->GEN(evCont);

enterexit_44

evMultOp

enterexit_41

evMultOp

evAddOp/

pushUnary(params->op)

evLeftParen/

push(params->op);

evRightParen/

reduceSubExpr();

image23.emf
ParsingTerm

GotNumber

evRightParen/

reduceSubExpr();

GotAddOp

evNumber/

push(params->value);

reduceUnary();

evLeftParen/

push(params->op)

evAddOp/

pushUnary(params->op)

evAddOp/

reduce();

push(params->op);

enterexit_7

evMultOp/

push(params->op)

enterexit_4

evEOS/

reduce();

displayResult();

itsStimulator->GEN(evCont);

enterexit_1

evEOS

evRightParen/

reduceSubExpr();

evLeftParen/

push(params->op)

evAddOp/

pushUnary(params->op)

image24.png
state_0

]

state_1

state_3

image25.png
Diagram

% File Edt View Code Lsyout Tools Window Help Sex
Icsai«madi|¢wsaGEx||aaEoR |8 | apEnn 23
|l m v 115 8 [DcfoutComponert DefatCorfy fusll=! 13 |
EEE R e] 8| b1 T [[[rveme i Axmzun Je ¢ |
a T, requirements diagram_0in . | 25 RotaryAssembly 18 in Dl | T Somple Paramelrics i Desig,), By Model Overview Dagrazs | 33 Rotary Asscmbly BDD in Dss. | 3355W Elecronics Compositio | % statechart.0 o ShiftrCotr.. | 35MCU Campostion strucure..|
T seea Tiods G vervie: Diegram [Proec] KA. Shferydem [1odel Overv: Dagran]
EntireModelView | ¥ ¥ & Stamp Mode “
Architecture Modeling Principles:
RR e shierszen] a ReferenceDospkg
5 Components 5 = iesion Proide an ovniew and + Systems e astractd at he igh kel avayfrom engineerng facets
50 Model Overview Diagrams Surmmary and qidng principles + Those archiectura assembies are decomposed on heir own infemal lock dagrams
8 immary and guiding principls
e, Model Ovenview Disgram || £ Package ot e st <ControlledFies + itemal pover comnections shown on 3 separat architecural 18D
) Packsges port 1001111987_P50_000_07_System design.paf + Nested pots are used o corral many signals
3 Profiles. * Individual signals are modeled as flow ports and flow properties, except for CAN bus signals.
23 Settings] + CANbus interface is modeled as a proxy port with event reception for CAN bus messaging
L Association: T ‘Continuous scalar lows (such 25 +5v and VD_KRB_ Force are modeled as low properties
D IR e ey o) + Naming Becauise of SysML/Rhapsody naming limitations, signals fom the original Source that begin wit ilegal
EER000TIO charactes are enamed
% Agaregation " For examl, +5 becomes V5p
2. Composition + Conceptual and naming consistency is mairtained back o source documents, where, and to the extert, possible
g + Extema actor that have electrnic connections are modeled as blocks wih <A cloBlocks sterecype
ink = The Driver is modeled as an Actor
“ Dependency + Extemalinterfaces are defined n the ExternallnterfacesPkg package
N Flow To navigate to a view below, right-dicking the view and select Hyperlink, then + Internal interfaces are defined in Design SynthesisPkg::ArchitecturalDesignPkg:InternalInterfacesPkg
& Realization dick on the exposed hyperlink.
Q interface
O | e Ay |
Ador B e
: i || Internal Assembli ‘
| System Context | ‘ nternal Assemblies I Contin sytem actors Contins o efnes s,
<Block Definition Diagrams itemal Block Diagrams and actor bocis Sons and vaiue
| Blocketion Diagrams el lock iagrams } | Deckpetmioniesem sl BlockDiagram: } amensiorsan e s
I = - = | DesignSynthesisPhkg
| } | Rotary Assembly BOD RotaryAssembly IBD |
| | [ArchitectureDesignPks
| I | efinition Diagrams eintemal Block Diagrams }
‘ - ‘ InternalnterfacesPkg
| sow Erectonics Composition SBW Eledtronics IBD |
| Structure |
| | [
| eetock Defintion Diagrams <internal Block Diagrams |
| | | 1CU Connected Structure }
| 5 I b o
| CAN Transceiver state machine |
| Power Management states |
MCU Shifter States |
} Other States |
< >
|
o
T [T T og f Chedkviodel J; 6uid J, Confauraton Mansgement Anmston]
For Help, press F1 Labels Off Wed, 23, Dec 2020 9:43 AM

image26.png
(=]

®E Fle Edit View Code Layout Tools Window Help - x
EARIEAER VIERY | # @ 6| Bt EpEBn 2398
W B [% AchConponentin AchtectusiDesg | AchSim Mll|cl=RER=] [t 2 |[|<2 @b [Bviay Mosel Overview M)
st s] a3 [l 2 | | | [Tmes New Fom . [20 No Gobal Corfiguraion @
- S = % Aviary Model Overview * x | G Aviary Architectural Simulati...| 9 Aviary Subsystem Architectu... | 2 statechart 2 of BirdWatcher... | 2 Connected in statechart 4 o.
Entire Model View ~ & stamp Mode.
D cHarmonySE Aviary [= DiagamToois | 5 3
o0 Gomponee 5 o= Aviary System of Systems Model Overview

5 Aviary Model Overview - Dependengy |
e ::. Work Status. ‘This model is an overview of the Aviary Enterprise system which consists of 3 parts, each of which is detailed in its own, unconnected, model:
ackages Problem ‘

-5 ActorPkg - Hummingbird - done aircraft

Rationsle
& CommonPkg A - Bird Feeder - Pilot controller
E ‘F’m S SR ~ Bird Watcher - independent video stream viewer
unctionalAnalysisPkg %, conforn
E""",“‘“’z . 'S Common] ‘This model, however, is solely focused on the SoS structure. It does identify the primary systems which compose t, but that i as far as it goes. For more detal on
=] Pm::mm“ s Note the individual systems, see the model for the corresponding element
‘;’ Consant . Conceptual View

(] Requirement

 Anchor
[= Freeshapes —]
N = -
L Polyline
. Polygon
O Recangie |
U povane .
& coseacume Bil Feeder
O eupse
T tee
B image Hyperlinks to Views
o
Requrements RequrenentsTale
Lte CaseDiagmm |
Functonal Anabais Autoamous ELGhC onet |
s D soced FionEbrton
laage Eauis Conmst
o mmeate Context Hummingbird |
Sicei Coes |
e AchecunIContet

cchitecuralD isoram
Conneded Archtecure Diagram

For Help, press F1 - - Labels Off Mon, 8, Nov 2020 1:32 PM.

image27.png
bdd [Package] ArchitecturalDesignPkg [System Context]

[=]
Mission: Show the type
architecture of the system
context

ConfigurationApp

O

proxy»
pPegasus:~iPeqasys_App

«proxy>,
PApp:iPegasys App
C

T

App

vales

ntefacesiock> ntefacesiock>
iPegasus_PowerSource iPegasus_Rider
valies Vabes
Operatins Operatins

proxy»
1

TrainingApp

PRider:Pegasus_Rider

PowerSource:iPegasus_PowerSource

pPegasus:~iPegasus_PowerSource|

pPegasus:-iPegasus, Rider

Rider

«proxy>

PowerSource.

image28.png
ibd [Package] ArchitecturalDesignPkg [Connrect System Context]

(]
Mission:
1 itsApp:App Show the contextual elements
connected
=

«proxy»

pPegasus:~iPegasys_App

«proxy»

pApp:iPegasys App

1 iIsPegasl_‘ns:Pegasus
1 itsRider:Rider
proxy»
PpRider:iPegasus_Rider
[, {1
pPegasus:~iPegasus_Rider
«proxy»
=
«proxy»
pPowerSource:iPegasus_F rSource
«proxy»

pPegasus:~iPegasus_F rSource
1 itsPowerSource:PowerSource

image29.png
bdd [Package] ArchitecturalDesignPkg [Subsystem Compostion Architecture]

<Block,System»
Pegasus
«Block Subsystem» «Block Subsystem> «@lock, Subsystem» <8lock, Subsystem> G etloce Subsystem>
MechanicalFrame PowerTrain Comms RiderInteraction ElectricPowerDelivery MainComputingPlatform
«Block, Subsystem» «Block, Subsystem» «Block,Subsystem» «Block, Subsystem» «lock Subsystem> «Block,Subsystem»
InclineAssembly DriveTrain PedalAssembly MotorAssembly InclineControl GearControl

image30.png
ibd [<System» Block] Pegasus [System Connected Architecture]

1 itsRiderInteraction:RiderInteraction
= - - proxy> <proxy> . 1 itsInciineControk:IncineControl
1 itsElectricPowerDelivery:ElectricPowerDelivery pRiderlnteraction pElectricPowerDelvery pDigitalPowe
<proxy>
PowerSource pWalPower|
{1
Ak ————— <proxy>
plncineUl
= 1 itsGearControk:GearControl "’“”‘:'l"[
pSmalMotorPower pMotorPower
M
plncineMotorPower
1 itsMechanicalFrame:Mect) ~ <proxy> proxys
pMainComputingPltform pRider
T
o . <proxy> <proxy>
. mpmd MomrPoweM’I = PMCP_Gearing PMCP_Incine
- proxy»
pMainComputingPiatform PApp
{1
B <proxy>
o pApp
o pMainComputingPiatform
<proxy» T «proxy»
pMainComputingPiatform pPowerTrain
<proxy>
PRider_Resistance
[,
«proxy> 5 «proxy>
PRider - pDigitalPower pComms
pMainComputingPlatform putingPlatform:MainComputingPlatform
<proxy>
<proxy>
pGearingControl
PRiderInteraction
<proxy> proxy>
pMechanicalframe p[npdmcontrd
[FI

image31.png
Block Value property Unit
N == \.::;.

B pntingeragen _— —) dmensonDimension=Ange

Realizing type

Dimension : Angle in DataTypes ¥ B | Dimension : Angle in DataTypes

General Description Detaits, Tags Propeties
Basic type: Real in SysML:StandardValue v | [5]]
o s
O Constant

v ||| MRefermnce
ocate Ok fuply |

image32.png
MPD Logical Data Schemal

<dlodr
Riderl ogInData

Vabes
= numerofaccounts:unsgned nt

“Bocks
RiderPersonalData

Vabes
=] riderName:Rhpstring

= «tempered» weght:Kiogram
= «tempered> fip:wattsPerkg

<dlodr
RideHistory

valees

= numberofsessonsunsigned nt

o

Mission: Show the logical
Data Schema for Measure
Performance Data use case

Vabes
= frontGear:unsgned nt
= rearGear:unsgned int
= indine: Degreesofarc
= operationaMode: ResstanceMode:

bikeSettings

“Bock>
MeasuredPerformanceData

“Bock>
RidePerforanceData

“Bocks
RideSession

valies

= «tempered» startingTme: DateTime.

= «tempered» endingTme: DateTime

= «tempered» totalCaores:KioCaorie

= «temperedb totaDitance:Kibmeters
= «tempered» averageSpeed:kmPerHour
= «tempered» averagePower:Newton

= «tempered» ebpsedTme:Second

= id:unsgned nt

= vaieproperty_s:int

*

-~
performanceDatum

Vales
= whenMeasured:DateTme

Vabes
= «tempered» power:Newton
= «tempered> pedaPoston:Radan
= «tempered> indine:DegreesOfArc

<dlodr
ComputedPerformanceData

1

- computedData- |

Vales
= «tempered> speed:KmPerHour
= «tempered» distance:Kiometers
= «tempered» averagedPower:Newton
= «tempered» averagngintervat:Second
= «tempered» burnedCaories:KioCaorie
= «temperedy acceeration:KmPerHourSquared
= «tempered cadence:RPM
= «tempered» wattsPerkg:WattsPerkg

image33.png
pr
POWER_CHECK_TIME

Tegs

Euntnit

Value Type : POWER_CHECK_TIME in ManuallyDirectedFlightTypesPkg

¥ B8 || Velue e POWER CHECK TME in ManualyDrectedFightpesPh

*a

General | Descrption Declaration Relations Tags _ Propetties

General Descrption Declaration Relations Tags _ Propertes

Nane [POWER_CHECKCTIVE == Dectraion

e T e — L

D
o
=

ok ey |

01 fasfine s 1000

e o apay |

image34.png
«Block» «Block»
‘GR_Worst GR_Best
RderfeakReal15 RiderreatRealos5
41.9.1\]_‘ best
1 «ConstrantProperty> L]
ety o feelUtiityFunction:LinearUtiityCurve
RiderFeel:Real
n Constraints
[} {{utity VabieConsirant} utityValie =nputvalie*10/(bestworst) -10wors/(bestworst)}
[1
utityvalue
Objectivefunction:Real riderFeeMOE:Real partsCostMOE:Real
1 L[] LI «ConstraintProperty» L]
sWeiah .
Constraints =,

{[3{{ObjectiveFunconConstrant} ObjeciveFunction=accuracyMOE¥0.30 + massMOEX0. 10 + relabityMOE*0. 15 + partsCostMOE*0. 15 +riderFeeMOE*0.30} massMOE:Real

refabityMOE:Real [»

accuracyMOE:Real |

image1.png
KA_profile

StereotypesPkg

[ModelLibraryPlg

;c—-"—a;

